Strong Direct Product Theorems for Quantum Communication and Query Complexity

A strong direct product theorem (SDPT) states that solving $n$ instances of a problem requires $\Omega(n)$ times the resources for a single instance, even to achieve success probability $2^{-\epsilon n}$ for a small enough constant $\epsilon>0.$ We prove that quantum communication complexity obey...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on computing Ročník 41; číslo 5; s. 1122 - 1165
Hlavní autor: Sherstov, Alexander A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2012
Témata:
ISSN:0097-5397, 1095-7111
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:A strong direct product theorem (SDPT) states that solving $n$ instances of a problem requires $\Omega(n)$ times the resources for a single instance, even to achieve success probability $2^{-\epsilon n}$ for a small enough constant $\epsilon>0.$ We prove that quantum communication complexity obeys an SDPT whenever the communication lower bound for a single instance is proved by the generalized discrepancy method, the strongest technique in that model. We prove that quantum query complexity obeys an SDPT whenever the query lower bound for a single instance is proved by the polynomial method, one of the two main techniques in that model. In both models, we prove the corresponding XOR lemmas and threshold direct product theorems. [PUBLICATION ABSTRACT]
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0097-5397
1095-7111
DOI:10.1137/110842661