On the design of multimaterial structural topologies using Integer Programming

This paper presents a framework for the discrete design of optimal multimaterial structural topologies using integer design variables and mathematical programming. The structural optimization problems: compliance minimization subject to mass constraint, and mass minimization subject to compliance co...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 384; s. 114000
Hlavní autoři: Sivapuram, Raghavendra, Picelli, Renato, Yoon, Gil Ho, Yi, Bing
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.10.2021
Elsevier BV
Témata:
ISSN:0045-7825, 1879-2138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a framework for the discrete design of optimal multimaterial structural topologies using integer design variables and mathematical programming. The structural optimization problems: compliance minimization subject to mass constraint, and mass minimization subject to compliance constraint are used to design the multimaterial topologies in this work. The extended SIMP interpolation is used to interpolate the different materials available for structural design, and the material phases in each element are represented using binary design variables, one variable per available material. The Topology Optimization of Binary Structure (TOBS) method (Sivapuram and Picelli, 2018) is employed, wherein the nonlinear objective/constraint functions of optimization are sequentially approximated (herein, linearized) to obtain a sequence of Integer Linear Programs (ILPs). A novel truncation error-regulating constraint in terms of the Young’s moduli of the elements is introduced to maintain the sequential approximations valid, by restricting large changes in successive structural topologies. A commercial branch-and-bound solver is used to solve the integer subproblems yielding perfectly binary solutions which guarantee discrete structural topologies with clear material interfaces at each iteration. Adjoint sensitivities are computed to generate the integer subproblems, and the sensitivities are filtered using a conventional mesh-independent sensitivity filter. Few examples show the design of multimaterial structures in the presence of design-dependent loads: hydrostatic pressure loads and self-weight loads. This work also demonstrates through few examples, convergence of optimal multimaterial topologies at inactive constraint values when different type of loadings simultaneously act on the structure. •Integer programming is used in multimaterial structural optimization.•The optimized structures have clear boundaries and clear material interfaces.•A novel truncation error-regulating constraint is proposed for multimaterial problems.•Examples include models with design-dependent pressure and self-weight loads.•Convergence at inactive mass constraint values is demonstrated through few examples.
AbstractList This paper presents a framework for the discrete design of optimal multimaterial structural topologies using integer design variables and mathematical programming. The structural optimization problems: compliance minimization subject to mass constraint, and mass minimization subject to compliance constraint are used to design the multimaterial topologies in this work. The extended SIMP interpolation is used to interpolate the different materials available for structural design, and the material phases in each element are represented using binary design variables, one variable per available material. The Topology Optimization of Binary Structure (TOBS) method (Sivapuram and Picelli, 2018) is employed, wherein the nonlinear objective/constraint functions of optimization are sequentially approximated (herein, linearized) to obtain a sequence of Integer Linear Programs (ILPs). A novel truncation error-regulating constraint in terms of the Young's moduli of the elements is introduced to maintain the sequential approximations valid, by restricting large changes in successive structural topologies. A commercial branch-and-bound solver is used to solve the integer subproblems yielding perfectly binary solutions which guarantee discrete structural topologies with clear material interfaces at each iteration. Adjoint sensitivities are computed to generate the integer subproblems, and the sensitivities are filtered using a conventional mesh-independent sensitivity filter. Few examples show the design of multimaterial structures in the presence of design-dependent loads: hydrostatic pressure loads and self-weight loads. This work also demonstrates through few examples, convergence of optimal multimaterial topologies at inactive constraint values when different type of loadings simultaneously act on the structure.
This paper presents a framework for the discrete design of optimal multimaterial structural topologies using integer design variables and mathematical programming. The structural optimization problems: compliance minimization subject to mass constraint, and mass minimization subject to compliance constraint are used to design the multimaterial topologies in this work. The extended SIMP interpolation is used to interpolate the different materials available for structural design, and the material phases in each element are represented using binary design variables, one variable per available material. The Topology Optimization of Binary Structure (TOBS) method (Sivapuram and Picelli, 2018) is employed, wherein the nonlinear objective/constraint functions of optimization are sequentially approximated (herein, linearized) to obtain a sequence of Integer Linear Programs (ILPs). A novel truncation error-regulating constraint in terms of the Young’s moduli of the elements is introduced to maintain the sequential approximations valid, by restricting large changes in successive structural topologies. A commercial branch-and-bound solver is used to solve the integer subproblems yielding perfectly binary solutions which guarantee discrete structural topologies with clear material interfaces at each iteration. Adjoint sensitivities are computed to generate the integer subproblems, and the sensitivities are filtered using a conventional mesh-independent sensitivity filter. Few examples show the design of multimaterial structures in the presence of design-dependent loads: hydrostatic pressure loads and self-weight loads. This work also demonstrates through few examples, convergence of optimal multimaterial topologies at inactive constraint values when different type of loadings simultaneously act on the structure. •Integer programming is used in multimaterial structural optimization.•The optimized structures have clear boundaries and clear material interfaces.•A novel truncation error-regulating constraint is proposed for multimaterial problems.•Examples include models with design-dependent pressure and self-weight loads.•Convergence at inactive mass constraint values is demonstrated through few examples.
