Mixed integer (non)linear approaches for the satellite constellation design problem
In this paper, we propose mathematical optimization models to solve the satellite constellation design problem for discontinuous coverage. In such a design problem, the aim is to determine the minimal number of satellites (and, incidentally, their 3D placements) in order to observe a fixed Earth reg...
Gespeichert in:
| Veröffentlicht in: | Optimization and engineering Jg. 24; H. 4; S. 2299 - 2320 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
Springer US
01.12.2023
Springer Verlag |
| Schlagworte: | |
| ISSN: | 1389-4420, 1573-2924 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose mathematical optimization models to solve the
satellite constellation design problem
for discontinuous coverage. In such a design problem, the aim is to determine the minimal number of satellites (and, incidentally, their 3D placements) in order to observe a fixed Earth region within a given revisiting time. Two Mixed Integer Nonlinear formulations are introduced. The first one is a feasibility problem based on the direct mathematical definition of pixel observability. The second one consists in introducing a set of indicator variables which specify if a satellite observes a pixel at a given time-stamp. In order to obtain a linear problem, the possible positions of the satellites are discretized. Finally, computational results show the potential and limitations of the proposed approaches. |
|---|---|
| AbstractList | In this paper, we propose mathematical optimization models to solve the satellite constellation design problem for discontinuous coverage. In such a design problem, the aim is to determine the minimal number of satellites (and, incidentally, their 3D placements) in order to observe a fixed Earth region within a given revisiting time. Two Mixed Integer Nonlinear formulations are introduced. The first one is a feasibility problem based on the direct mathematical definition of pixel observability. The second one consists in introducing a set of indicator variables which specify if a satellite observes a pixel at a given time-stamp. In order to obtain a linear problem, the possible positions of the satellites are discretized. Finally, computational results show the potential and limitations of the proposed approaches. In this paper, we propose mathematical optimization models to solve the satellite constellation design problem for discontinuous coverage. In such a design problem, the aim is to determine the minimal number of satellites (and, incidentally, their 3D placements) in order to observe a fixed Earth region within a given revisiting time. Two Mixed Integer Nonlinear formulations are introduced. The first one is a feasibility problem based on the direct mathematical definition of pixel observability. The second one consists in introducing a set of indicator variables which specify if a satellite observes a pixel at a given time-stamp. In order to obtain a linear problem, the possible positions of the satellites are discretized. Finally, computational results show the potential and limitations of the proposed approaches. |
| Author | Floquet, Julien Georges, Frédéric Grenier, Dominique Mencarelli, Luca |
| Author_xml | – sequence: 1 givenname: Luca surname: Mencarelli fullname: Mencarelli, Luca email: luca.mencarelli@ensta-paris.fr organization: UMA, ENSTA Paris, Institut Polytechnique de Paris – sequence: 2 givenname: Julien surname: Floquet fullname: Floquet, Julien organization: DTIS, ONERA, Université Paris Saclay – sequence: 3 givenname: Frédéric surname: Georges fullname: Georges, Frédéric organization: DTIS, ONERA, Université Paris Saclay – sequence: 4 givenname: Dominique surname: Grenier fullname: Grenier, Dominique organization: DTIS, ONERA, Université Paris Saclay |
