Low-rank elastic-net regularized multivariate Huber regression model

Heavy-tailed noise or strongly correlated predictors often go with the multivariate linear regression model. To tackle with these problems, this paper focuses on the matrix elastic-net regularized multivariate Huber regression model. This new model possesses the grouping effect property and the robu...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Mathematical Modelling Ročník 87; s. 571
Hlavní autoři: Chen, Bingzhen, Zhai, Wenjuan, Huang, Zhiyong
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier BV 01.11.2020
Témata:
ISSN:1088-8691, 0307-904X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Heavy-tailed noise or strongly correlated predictors often go with the multivariate linear regression model. To tackle with these problems, this paper focuses on the matrix elastic-net regularized multivariate Huber regression model. This new model possesses the grouping effect property and the robustness to heavy-tailed noise. Meanwhile, it also has the ability of reducing the negative effect of outliers due to Huber loss. Furthermore, an accelerated proximal gradient algorithm is designed to solve the proposed model. Some numerical studies including a real data analysis are dedicated to show the efficiency of our method.
AbstractList Heavy-tailed noise or strongly correlated predictors often go with the multivariate linear regression model. To tackle with these problems, this paper focuses on the matrix elastic-net regularized multivariate Huber regression model. This new model possesses the grouping effect property and the robustness to heavy-tailed noise. Meanwhile, it also has the ability of reducing the negative effect of outliers due to Huber loss. Furthermore, an accelerated proximal gradient algorithm is designed to solve the proposed model. Some numerical studies including a real data analysis are dedicated to show the efficiency of our method.
Author Zhai, Wenjuan
Huang, Zhiyong
Chen, Bingzhen
Author_xml – sequence: 1
  givenname: Bingzhen
  surname: Chen
  fullname: Chen, Bingzhen
– sequence: 2
  givenname: Wenjuan
  surname: Zhai
  fullname: Zhai, Wenjuan
– sequence: 3
  givenname: Zhiyong
  surname: Huang
  fullname: Huang, Zhiyong
BookMark eNotjc1KxDAYRYOMYGf0AdwVXKd-SZMmXcr4M0LBjYK7IT9fpbVNx6RV8Okd0dXlci7nrskqTAEJuWRQMGDVdV-Yw1hw4FCALIDxE5JBCYrWIF5XJGOgNdVVzc7IOqUejgtdQUZum-mLRhPecxxMmjtHA855xLdlMLH7Rp-PyzB3n8diZsx3i8X4iyOm1E0hHyePwzk5bc2Q8OI_N-Tl_u55u6PN08Pj9qahruRypi1UxmkujOWqQm-98NZogV555nSN2ggGHHkrWSss2rpVLThvmVRCWuHKDbn68x7i9LFgmvf9tMRwvNxzIVQJUpS6_AHya1Er
CitedBy_id crossref_primary_10_1080_00949655_2023_2232504
crossref_primary_10_1016_j_apm_2023_06_039
crossref_primary_10_1007_s10182_021_00403_x
crossref_primary_10_1080_03610918_2025_2496769
crossref_primary_10_1109_TNNLS_2022_3189069
crossref_primary_10_1016_j_apm_2021_12_016
ContentType Journal Article
Copyright Copyright Elsevier BV Nov 2020
Copyright_xml – notice: Copyright Elsevier BV Nov 2020
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2020.05.012
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Mathematics
EISSN 0307-904X
GroupedDBID -W8
-~X
.7I
.GO
.QK
0BK
0R~
23M
2DF
4.4
53G
5GY
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
EAP
EBR
EBS
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
HZ~
IPNFZ
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-f06ac824ab276edbd4dba84ed7d1c89e8a4102e2f51f4beb9f7f0cdb15745b4c3
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000557208100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1088-8691
IngestDate Fri Jul 25 23:53:26 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-f06ac824ab276edbd4dba84ed7d1c89e8a4102e2f51f4beb9f7f0cdb15745b4c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2447305438
PQPubID 2045280
ParticipantIDs proquest_journals_2447305438
PublicationCentury 2000
PublicationDate 20201101
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201101
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2020
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
SSID ssj0012860
ssj0005904
Score 2.329042
Snippet Heavy-tailed noise or strongly correlated predictors often go with the multivariate linear regression model. To tackle with these problems, this paper focuses...
SourceID proquest
SourceType Aggregation Database
StartPage 571
SubjectTerms Algorithms
Data analysis
Multivariate analysis
Noise prediction
Outliers (statistics)
Regression analysis
Regression models
Robustness (mathematics)
Title Low-rank elastic-net regularized multivariate Huber regression model
URI https://www.proquest.com/docview/2447305438
Volume 87
WOSCitedRecordID wos000557208100030&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 1088-8691
  databaseCode: TFW
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5B4dAeEBRQC6XyAXGJtrI3a-_ukUejHELg4NKol8j7sJqqclInKW1_PbMPx6aVEBy4WMluZDmZLzPf7szsh9D7uDRai0xiCJUUU82skLtKMEt0yQ2xeUfXKDxi4zGfTMT3UG67dHICrKr4zY1Y_FdTwxgY27bO_oO5NzeFAXgNRocrmB2uf2X40fwntkrsPQPEGGZxZVa92knO17M74JeuhvAa3gDN7A3X0tR22tfDVl4ap0tZG576dXPAq23ntZ-6bMKeKw_w_usTjN2dt_1lZ0Hv-tRUF-sWicN12Kc-O5_dzsNtwuYDrDST3zYf2q6YHx0fCo4L88yLcB2Z0JwVMyxiX4zZON4Qab3nTL0SywOP7jcXLo6KhT03gMT-nFXShq8mZT_-Nh2cjEbT_HiSf1hcYSssZhPwQWXlMXpCWCps1V8-OG2rgIRdjoasE-G-q7z5Ak0W3NUD3nuAB7HbEZL8OXoWVhLRR4-AF-iRqXbRTmul5S7a3oS325foSwOMqAOMqAOMqAuMyAEjaoEROWC8QieD4_zzEAcNDaz6JF3hMs4KxQktJGGZ0VJTLQtOjWY6UVwYXlCgmIaUaVJSaaQoWRkrLZOU0VRS1X-Ntqp5ZfZQlGRAplUmClvDy42SwJ4JK4FRm6xIiN5HB80vMg3_h-UU2CPEkJT2-Zs_T79F2y3ADtDWql6bd-ipul7NlvWhM9ov1Q1cCw
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-rank+elastic-net+regularized+multivariate+Huber+regression+model&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Chen%2C+Bingzhen&rft.au=Zhai%2C+Wenjuan&rft.au=Huang%2C+Zhiyong&rft.date=2020-11-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=87&rft.spage=571&rft_id=info:doi/10.1016%2Fj.apm.2020.05.012&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-8691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-8691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-8691&client=summon