ArticleNumber 114000
Author Sivapuram, Raghavendra
Yi, Bing
Picelli, Renato
Yoon, Gil Ho
Author_xml – sequence: 1
  givenname: Raghavendra
  orcidid: 0000-0002-1639-9349
  surname: Sivapuram
  fullname: Sivapuram, Raghavendra
  email: rsivapur@eng.ucsd.edu
  organization: Structural Engineering, University of California San Diego, La Jolla, CA 92093, USA
– sequence: 2
  givenname: Renato
  surname: Picelli
  fullname: Picelli, Renato
  organization: Department of Mining and Petroleum Engineering, University of São Paulo, Praca Narçiso de Andrade s/n, Vila Mathias, Santos - SP, 11013-560, Brazil
– sequence: 3
  givenname: Gil Ho
  surname: Yoon
  fullname: Yoon, Gil Ho
  organization: School of Mechanical Engineering, Hanyang University, Seoul, South Korea
– sequence: 4
  givenname: Bing
  orcidid: 0000-0001-7102-4796
  surname: Yi
  fullname: Yi, Bing
  organization: School of Traffic and Transportation Engineering, Central South University, Changsha, China
BookMark eNp9kE1LxDAQhoOs4O7qD_BW8NyapE2b4kkWPxYW14OeQ5pOa0qbrEkq-O_Nsp48eJpheJ8Z5lmhhbEGELomOCOYlLdDpiaZUUxJRkiBMT5DS8KrOqUk5wu0xLhgacUpu0Ar74cYwJzQJXrZmyR8QNKC171JbJdM8xj0JAM4LcfEBzerMLvYBnuwo-01-GT22vTJ1gTowSWvzvZOTlOcXaLzTo4ern7rGr0_PrxtntPd_mm7ud-lKqcspFDhkvCcFrSUirAO6qapGO14zTk0XZdXnEgOrGpr3qi2y6Esi5YVCmpe14Tma3Rz2ntw9nMGH8RgZ2fiSUFZSWvKaIFjipxSylnvHXTi4OJr7lsQLI7axCCiNnHUJk7aIlP9YZQOMmhrgpN6_Je8O5EQH__S4IRXGoyCVjtQQbRW_0P_AIDQiSc
CitedBy_id crossref_primary_10_1016_j_finel_2023_104044
crossref_primary_10_1016_j_compstruc_2021_106685
crossref_primary_10_1016_j_finel_2024_104165
crossref_primary_10_1016_j_cma_2021_114560
crossref_primary_10_1016_j_apm_2024_115787
crossref_primary_10_1016_j_cma_2022_115166
crossref_primary_10_1080_0305215X_2024_2445653
crossref_primary_10_1002_nag_3594
crossref_primary_10_1007_s00158_025_03961_9
crossref_primary_10_1007_s00158_022_03209_w
Cites_doi 10.1007/s00158-006-0087-x
10.1016/j.finel.2017.10.006
10.1002/nme.105
10.1016/j.cma.2018.06.027
10.1109/TSMC.2018.2882792
10.1007/s00158-018-1953-z
10.1016/j.cma.2003.10.008
10.1016/j.cma.2018.09.040
10.1002/nme.4384
10.1016/S1631-073X(02)02412-3
10.1016/j.mser.2018.04.001
10.1016/S0022-5096(99)00043-5
10.1007/s00158-004-0484-y
10.1002/nme.3197
10.1007/s00158-010-0562-2
10.1007/s00158-019-02396-3
10.1016/S0045-7825(01)00252-3
10.1016/j.commatsci.2018.08.008
10.1016/j.cma.2018.10.050
10.1007/s00158-019-02443-z
10.1016/j.compstruc.2016.06.002
10.1016/j.cma.2019.07.021
10.1007/s00158-018-1939-x
10.1007/s00158-010-0602-y
10.1016/j.cma.2018.09.002
10.1115/1.1909206
10.1016/j.jcp.2008.12.019
10.1007/s00466-008-0312-0
10.1108/02644409810244129
10.1115/1.4028439
10.1016/S0168-874X(00)00021-4
10.1016/j.apm.2019.10.019
10.1016/0045-7825(88)90086-2
10.1007/s00158-018-2094-0
10.1016/S0022-5096(96)00114-7
10.1007/BF01214002
10.1007/s00158-016-1513-3
10.1007/s00158-007-0217-0
10.1007/s001580050176
10.1002/nme.1259
10.1016/S0045-7825(02)00559-5
10.1007/s00158-001-0165-z
10.1016/j.compstruct.2009.04.046
10.1016/j.finel.2007.06.006
10.1007/s00158-016-1519-x
10.1007/s00158-020-02598-0
10.1002/nme.5714
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Oct 1, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 1, 2021
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2021.114000
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2021_114000
S0045782521003315
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-e7061832426ac15fe9bb752f8988ebff3781a8e57d98bcdf3e664d54ce9899123
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000681078100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sun Nov 30 05:14:49 EST 2025
Sat Nov 29 07:27:10 EST 2025
Tue Nov 18 22:38:29 EST 2025
Fri Feb 23 02:47:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multimaterial
Extended SIMP
Pressure loads
Binary variables
Inactive constraint
Truncation error
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-e7061832426ac15fe9bb752f8988ebff3781a8e57d98bcdf3e664d54ce9899123
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1639-9349
0000-0001-7102-4796
PQID 2562925240
PQPubID 2045269
ParticipantIDs proquest_journals_2562925240
crossref_primary_10_1016_j_cma_2021_114000
crossref_citationtrail_10_1016_j_cma_2021_114000
elsevier_sciencedirect_doi_10_1016_j_cma_2021_114000
PublicationCentury 2000