| BackLink | https://hal.science/hal-03941027$$DView record in HAL |
| BookMark | eNp9kM1OAjEURhuDiYC-gKsuZVHtzzCdLglRMcG4UNdN6dyBkqEl7Wj07S2Mblyw6k3znXu_nBEa-OABoWtGbxml8i4xRitGKOeEKikLos7QkE2lIFzxYpBnUSlSFJxeoFFKW0pZOeXVEL0-uy-osfMdrCHim7x30joPJmKz38dg7AYSbkLE3QZwMh20resA2-DTYTadCx7XkNza45xftbC7ROeNaRNc_b5j9P5w_zZfkOXL49N8tiRW8GlHGik5FaaQlhtBbe5TC8MbXlZFQ6d2pRiUqhQrVTHFbVNDbi9KCgBcCg5CjNGk37sxrd5HtzPxWwfj9GK21Ic_KlTBKJefLGerPmtjSClCo63rjuW7aFyrGdUHkboXqbNIfRSpVUb5P_Tv1klI9FDKYZ_V6m34iD7rOEX9AMMFh38 |
| CitedBy_id | crossref_primary_10_1080_0305215X_2024_2434191 crossref_primary_10_1109_COMST_2023_3245614 |
| Cites_doi | 10.2514/1.A33689 10.1155/2017/1235692 10.1007/s10569-017-9811-7 10.1177/1063293X18804006 10.2514/6.2006-6753 10.2514/6.1996-3636 10.1109/ICINFA.2008.4608165 10.2514/1.A34657 10.1109/IMCCC.2018.00107 10.1109/AERO.2018.8396743 10.1007/BF03546424 10.2514/6.1990-2901 10.1109/TGRS.2021.3124473 10.1016/j.actaastro.2018.04.044 10.1109/LCOMM.2017.2780107 10.1007/s42064-017-0015-4 10.2514/6.2014-4159 10.2514/8.5422 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | AAYXX CITATION 1XC |
| DOI | 10.1007/s11081-022-09774-9 |
| DatabaseName | CrossRef Hyper Article en Ligne (HAL) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1573-2924 |
| EndPage | 2320 |
| ExternalDocumentID | oai:HAL:hal-03941027v1 10_1007_s11081_022_09774_9 |
| GroupedDBID | -5D -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 203 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFSI ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACREN ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFGCZ AFLOW AFQWF AFWTZ AFYQB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BAPOH BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Z J-C J0Z J9A JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- N2Q N9A NB0 NPVJJ NQJWS NU0 O9- O93 O9J OAM OVD P2P P9R PF0 PT4 Q2X QOS R89 R9I RNI RNS ROL RPX RSV RZC RZE S16 S1Z S27 S3B SAP SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Y Z7Z Z83 Z88 ZMTXR ~A9 8AO AAPKM AAYXX ABBRH ABDBE ABFSG ABJCF ABRTQ ACSTC ADHKG AEZWR AFDZB AFFHD AFHIU AFKRA AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA BENPR BGLVJ CCPQU CITATION HCIFZ M7S PHGZM PHGZT PQGLB PTHSS S0W 1XC |
| ID | FETCH-LOGICAL-c325t-f77203a47c2a30c652d3a2f2684f05cb91e6963b98192cfde420360eee2732e33 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862536500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1389-4420 |
| IngestDate | Sat Nov 29 15:00:21 EST 2025 Sat Nov 29 01:39:10 EST 2025 Tue Nov 18 21:51:52 EST 2025 Fri Feb 21 02:42:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Discontinuous coverage Satellite constellation design Revisiting time Mixed integer nonlinear and linear programming DISCONTINUOUS COVERAGE SATELLITE CONSTELLATION DESIGN REVISITING TIME MIXED INTEGER NONLINEAR AND LINEAR PROGRAMMING |
| Language | English |
| License | Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-f77203a47c2a30c652d3a2f2684f05cb91e6963b98192cfde420360eee2732e33 |
| ORCID | 0009-0003-6005-6196 |
| PageCount | 22 |
| ParticipantIDs | hal_primary_oai_HAL_hal_03941027v1 crossref_citationtrail_10_1007_s11081_022_09774_9 crossref_primary_10_1007_s11081_022_09774_9 springer_journals_10_1007_s11081_022_09774_9 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationSubtitle | International Multidisciplinary Journal to Promote Optimization Theory & Applications in Engineering Sciences |
| PublicationTitle | Optimization and engineering |
| PublicationTitleAbbrev | Optim Eng |
| PublicationYear | 2023 |
| Publisher | Springer US Springer Verlag |
| Publisher_xml | – name: Springer US – name: Springer Verlag |