PublicationDate 2021-10-01
2021-10-00
20211001
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Sanders, Pereira, Aguiló, Paulino (b24) 2018; 58
Stegmann, Lund (b16) 2005; 62
Gao (b42) 2017
Picelli, Ranjbarzadeh, Sivapuram, Gioria, Silva (b49) 2020
Gao, Xu, Zhang (b18) 2016; 173
Huang, Xie (b39) 2007; 43
Bandyopadhyay, Heer (b2) 2018; 129
Gaynor, Meisel, Williams, Guest (b3) 2014; 136
Wang, Wang (b13) 2004; 193
Rozvany (b40) 2009; 37
Gao (b46) 2019
Li, Kim (b55) 2018; 58
Sigmund (b8) 2001; 21
Sigmund, Petersson (b54) 1998; 16
Sigmund, Torquato (b6) 1997; 45
Allaire, de Gournay, Jouve, Toader (b34) 2005; 34
Gibiansky, Sigmund (b7) 2000; 48
Gao, Zhang (b9) 2011; 88
Sigmund (b11) 2001; 190
Xia, Wang (b30) 2017; 42
Pizzolato, Sharma, Maute, Sciacovelli, Verda (b5) 2019; 357
Xia, Shi, Xia (b37) 2019; 343
Bruyneel, Duysinx (b35) 2005; 29
Wang, Chen, Wang, Mei (b14) 2005; 127
Bendse, Kikuchi (b1) 1988; 71
Zhang, Song, Zhou, Du, Zhu, Sun, Guo (b26) 2018; 113
Allaire, Jouve, Toader (b32) 2002; 334
Gao (b43) 2018; 341
R. Picelli, R. Sivapuram, Solving topology optimization with 0,1 design variables and mathematical programming: the TOBS method, in: ProceEdings of the 13th World Congress of Structural and Multidisciplinary Optimization, WCSMO-13, Beijing, China, 2019.
Zheng, Da, Li, Xiao, Gao (b21) 2020; 78
Sigmund (b27) 2007; 33
Yin, Ananthasuresh (b12) 2001; 23
Querin, Steven, Xie (b38) 1998
Lund (b17) 2009; 91
Sivapuram, Picelli, Xie (b23) 2018; 154
Liang, Cheng (b44) 2019; 348
Bendsøe, Sigmund (b52) 1999; 69
Chen, Kikuchi (b53) 2001; 37
Liang, Cheng (b45) 2020; 61
Sivapuram, Dunning, Kim (b4) 2016; 54
Picelli, Sivapuram, Xie (b51) 2020; accepted
Wang, Wang, Guo (b33) 2003; 192
Sivapuram, Picelli (b50) 2020; 61
Gao (b47) 2021; 51
Fujii, Chen, Kikuchi (b10) 2001; 50
Rubèn, Querin, Jiménez, Gordoa (b41) 2018; 58
Wang, Lazarov, Sigmund (b28) 2011; 43
Zuo, Saitou (b19) 2017; 55
Sivapuram, Picelli (b22) 2018; 139
Kawamoto, Matsumori, Yamasaki, Nomura, Kondoh, Nishiwaki (b29) 2011; 44
Dunning, Alicia Kim (b36) 2013; 93
Luo, Tong, Luo, Wei, Wang (b15) 2009; 228
Huang, Xie (b20) 2008; 43
Chu, Xiao, Gao, Li, Zhang, Zhang (b31) 2019; 346
no, Mirabella, Dalloro, Paulino (b25) 2020; 363
Liang (10.1016/j.cma.2021.114000_b44) 2019; 348
Gao (10.1016/j.cma.2021.114000_b18) 2016; 173
Kawamoto (10.1016/j.cma.2021.114000_b29) 2011; 44
10.1016/j.cma.2021.114000_b48
Picelli (10.1016/j.cma.2021.114000_b49) 2020
Wang (10.1016/j.cma.2021.114000_b14) 2005; 127
Stegmann (10.1016/j.cma.2021.114000_b16) 2005; 62
Querin (10.1016/j.cma.2021.114000_b38) 1998
Huang (10.1016/j.cma.2021.114000_b20) 2008; 43
Gao (10.1016/j.cma.2021.114000_b43) 2018; 341
Bandyopadhyay (10.1016/j.cma.2021.114000_b2) 2018; 129
Zheng (10.1016/j.cma.2021.114000_b21) 2020; 78
Yin (10.1016/j.cma.2021.114000_b12) 2001; 23
Bruyneel (10.1016/j.cma.2021.114000_b35) 2005; 29
Gao (10.1016/j.cma.2021.114000_b46) 2019
Sigmund (10.1016/j.cma.2021.114000_b6) 1997; 45
Huang (10.1016/j.cma.2021.114000_b39) 2007; 43
Gao (10.1016/j.cma.2021.114000_b9) 2011; 88
Dunning (10.1016/j.cma.2021.114000_b36) 2013; 93
Sigmund (10.1016/j.cma.2021.114000_b11) 2001; 190
Gao (10.1016/j.cma.2021.114000_b42) 2017
Rozvany (10.1016/j.cma.2021.114000_b40) 2009; 37
Gaynor (10.1016/j.cma.2021.114000_b3) 2014; 136
Picelli (10.1016/j.cma.2021.114000_b51) 2020; accepted
Wang (10.1016/j.cma.2021.114000_b33) 2003; 192
Sivapuram (10.1016/j.cma.2021.114000_b4) 2016; 54
Sivapuram (10.1016/j.cma.2021.114000_b23) 2018; 154
Gao (10.1016/j.cma.2021.114000_b47) 2021; 51
Sigmund (10.1016/j.cma.2021.114000_b54) 1998; 16
Bendse (10.1016/j.cma.2021.114000_b1) 1988; 71
Xia (10.1016/j.cma.2021.114000_b37) 2019; 343
Sanders (10.1016/j.cma.2021.114000_b24) 2018; 58
Liang (10.1016/j.cma.2021.114000_b45) 2020; 61
Gibiansky (10.1016/j.cma.2021.114000_b7) 2000; 48
Wang (10.1016/j.cma.2021.114000_b28) 2011; 43
Chu (10.1016/j.cma.2021.114000_b31) 2019; 346
Zuo (10.1016/j.cma.2021.114000_b19) 2017; 55
Allaire (10.1016/j.cma.2021.114000_b34) 2005; 34
Li (10.1016/j.cma.2021.114000_b55) 2018; 58
Sivapuram (10.1016/j.cma.2021.114000_b22) 2018; 139
Chen (10.1016/j.cma.2021.114000_b53) 2001; 37
Xia (10.1016/j.cma.2021.114000_b30) 2017; 42
Pizzolato (10.1016/j.cma.2021.114000_b5) 2019; 357
Fujii (10.1016/j.cma.2021.114000_b10) 2001; 50
Luo (10.1016/j.cma.2021.114000_b15) 2009; 228
no (10.1016/j.cma.2021.114000_b25) 2020; 363
Lund (10.1016/j.cma.2021.114000_b17) 2009; 91
Allaire (10.1016/j.cma.2021.114000_b32) 2002; 334
Sigmund (10.1016/j.cma.2021.114000_b8) 2001; 21
Rubèn (10.1016/j.cma.2021.114000_b41) 2018; 58
Wang (10.1016/j.cma.2021.114000_b13) 2004; 193
Zhang (10.1016/j.cma.2021.114000_b26) 2018; 113
Sivapuram (10.1016/j.cma.2021.114000_b50) 2020; 61
Sigmund (10.1016/j.cma.2021.114000_b27) 2007; 33
Bendsøe (10.1016/j.cma.2021.114000_b52) 1999; 69
References_xml – volume: 54
  start-page: 1267
  year: 2016
  end-page: 1281
  ident: b4
  article-title: Simultaneous material and structural optimization by multiscale topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 69
  start-page: 635
  year: 1999
  end-page: 654
  ident: b52
  article-title: Material interpolation schemes in topology optimization
  publication-title: Arch. Appl. Mech.
– volume: 55
  start-page: 477
  year: 2017
  end-page: 491
  ident: b19
  article-title: Multi-material topology optimization using ordered SIMP interpolation
  publication-title: Struct. Multidiscip. Optim.
– volume: 91
  start-page: 158
  year: 2009
  end-page: 167
  ident: b17
  article-title: Buckling topology optimization of laminated multi-material composite shell structures
  publication-title: Compos. Struct.
– volume: 192
  start-page: 227
  year: 2003
  end-page: 246
  ident: b33
  article-title: A level set method for structural topology optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 136
  year: 2014
  ident: b3
  article-title: Multiple-material topology optimization of compliant mechanisms created via polyJet three-dimensional printing
  publication-title: J. Manuf. Sci. Eng.
– volume: 23
  start-page: 49
  year: 2001
  end-page: 62
  ident: b12
  article-title: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme
  publication-title: Struct. Multidiscip. Optim.
– year: 1998
  ident: b38
  article-title: Evolutionary structural optimisation (ESO) using a bidirectional algorithm
  publication-title: Eng. Comput. (Bradf.)
– volume: 71
  start-page: 197
  year: 1988
  end-page: 224
  ident: b1
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 50
  start-page: 2031
  year: 2001
  end-page: 2051
  ident: b10
  article-title: Composite material design of two-dimensional structures using the homogenization design method
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 2020
  ident: b49
  article-title: Topology optimization of binary structures under design-dependent fluid-structure interaction loads
  publication-title: Struct. Multidiscip. Optim.
– volume: 33
  start-page: 401
  year: 2007
  end-page: 424
  ident: b27
  article-title: Morphology-based black and white filters for topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 190
  start-page: 6605
  year: 2001
  end-page: 6627
  ident: b11
  article-title: Design of multiphysics actuators using topology optimization – part II: Two-material structures
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 21
  start-page: 120
  year: 2001
  end-page: 127
  ident: b8
  article-title: A 99 line topology optimization code written in MATLAB
  publication-title: Struct. Multidiscip. Optim.
– reference: R. Picelli, R. Sivapuram, Solving topology optimization with 0,1 design variables and mathematical programming: the TOBS method, in: ProceEdings of the 13th World Congress of Structural and Multidisciplinary Optimization, WCSMO-13, Beijing, China, 2019.
– volume: 343
  start-page: 438
  year: 2019
  end-page: 452
  ident: b37
  article-title: Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 88
  start-page: 774
  year: 2011
  end-page: 796
  ident: b9
  article-title: A mass constraint formulation for structural topology optimization with multiphase materials
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 43
  start-page: 393
  year: 2008
  end-page: 401
  ident: b20
  article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials
  publication-title: Comput. Mech.
– volume: 58
  start-page: 1297
  year: 2018
  end-page: 1310
  ident: b41
  article-title: A sequential element rejection and admission (SERA) topology optimization code written in Matlab
  publication-title: Struct. Multidiscip. Optim.