| References | Whittecar W, Ferringer M (2014) Global coverage constellation design exploration using evolutionary algorithms. In: AIAA/AAS astrodynamics specialist conference, August 4–7, 2014, San Diego, CA, USA Wertz J (2001) Orbit and constellation design and management: spacecraft orbit and attitude systems. Microcosm Press RazoumnyYRoute satellite constellations for earth discontinuous coverage and optimal solution peculiaritiesJ Spacecr Rocket201754311010.2514/1.A33689 Wang L, Wang Y, Chen K, Zhang H (2008) Optimization of regional coverage reconnaissance satellite constellation by NSGA-II algorithm. In: 2008 International conference on intelligent computation technology and automation (ICICTA), pp 660–664 Luo Y, Shu P (2018) Optimization design of Walker constellation for multi-target rapid revisit. In: Eighth international conference on instrumentation & measurement, computer, communication and control (IMCCC), pp 483–486 ZhangTShenHLiZQieHCaoJLiHYangYRestricted constellation design for regional navigation augmentationActa Astronaut201815023123910.1016/j.actaastro.2018.04.044 RonanAFabianoLArcélioCWillerGModeling and design of a multidisciplinary simulator of the concept of operations for space mission pre-phase: a studiesConcurr Eng2019271283910.1177/1063293X18804006 Grandchamp E (2001) Quelques contributions pour l’optimisation de constellations de satellites. Ph.D. thesis, Institut National Polytechnique de Toulouse (INPT), France Hitomi N, Selva D (2018) Constellation optimization using an evolutionary algorithm with a variable-length chromosome. In: 2018 IEEE aerospace conference, pp 1–12 Baranger H, Bouchard J, Piet-Lahanier H (1991) Global optimization of GPS type satellite constellations. In: Montreal international astronautical federation congress LudersRSatellite networks for continuous zonal coverageARSJ196131217910.2514/8.5422 ZhangCJinJKuangLYanJLeo constellation design methodology for observing multi-targetsAstrodynamics2017212113110.1007/s42064-017-0015-4 Lang T, Hanson J (1984) Orbital constellations which minimize revisit time. In: Astrodynamics 1983. Proceedings of the conference, August 22–25, 1983, Lake Placid, NY, USA, pp 1071–1086 ChenXDaiGReineltGWangMA semi-analytical method for periodic earth coverage satellites optimizationIEEE Commun Lett201722353453710.1109/LCOMM.2017.2780107 Lee H, Shimizu S, Yoshikawa S, Ho K (2020) Satellite constellation pattern optimization for complex regional coverage. J Spacecr Rocket 57(6) Walker J (1970) Circular orbit patterns providing continuous whole earth coverage. Tech. rep, Royal Aircraft Establishment Farnborough, United Kingdom Walker J (1977) Continuous whole-earth coverage by circular-orbit satellite patterns. Tech. rep, Royal Aircraft Establishment Farnborough, United Kingdom Dufour F, Bertrand R, Sard J, Lasserre E, Bernussou J (1995) Constellation design optimization with a DOP based criterion. In: 14th International symposium on space flight dynamics MortariDWilkinsMBruccoleriCThe flower constellationsJ Astronaut Sci200452107127216091110.1007/BF03546424 Kim H, Jung O, Bang H (2007) A computational approach to reduce the revisit time using a genetic algorithm. In: 2007 International conference on control, automation and systems, pp 184–189 Hanson J, Evans M, Turner R (1990) Designing good partial coverage satellite constellations. In: Astrodynamics conference, August 20–22, 1990, Portland, OR, USA Vallado D, McClain W (2013) Fundamentals of astrodynamics and applications. Microcosm Press Park K, Wilkins M, Mortari D (2004) Uniformly distributed flower constellation design study for global navigation system. In: The 14th AAS/AIAA space flight mechanics meeting, Maui Savitri T, Kim Y, Jo S, Bang H (2017) Satellite constellation orbit design optimization with combined genetic algorithm and semianalytical approach. Int J Aerosp Eng. Article ID 1235692 