– volume: 61
  start-page: 1877
  year: 2020
  end-page: 1895
  ident: b50
  article-title: Topology design of binary structures subjected to design-dependent thermal expansion and fluid pressure loads
  publication-title: Struct. Multidiscip. Optim.
– volume: 29
  start-page: 245
  year: 2005
  end-page: 256
  ident: b35
  article-title: Note on topology optimization of continuum structures including self-weight
  publication-title: Struct. Multidiscip. Optim.
– start-page: 3
  year: 2019
  end-page: 50
  ident: b46
  publication-title: Advances in Mathematical Methods and High Performance Computing
– volume: 357
  year: 2019
  ident: b5
  article-title: Multi-scale topology optimization of multi-material structures with controllable geometric complexity — Applications to heat transfer problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 334
  start-page: 1125
  year: 2002
  end-page: 1130
  ident: b32
  article-title: A level-set method for shape optimization
  publication-title: C. R. Math.
– volume: 173
  start-page: 150
  year: 2016
  end-page: 160
  ident: b18
  article-title: Topology optimization of thermo-elastic structures with multiple materials under mass constraint
  publication-title: Comput. Struct.
– volume: 93
  start-page: 118
  year: 2013
  end-page: 134
  ident: b36
  article-title: A new hole insertion method for level set based structural topology optimization
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 61
  start-page: 411
  year: 2020
  end-page: 431
  ident: b45
  article-title: Further elaborations on topology optimization via sequential integer programming and Canonical relaxation algorithm and 128-line MATLAB code
  publication-title: Struct. Multidiscip. Optim.
– volume: 346
  start-page: 1096
  year: 2019
  end-page: 1117
  ident: b31
  article-title: Topology optimization of multi-material structures with graded interfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 127
  start-page: 941
  year: 2005
  end-page: 956
  ident: b14
  article-title: Design of multimaterial compliant mechanisms using level-set methods
  publication-title: J. Mech. Des.
– volume: 16
  start-page: 68
  year: 1998
  end-page: 75
  ident: b54
  article-title: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima
  publication-title: Struct. Multidiscip. Optim.
– volume: 193
  start-page: 469
  year: 2004
  end-page: 496
  ident: b13
  article-title: “Color” level sets: a multi-phase method for structural topology optimization with multiple materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 37
  start-page: 57
  year: 2001
  end-page: 70
  ident: b53
  article-title: Topology optimization with design-dependent loads
  publication-title: Finite Elem. Anal. Des.
– volume: 129
  start-page: 1
  year: 2018
  end-page: 16
  ident: b2
  article-title: Additive manufacturing of multi-material structures
  publication-title: Mater. Sci. Eng. R
– volume: 43
  start-page: 1039
  year: 2007
  end-page: 1049
  ident: b39
  article-title: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method
  publication-title: Finite Elem. Anal. Des.
– volume: 363
  year: 2020
  ident: b25
  article-title: Multi-material thermomechanical topology optimization with applications to additive manufacturing: Design of main composite part and its support structure
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 51
  start-page: 893
  year: 2021
  end-page: 904
  ident: b47
  article-title: Canonical duality theory and algorithm for solving bilevel knapsack problems with applications
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 48
  start-page: 461
  year: 2000
  end-page: 498
  ident: b7
  article-title: Multiphase composites with extremal bulk modulus
  publication-title: J. Mech. Phys. Solids
– volume: 58
  start-page: 1081
  year: 2018
  end-page: 1094
  ident: b55
  article-title: Multi-material topology optimization for practical lightweight design
  publication-title: Struct. Multidiscip. Optim.
– volume: 62
  start-page: 2009
  year: 2005
  end-page: 2027
  ident: b16
  article-title: Discrete material optimization of general composite shell structures
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 45
  start-page: 1037
  year: 1997
  end-page: 1067
  ident: b6
  article-title: Design of materials with extreme thermal expansion using a three-phase topology optimization method
  publication-title: J. Mech. Phys. Solids
– start-page: 263
  year: 2017
  end-page: 276
  ident: b42
  publication-title: Canonical Duality Theory - Unified Methodology for Multidisciplinary Study
– volume: 44
  start-page: 19
  year: 2011
  end-page: 24
  ident: b29
  article-title: Heaviside projection based topology optimization by a PDE-filtered scalar function
  publication-title: Struct. Multidiscip. Optim.
– volume: 348
  start-page: 64
  year: 2019
  end-page: 96
  ident: b44
  article-title: Topology optimization via sequential integer programming and Canonical relaxation algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 34
  start-page: 59
  year: 2005
  end-page: 80
  ident: b34
  article-title: Structural optimization using topological and shape sensitivity via a level set method
  publication-title: Control Cybernet.
– volume: accepted
  year: 2020
  ident: b51
  article-title: A 101-line MATLAB code for topology optimization using binary variables and integer programming
  publication-title: Struct. Multidiscip. Optim.
– volume: 154
  start-page: 405
  year: 2018
  end-page: 425
  ident: b23
  article-title: Topology optimization of binary microstructures involving various non-volume constraints
  publication-title: Comput. Mater. Sci.
– volume: 58
  start-page: 2727
  year: 2018
  end-page: 2759
  ident: b24
  article-title: An improved soft-kill BESO algorithm for optimal distribution of single or multiple material phases
  publication-title: Struct. Multidiscip. Optim.
– volume: 37
  start-page: 217
  year: 2009
  end-page: 237
  ident: b40
  article-title: A critical review of established methods of structural topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 228
  start-page: 2643
  year: 2009
  end-page: 2659
  ident: b15
  article-title: Design of piezoelectric actuators using a multiphase level set method of piecewise constants
  publication-title: J. Comput. Phys.
– volume: 139
  start-page: 49
  year: 2018
  end-page: 61
  ident: b22
  article-title: Topology optimization of binary structures using integer linear programming
  publication-title: Finite Elem. Anal. Des.
– volume: 42
  start-page: 837
  year: 2017
  end-page: 857
  ident: b30
  article-title: Topology optimization of thermoelastic structures using level set method
  publication-title: Struct. Multidiscip. Optim.
– volume: 78
  start-page: 627
  year: 2020
  end-page: 647
  ident: b21
  article-title: Robust topology optimization for multi-material structures under interval uncertainty
  publication-title: Appl. Math. Model.
– volume: 113
  start-page: 1653
  year: 2018
  end-page: 1675
  ident: b26
  article-title: Topology optimization with multiple materials via moving morphable component (MMC) method
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 341
  start-page: 249
  year: 2018
  end-page: 277
  ident: b43
  article-title: On topology optimization and canonical duality method
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 43
  start-page: 767
  year: 2011
  end-page: 784
  ident: b28
  article-title: On projection methods, convergence and robust formulations in topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 33
  start-page: 401
  issue: 4
  year: 2007
  ident: 10.1016/j.cma.2021.114000_b27
  article-title: Morphology-based black and white filters for topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-006-0087-x
– volume: 139
  start-page: 49
  year: 2018
  ident: 10.1016/j.cma.2021.114000_b22
  article-title: Topology optimization of binary structures using integer linear programming
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2017.10.006
– volume: 50
  start-page: 2031
  issue: 9
  year: 2001
  ident: 10.1016/j.cma.2021.114000_b10
  article-title: Composite material design of two-dimensional structures using the homogenization design method
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.105
– volume: 341
  start-page: 249
  year: 2018
  ident: 10.1016/j.cma.2021.114000_b43
  article-title: On topology optimization and canonical duality method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.06.027
– volume: accepted
  year: 2020
  ident: 10.1016/j.cma.2021.114000_b51
  article-title: A 101-line MATLAB code for topology optimization using binary variables and integer programming
  publication-title: Struct. Multidiscip. Optim.
– volume: 51
  start-page: 893
  year: 2021
  ident: 10.1016/j.cma.2021.114000_b47
  article-title: Canonical duality theory and algorithm for solving bilevel knapsack problems with applications
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
  doi: 10.1109/TSMC.2018.2882792
– volume: 58
  start-page: 1081
  issue: 3
  year: 2018
  ident: 10.1016/j.cma.2021.114000_b55
  article-title: Multi-material topology optimization for practical lightweight design
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-1953-z
– volume: 193
  start-page: 469
  issue: 6
  year: 2004
  ident: 10.1016/j.cma.2021.114000_b13
  article-title: “Color” level sets: a multi-phase method for structural topology optimization with multiple materials
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2003.10.008
– volume: 363
  year: 2020
  ident: 10.1016/j.cma.2021.114000_b25
  article-title: Multi-material thermomechanical topology optimization with applications to additive manufacturing: Design of main composite part and its support structure
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 346
  start-page: 1096
  year: 2019
  ident: 10.1016/j.cma.2021.114000_b31
  article-title: Topology optimization of multi-material structures with graded interfaces
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.09.040
– ident: 10.1016/j.cma.2021.114000_b48
– volume: 93
  start-page: 118
  issue: 1
  year: 2013
  ident: 10.1016/j.cma.2021.114000_b36
  article-title: A new hole insertion method for level set based structural topology optimization
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.4384
– volume: 334
  start-page: 1125
  issue: 12
  year: 2002
  ident: 10.1016/j.cma.2021.114000_b32
  article-title: A level-set method for shape optimization
  publication-title: C. R. Math.
  doi: 10.1016/S1631-073X(02)02412-3
– volume: 129
  start-page: 1
  year: 2018
  ident: 10.1016/j.cma.2021.114000_b2
  article-title: Additive manufacturing of multi-material structures
  publication-title: Mater. Sci. Eng. R
  doi: 10.1016/j.mser.2018.04.001
– volume: 42
  start-page: 837
  issue: 6
  year: 2017
  ident: 10.1016/j.cma.2021.114000_b30
  article-title: Topology optimization of thermoelastic structures using level set method
  publication-title: Struct. Multidiscip. Optim.
– volume: 48
  start-page: 461
  issue: 3
  year: 2000
  ident: 10.1016/j.cma.2021.114000_b7
  article-title: Multiphase composites with extremal bulk modulus
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(99)00043-5
– volume: 29
  start-page: 245
  issue: 4
  year: 2005
  ident: 10.1016/j.cma.2021.114000_b35
  article-title: Note on topology optimization of continuum structures including self-weight
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-004-0484-y
– volume: 88
  start-page: 774
  issue: 8
  year: 2011
  ident: 10.1016/j.cma.2021.114000_b9
  article-title: A mass constraint formulation for structural topology optimization with multiphase materials
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.3197
– volume: 69
  start-page: 635
  issue: 9
  year: 1999
  ident: 10.1016/j.cma.2021.114000_b52
  article-title: Material interpolation schemes in topology optimization
  publication-title: Arch. Appl. Mech.