Frayssinhes E (1996) Investigating new satellite constellation geometries with genetic algorithms,. In: Astrodynamics conference, July 29–31, 1996, San Diego, CA, USA ShtarkTGurfilPRegional positioning using a low earth orbit satellite constellationCelest Mech Dyn Astron201813021428374754010.1007/s10569-017-9811-71447.70030 Vallado D, Crawford P, Hujsak R, Kelso T (2006) Revisiting spacetrack report 3. Tech. rep, American Institute of Aeronautics and Astronautics (AIAA) ChadalavadaPDuttaARegional CubeSat constellation design to monitor hurricanesIEEE Trans Geosci Remote Sens2022601810.1109/TGRS.2021.3124473 Y Razoumny (9774_CR16) 2017; 54 D Mortari (9774_CR14) 2004; 52 T Zhang (9774_CR28) 2018; 150 T Shtark (9774_CR19) 2018; 130 X Chen (9774_CR3) 2017; 22 9774_CR8 9774_CR21 9774_CR7 9774_CR22 9774_CR9 9774_CR20 9774_CR4 A Ronan (9774_CR17) 2019; 27 9774_CR25 R Luders (9774_CR12) 1961; 31 9774_CR26 9774_CR6 9774_CR23 9774_CR5 9774_CR24 9774_CR1 P Chadalavada (9774_CR2) 2022; 60 9774_CR18 C Zhang (9774_CR27) 2017; 2 9774_CR10 9774_CR11 9774_CR15 9774_CR13 |
| References_xml | – reference: Wang L, Wang Y, Chen K, Zhang H (2008) Optimization of regional coverage reconnaissance satellite constellation by NSGA-II algorithm. In: 2008 International conference on intelligent computation technology and automation (ICICTA), pp 660–664 – reference: Hitomi N, Selva D (2018) Constellation optimization using an evolutionary algorithm with a variable-length chromosome. In: 2018 IEEE aerospace conference, pp 1–12 – reference: Frayssinhes E (1996) Investigating new satellite constellation geometries with genetic algorithms,. In: Astrodynamics conference, July 29–31, 1996, San Diego, CA, USA – reference: Walker J (1977) Continuous whole-earth coverage by circular-orbit satellite patterns. Tech. rep, Royal Aircraft Establishment Farnborough, United Kingdom – reference: ZhangTShenHLiZQieHCaoJLiHYangYRestricted constellation design for regional navigation augmentationActa Astronaut201815023123910.1016/j.actaastro.2018.04.044 – reference: LudersRSatellite networks for continuous zonal coverageARSJ196131217910.2514/8.5422 – reference: Kim H, Jung O, Bang H (2007) A computational approach to reduce the revisit time using a genetic algorithm. In: 2007 International conference on control, automation and systems, pp 184–189 – reference: MortariDWilkinsMBruccoleriCThe flower constellationsJ Astronaut Sci200452107127216091110.1007/BF03546424 – reference: Vallado D, Crawford P, Hujsak R, Kelso T (2006) Revisiting spacetrack report 3. Tech. rep, American Institute of Aeronautics and Astronautics (AIAA) – reference: Whittecar W, Ferringer M (2014) Global coverage constellation design exploration using evolutionary algorithms. In: AIAA/AAS astrodynamics specialist conference, August 4–7, 2014, San Diego, CA, USA – reference: ZhangCJinJKuangLYanJLeo constellation design methodology for observing multi-targetsAstrodynamics2017212113110.1007/s42064-017-0015-4 – reference: ShtarkTGurfilPRegional positioning using a low earth orbit satellite constellationCelest Mech Dyn Astron201813021428374754010.1007/s10569-017-9811-71447.70030 – reference: ChenXDaiGReineltGWangMA semi-analytical method for periodic earth coverage satellites optimizationIEEE Commun Lett201722353453710.1109/LCOMM.2017.2780107 – reference: Park K, Wilkins M, Mortari D (2004) Uniformly distributed flower constellation design study for global navigation system. In: The 14th AAS/AIAA space flight mechanics meeting, Maui – reference: RazoumnyYRoute satellite constellations for earth discontinuous coverage and optimal solution peculiaritiesJ Spacecr Rocket201754311010.2514/1.A33689 – reference: Lee H, Shimizu S, Yoshikawa S, Ho K (2020) Satellite constellation pattern optimization for complex regional coverage. J