– start-page: 3
  year: 2019
  ident: 10.1016/j.cma.2021.114000_b46
– volume: 44
  start-page: 19
  issue: 1
  year: 2011
  ident: 10.1016/j.cma.2021.114000_b29
  article-title: Heaviside projection based topology optimization by a PDE-filtered scalar function
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0562-2
– volume: 61
  start-page: 411
  issue: 1
  year: 2020
  ident: 10.1016/j.cma.2021.114000_b45
  article-title: Further elaborations on topology optimization via sequential integer programming and Canonical relaxation algorithm and 128-line MATLAB code
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-019-02396-3
– volume: 190
  start-page: 6605
  issue: 49
  year: 2001
  ident: 10.1016/j.cma.2021.114000_b11
  article-title: Design of multiphysics actuators using topology optimization – part II: Two-material structures
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(01)00252-3
– volume: 154
  start-page: 405
  year: 2018
  ident: 10.1016/j.cma.2021.114000_b23
  article-title: Topology optimization of binary microstructures involving various non-volume constraints
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2018.08.008
– volume: 34
  start-page: 59
  year: 2005
  ident: 10.1016/j.cma.2021.114000_b34
  article-title: Structural optimization using topological and shape sensitivity via a level set method
  publication-title: Control Cybernet.
– volume: 348
  start-page: 64
  year: 2019
  ident: 10.1016/j.cma.2021.114000_b44
  article-title: Topology optimization via sequential integer programming and Canonical relaxation algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.10.050
– volume: 61
  start-page: 1877
  year: 2020
  ident: 10.1016/j.cma.2021.114000_b50
  article-title: Topology design of binary structures subjected to design-dependent thermal expansion and fluid pressure loads
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-019-02443-z
– volume: 173
  start-page: 150
  year: 2016
  ident: 10.1016/j.cma.2021.114000_b18
  article-title: Topology optimization of thermo-elastic structures with multiple materials under mass constraint
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.06.002
– volume: 357
  year: 2019
  ident: 10.1016/j.cma.2021.114000_b5
  article-title: Multi-scale topology optimization of multi-material structures with controllable geometric complexity — Applications to heat transfer problems
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.07.021
– volume: 58
  start-page: 1297
  issue: 3
  year: 2018
  ident: 10.1016/j.cma.2021.114000_b41
  article-title: A sequential element rejection and admission (SERA) topology optimization code written in Matlab
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-1939-x
– volume: 43
  start-page: 767
  issue: 6
  year: 2011
  ident: 10.1016/j.cma.2021.114000_b28
  article-title: On projection methods, convergence and robust formulations in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0602-y
– volume: 343
  start-page: 438
  year: 2019
  ident: 10.1016/j.cma.2021.114000_b37
  article-title: Stable hole nucleation in level set based topology optimization by using the material removal scheme of BESO
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.09.002
– volume: 127
  start-page: 941
  issue: 5
  year: 2005
  ident: 10.1016/j.cma.2021.114000_b14
  article-title: Design of multimaterial compliant mechanisms using level-set methods
  publication-title: J. Mech. Des.
  doi: 10.1115/1.1909206
– volume: 228
  start-page: 2643
  issue: 7
  year: 2009
  ident: 10.1016/j.cma.2021.114000_b15
  article-title: Design of piezoelectric actuators using a multiphase level set method of piecewise constants
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.12.019
– volume: 43
  start-page: 393
  issue: 3
  year: 2008
  ident: 10.1016/j.cma.2021.114000_b20
  article-title: Bi-directional evolutionary topology optimization of continuum structures with one or multiple materials
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-008-0312-0
– start-page: 263
  year: 2017
  ident: 10.1016/j.cma.2021.114000_b42
– year: 1998
  ident: 10.1016/j.cma.2021.114000_b38
  article-title: Evolutionary structural optimisation (ESO) using a bidirectional algorithm
  publication-title: Eng. Comput. (Bradf.)
  doi: 10.1108/02644409810244129
– volume: 136
  issue: 6
  year: 2014
  ident: 10.1016/j.cma.2021.114000_b3
  article-title: Multiple-material topology optimization of compliant mechanisms created via polyJet three-dimensional printing
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.4028439
– volume: 37
  start-page: 57
  issue: 1
  year: 2001
  ident: 10.1016/j.cma.2021.114000_b53
  article-title: Topology optimization with design-dependent loads
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/S0168-874X(00)00021-4
– volume: 78
  start-page: 627
  year: 2020
  ident: 10.1016/j.cma.2021.114000_b21
  article-title: Robust topology optimization for multi-material structures under interval uncertainty
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2019.10.019
– volume: 71
  start-page: 197
  issue: 2
  year: 1988
  ident: 10.1016/j.cma.2021.114000_b1
  article-title: Generating optimal topologies in structural design using a homogenization method
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(88)90086-2
– volume: 58
  start-page: 2727
  issue: 6
  year: 2018
  ident: 10.1016/j.cma.2021.114000_b24
  article-title: An improved soft-kill BESO algorithm for optimal distribution of single or multiple material phases
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-018-2094-0
– volume: 45
  start-page: 1037
  issue: 6
  year: 1997
  ident: 10.1016/j.cma.2021.114000_b6
  article-title: Design of materials with extreme thermal expansion using a three-phase topology optimization method
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/S0022-5096(96)00114-7
– volume: 16
  start-page: 68
  issue: 1
  year: 1998
  ident: 10.1016/j.cma.2021.114000_b54
  article-title: Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/BF01214002
– volume: 55
  start-page: 477
  issue: 2
  year: 2017
  ident: 10.1016/j.cma.2021.114000_b19
  article-title: Multi-material topology optimization using ordered SIMP interpolation
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1513-3
– volume: 37
  start-page: 217
  issue: 3
  year: 2009
  ident: 10.1016/j.cma.2021.114000_b40
  article-title: A critical review of established methods of structural topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-007-0217-0
– volume: 21
  start-page: 120
  year: 2001
  ident: 10.1016/j.cma.2021.114000_b8
  article-title: A 99 line topology optimization code written in MATLAB
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s001580050176
– volume: 62
  start-page: 2009
  issue: 14
  year: 2005
  ident: 10.1016/j.cma.2021.114000_b16
  article-title: Discrete material optimization of general composite shell structures
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1259
– volume: 192
  start-page: 227
  issue: 1
  year: 2003
  ident: 10.1016/j.cma.2021.114000_b33
  article-title: A level set method for structural topology optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(02)00559-5
– volume: 23
  start-page: 49
  issue: 1
  year: 2001
  ident: 10.1016/j.cma.2021.114000_b12
  article-title: Topology optimization of compliant mechanisms with multiple materials using a peak function material interpolation scheme
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-001-0165-z
– volume: 91
  start-page: 158
  issue: 2
  year: 2009
  ident: 10.1016/j.cma.2021.114000_b17
  article-title: Buckling topology optimization of laminated multi-material composite shell structures
  publication-title: Compos. Struct.