Spacecr Rocket 57(6) – reference: Lang T, Hanson J (1984) Orbital constellations which minimize revisit time. In: Astrodynamics 1983. Proceedings of the conference, August 22–25, 1983, Lake Placid, NY, USA, pp 1071–1086 – reference: Vallado D, McClain W (2013) Fundamentals of astrodynamics and applications. Microcosm Press – reference: Dufour F, Bertrand R, Sard J, Lasserre E, Bernussou J (1995) Constellation design optimization with a DOP based criterion. In: 14th International symposium on space flight dynamics – reference: Grandchamp E (2001) Quelques contributions pour l’optimisation de constellations de satellites. Ph.D. thesis, Institut National Polytechnique de Toulouse (INPT), France – reference: Wertz J (2001) Orbit and constellation design and management: spacecraft orbit and attitude systems. Microcosm Press – reference: Hanson J, Evans M, Turner R (1990) Designing good partial coverage satellite constellations. In: Astrodynamics conference, August 20–22, 1990, Portland, OR, USA – reference: RonanAFabianoLArcélioCWillerGModeling and design of a multidisciplinary simulator of the concept of operations for space mission pre-phase: a studiesConcurr Eng2019271283910.1177/1063293X18804006 – reference: Walker J (1970) Circular orbit patterns providing continuous whole earth coverage. Tech. rep, Royal Aircraft Establishment Farnborough, United Kingdom – reference: Baranger H, Bouchard J, Piet-Lahanier H (1991) Global optimization of GPS type satellite constellations. In: Montreal international astronautical federation congress – reference: ChadalavadaPDuttaARegional CubeSat constellation design to monitor hurricanesIEEE Trans Geosci Remote Sens2022601810.1109/TGRS.2021.3124473 – reference: Luo Y, Shu P (2018) Optimization design of Walker constellation for multi-target rapid revisit. In: Eighth international conference on instrumentation & measurement, computer, communication and control (IMCCC), pp 483–486 – reference: Savitri T, Kim Y, Jo S, Bang H (2017) Satellite constellation orbit design optimization with combined genetic algorithm and semianalytical approach. Int J Aerosp Eng. Article ID 1235692 – ident: 9774_CR1 – volume: 54 start-page: 1 issue: 3 year: 2017 ident: 9774_CR16 publication-title: J Spacecr Rocket doi: 10.2514/1.A33689 – ident: 9774_CR18 doi: 10.1155/2017/1235692 – ident: 9774_CR25 – volume: 130 start-page: 14 issue: 2 year: 2018 ident: 9774_CR19 publication-title: Celest Mech Dyn Astron doi: 10.1007/s10569-017-9811-7 – volume: 27 start-page: 28 issue: 1 year: 2019 ident: 9774_CR17 publication-title: Concurr Eng doi: 10.1177/1063293X18804006 – ident: 9774_CR21 doi: 10.2514/6.2006-6753 – ident: 9774_CR10 – ident: 9774_CR5 doi: 10.2514/6.1996-3636 – ident: 9774_CR15 – ident: 9774_CR24 doi: 10.1109/ICINFA.2008.4608165 – ident: 9774_CR9 – ident: 9774_CR11 doi: 10.2514/1.A34657 – ident: 9774_CR22 – ident: 9774_CR20 – ident: 9774_CR13 doi: 10.1109/IMCCC.2018.00107 – ident: 9774_CR8 doi: 10.1109/AERO.2018.8396743 – ident: 9774_CR4 – ident: 9774_CR6 – volume: 52 start-page: 107 year: 2004 ident: 9774_CR14 publication-title: J Astronaut Sci doi: 10.1007/BF03546424 – ident: 9774_CR7 doi: 10.2514/6.1990-2901 – volume: 60 start-page: 1 year: 2022 ident: 9774_CR2 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2021.3124473 – volume: 150 start-page: 231 year: 2018 ident: 9774_CR28 publication-title: Acta Astronaut doi: 10.1016/j.actaastro.2018.04.044 – volume: 22 start-page: 534 issue: 3 year: 2017 ident: 9774_CR3 publication-title: IEEE Commun Lett doi: 10.1109/LCOMM.2017.2780107 – volume: 2 start-page: 121 year: 2017 ident: 9774_CR27 publication-title: Astrodynamics doi: 10.1007/s42064-017-0015-4 – ident: 9774_CR23 – ident: 9774_CR26 doi: 10.2514/6.2014-4159 – volume: 31 start-page: 179 issue: 2 year: 1961 ident: 9774_CR12 publication-title: ARSJ doi: 10.2514/8.5422 |
| SSID | ssj0016528 |
| Score | 2.3255405 |
| Snippet | In this paper, we propose mathematical optimization models to solve the
satellite constellation design problem
for discontinuous coverage. In such a design... In this paper, we propose mathematical optimization models to solve the satellite constellation design problem for discontinuous coverage. In such a design... |
| SourceID | hal crossref springer |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 2299 |
| SubjectTerms | Computer Science Control Engineering Environmental Management Financial Engineering Mathematics Mathematics and Statistics Operations Research/Decision Theory Optimization Research Article Systems Theory |
| Title | Mixed integer (non)linear approaches for the satellite constellation design problem |
| URI | https://link.springer.com/article/10.1007/s11081-022-09774-9 https://hal.science/hal-03941027 |
| Volume | 24 |
| WOSCitedRecordID | wos000862536500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink Standard customDbUrl: eissn: 1573-2924 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016528 issn: 1389-4420 databaseCode: RSV dateStart: 20000601 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA62etCDb7G-COJB0UB2k252j0UsPbRFrEpvSzYPLEiVbi3-fDPp7lZFBD1uSEKYyWS-ZWa-QegsToRmihuiM2kJt0oSGWlNlNAqNFS7nxJfKNwV_X48HCa3RVFYXma7lyFJ_1Ivit0C574IZJ9TAC0kqaFl5-5iMMe7wWMVO4iavqMqROAI5yEtSmV-3uOLO6o9QTLkt4iodzTtjf8dcROtF8ASt-Y3YQstmfE2WvtEN-i-ehVHa76DBr3Ru9HY80WYCT4fv4wvAHPKCS6Jxk2OHabFbhHOpafunBqsAFFCzhSoFGufAYKLvjS76KF9c3_dIUWLBaJY2JwSKyAMK7lQoWRUOdFpJkMLFDCWNlWWBCZyJpolwJumrDYcApfUGONgT2gY20N1dzyzj7CIMk6ZsILJgDdjI2modWipG8liGwQNFJSSTlXBPw5tMJ7TBXMyiC914ku9-NKkgS6rNa9z9o1fZ586BVYTgTi70-qmMEZZwh2UEjN3jKtSd2lhrvkvex78bfohWoV-9PN8lyNUn07ezDFaUbPpKJ-c-Hv6ASIr4Iw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA62CurBt1ifQTwoGshu0qZ7LGKp2BaxVXpbsnlgQap0a_Hnm0l3WxUp6HFDEsLkMd8y33yD0Fk1EpopbohOpCXcKklkRWuihFahodr9lPhE4aZot6u9XnSfJYWlOds9D0n6l3qW7BY490WAfU4BtJCogBa581hA5HvoPE1jB5Wyr6gKETjCeUizVJnf5_jmjgrPQIb8ERH1jqa-_r8lbqC1DFji2uQkbKIFM9hCq1_kBt1Xa6rRmm6jTqv_YTT2ehFmiM8Hr4MLwJxyiHOhcZNih2mxG4RT6aU7RwYrQJTAmYItxdozQHBWl2YHPdZvutcNkpVYIIqF5RGxAsKwkgsVSkaVM51mMrQgAWNpWSVRYCruiiYR6KYpqw2HwCU1xjjYExrGdlHRLc_sISwqCadMWMFkwMtVI2modWipa0mqNghKKMgtHatMfxzKYLzEM-VkMF_szBd788VRCV1Ox7xN1Dfm9j51GzjtCMLZjVozhjbKIu6glBi7ZVzlexdn1zWdM-f-37qfoOVGt9WMm7ftuwO0ArXpJ9yXQ1QcDd_NEVpS41E_HR77M_sJsVLjcA |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZSwMxEA5eiD54i7dBfFA0NJukTfexqEWxLYIHvi3ZHFiQWrpr8eebSbe1ihTEx4RJGGYmzISZ-Qah42osDdfCEpMqR4TTiqiKMURLo5mlxn9KQqNwQ7Za1efn-G6siz9Uuw9TkoOeBkBp6uSlrnGlr8a3yLsyApXoFAIYEk-jWQFDg-C_fv80yiNUymG6KmTjiBCMFm0zv9_xzTVNv0Bh5I_saHA69eX_s7uCloqAE9cGFrKKpmxnDS2OwRD6VXOE3Zqto_tm-8MaHHAkbA-fdN46pxCLqh4eApDbDPtYF_tDOFMB0jO3WEOkCbVUoGpsQmUILubVbKDH-tXDxTUpRi8QzVk5J05CelYJqZniVHsxGq6YA2gYR8s6jSNb8U83jQFPTTtjBSQ0qbXWh0PMcr6JZjx7dgthWUkF5dJJriJRrlpFmTHMUb-TVl0UbaNoKPVEF7jkMB7jNflCVAbxJV58SRBfEm-js9GZ7gCVYyL1kVfmiBAAta9rjQT2KI-92TDZ92ycD_WYFM84m3Dnzt_ID9H83WU9ady0bnfRAoysH5TE7KGZvPdu99Gc7uftrHcQzPcTrD7sVA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mixed+integer+%28non%29linear+approaches+for+the+satellite+constellation+design+problem&rft.jtitle=Optimization+and+engineering&rft.au=Mencarelli%2C+Luca&rft.au=Floquet%2C+Julien&rft.au=Georges%2C+Fr%C3%A9d%C3%A9ric&rft.au=Grenier%2C+Dominique&rft.date=2023-12-01&rft.pub=Springer+Verlag&rft.issn=1389-4420&rft.eissn=1573-2924&rft_id=info:doi/10.1007%2Fs11081-022-09774-9&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=oai%3AHAL%3Ahal-03941027v1 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-4420&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-4420&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-4420&client=summon |