  doi: 10.1016/j.compstruct.2009.04.046
– volume: 43
  start-page: 1039
  issue: 14
  year: 2007
  ident: 10.1016/j.cma.2021.114000_b39
  article-title: Convergent and mesh-independent solutions for the bi-directional evolutionary structural optimization method
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2007.06.006
– volume: 54
  start-page: 1267
  issue: 5
  year: 2016
  ident: 10.1016/j.cma.2021.114000_b4
  article-title: Simultaneous material and structural optimization by multiscale topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1519-x
– year: 2020
  ident: 10.1016/j.cma.2021.114000_b49
  article-title: Topology optimization of binary structures under design-dependent fluid-structure interaction loads
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02598-0
– volume: 113
  start-page: 1653
  issue: 11
  year: 2018
  ident: 10.1016/j.cma.2021.114000_b26
  article-title: Topology optimization with multiple materials via moving morphable component (MMC) method
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.5714
SSID ssj0000812
Score 2.4412315
Snippet This paper presents a framework for the discrete design of optimal multimaterial structural topologies using integer design variables and mathematical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114000
SubjectTerms Binary variables
Extended SIMP
Hydrostatic pressure
Inactive constraint
Integer programming
Interpolation
Iterative methods
Loads (forces)
Mathematical programming
Modulus of elasticity
Multimaterial
Optimization
Pressure dependence
Pressure loads
Sensitivity
Structural design
Topology optimization
Truncation error
Truncation errors
Title On the design of multimaterial structural topologies using Integer Programming
URI https://dx.doi.org/10.1016/j.cma.2021.114000
https://www.proquest.com/docview/2562925240
Volume 384
WOSCitedRecordID wos000681078100007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWlgMceBQQhRb5wIkqVZPYsX0sqA84bPdQpL1F8SOQqs2uumHV38CvZvxKtota0QOXKLL8UmYynrE_f4PQR6qpTlVRJ8SwPCGa60SoVCY85zURtUoLqV2yCTYe8-lUTEaj3_EuzPKStS2_uRHz_ypqKANh26uzDxB33ykUwDsIHZ4gdnj-k-DPPHBRO2iGOz63mEFwTN3ge54w1pFtdD5BAsTKe78CcqAz9hbwxIO2ruKyFpkMQgaIkHbaIWmr4MVeGXuFOFI-m4HlsN_CaZbVHIb1aZWrHz9tHnt93a8Kk8aeITRe5G3VzQZ75IEBJ43NctKXupqf4wBh3yJLewRcb4sJTcA_oau2OOdkxZpCrHbgeEz_NvR-z-FiXznyqCzdH-reJtVeW-x6CGJEt12U0EVpuyh9F4_QZsaoAAu5efj1aPptWNd56rnnw7zjGblDC67N4y4vZ229d07M-Qv0LEQf-NBrzUs0Mu0Weh4iERzs_GILPV2hqXyFxmctBpXCXqXwrMa3VAoPKoUHlcJOpXBQKbyiUq_R9-Oj8y-nScjDkag8o11iGDh93HreRaVSi06UktGs5oJzI-s6ZzytuKFMCy6VrnNTFERTooyAaB5cozdoo5215i3Ctg0hRCpDJGEFrUShVVUIIwVhEK1vo4P43UoVSOptrpTL8k55baNPfZO5Z2i5rzKJwiiDi-ldxxIU675mO1FwZfjVFyUEC5nIKLjE7x4yhffoyfA77KANEJHZRY_VsmsW1x-C0v0BGBan2w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+design+of+multimaterial+structural+topologies+using+Integer+Programming&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Sivapuram%2C+Raghavendra&rft.au=Picelli%2C+Renato&rft.au=Yoon%2C+Gil+Ho&rft.au=Yi%2C+Bing&rft.date=2021-10-01&rft.issn=0045-7825&rft.volume=384&rft.spage=114000&rft_id=info:doi/10.1016%2Fj.cma.2021.114000&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2021_114000
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon