A multi-resolution SPH-FEM method for fluid–structure interactions

This work presents a multi-resolution fluid–structure interaction (FSI) solver for hydroelastic issues by coupling the Weakly Compressive Smoothed Particle Hydrodynamics (WCSPH) method and the Finite Element Method (FEM). The fluid is simulated by the SPH method, and the structure response is consid...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer methods in applied mechanics and engineering Ročník 401; s. 115659
Hlavní autoři: Chen, Cheng, Shi, Wen-Kui, Shen, Yan-Ming, Chen, Jian-Qiang, Zhang, A-Man
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 01.11.2022
Elsevier BV
Témata:
ISSN:0045-7825, 1879-2138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This work presents a multi-resolution fluid–structure interaction (FSI) solver for hydroelastic issues by coupling the Weakly Compressive Smoothed Particle Hydrodynamics (WCSPH) method and the Finite Element Method (FEM). The fluid is simulated by the SPH method, and the structure response is considered by the FEM beam. The normal flux method is employed to calculate the coupled force between the fluid and structure by considering the surface integration term in SPH approximation equations. A multi-resolution technology is proposed by discretizing the fluid and structure with different resolutions. The resolution of beam elements can be either coarser or finer than that of SPH particles. Finally, the accuracy, robustness and efficiency of the current FSI solver are strictly validated by several typical benchmarks, including the hydrostatic, free-surface flow and water entry problems. •We developed a coupled SPH-FEM method for fluid–structure interactions.•Different spatial–temporal resolution is employed for fluid and solid structure.•The accuracy, efficiency, and robustness of the FSI solver are strictly validated.
AbstractList This work presents a multi-resolution fluid–structure interaction (FSI) solver for hydroelastic issues by coupling the Weakly Compressive Smoothed Particle Hydrodynamics (WCSPH) method and the Finite Element Method (FEM). The fluid is simulated by the SPH method, and the structure response is considered by the FEM beam. The normal flux method is employed to calculate the coupled force between the fluid and structure by considering the surface integration term in SPH approximation equations. A multi-resolution technology is proposed by discretizing the fluid and structure with different resolutions. The resolution of beam elements can be either coarser or finer than that of SPH particles. Finally, the accuracy, robustness and efficiency of the current FSI solver are strictly validated by several typical benchmarks, including the hydrostatic, free-surface flow and water entry problems.
This work presents a multi-resolution fluid–structure interaction (FSI) solver for hydroelastic issues by coupling the Weakly Compressive Smoothed Particle Hydrodynamics (WCSPH) method and the Finite Element Method (FEM). The fluid is simulated by the SPH method, and the structure response is considered by the FEM beam. The normal flux method is employed to calculate the coupled force between the fluid and structure by considering the surface integration term in SPH approximation equations. A multi-resolution technology is proposed by discretizing the fluid and structure with different resolutions. The resolution of beam elements can be either coarser or finer than that of SPH particles. Finally, the accuracy, robustness and efficiency of the current FSI solver are strictly validated by several typical benchmarks, including the hydrostatic, free-surface flow and water entry problems. •We developed a coupled SPH-FEM method for fluid–structure interactions.•Different spatial–temporal resolution is employed for fluid and solid structure.•The accuracy, efficiency, and robustness of the FSI solver are strictly validated.
ArticleNumber 115659
Author Shen, Yan-Ming
Chen, Jian-Qiang
Zhang, A-Man
Shi, Wen-Kui
Chen, Cheng
Author_xml – sequence: 1
  givenname: Cheng
  surname: Chen
  fullname: Chen, Cheng
  organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
– sequence: 2
  givenname: Wen-Kui
  surname: Shi
  fullname: Shi, Wen-Kui
  organization: State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China
– sequence: 3
  givenname: Yan-Ming
  surname: Shen
  fullname: Shen, Yan-Ming
  email: ymshen@cardc.cn
  organization: State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China
– sequence: 4
  givenname: Jian-Qiang
  surname: Chen
  fullname: Chen, Jian-Qiang
  organization: State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China
– sequence: 5
  givenname: A-Man
  surname: Zhang
  fullname: Zhang, A-Man
  organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
BookMark eNp9kM9KxDAQh4MouK4-gLeC566ZdLNJ8bT4HxQF9RzSZIopbbMmqeDNd_ANfRK71JMH5zKX-Wbm9x2Q3d73SMgx0AVQWJ02C9PpBaOMLQD4ipc7ZAZSlDmDQu6SGaVLngvJ-D45iLGhY0lgM3KxzrqhTS4PGH07JOf77OnxJr-6vM86TK_eZrUPWd0Ozn5_fsUUBpOGgJnrEwZttkA8JHu1biMe_fY5ebm6fD6_ye8erm_P13e5KRhPOYKuSm4BreRyKUCLQpplLZmwBVSmAl1Xoi5ZVeESjOVWF8i4rscYRli5KubkZNq7Cf5twJhU44fQjycVE5yXlDOg45SYpkzwMQaslXFJbx9NQbtWAVVbZapRozK1VaYmZSMJf8hNcJ0OH_8yZxODY_B3h0FF47A3aF1Ak5T17h_6B6kZhuE
CitedBy_id crossref_primary_10_1016_j_enganabound_2025_106179
crossref_primary_10_1016_j_cma_2023_116676
crossref_primary_10_1016_j_apor_2025_104760
crossref_primary_10_3390_met13081392
crossref_primary_10_1016_j_apor_2023_103800
crossref_primary_10_1016_j_apor_2025_104706
crossref_primary_10_3390_jmse11081483
crossref_primary_10_1016_j_marstruc_2023_103531
crossref_primary_10_1016_j_enganabound_2023_10_018
crossref_primary_10_1016_j_jcp_2023_112233
crossref_primary_10_1016_j_cma_2024_117398
crossref_primary_10_1016_j_cma_2024_117015
crossref_primary_10_1016_j_jfluidstructs_2025_104366
crossref_primary_10_1016_j_cma_2024_117179
crossref_primary_10_1016_j_cma_2025_118026
crossref_primary_10_1016_j_powtec_2024_119900
crossref_primary_10_1016_j_apor_2025_104433
crossref_primary_10_1016_j_apor_2025_104498
crossref_primary_10_1016_j_enganabound_2023_09_023
crossref_primary_10_1007_s11831_025_10346_0
crossref_primary_10_1016_j_jfluidstructs_2023_103855
crossref_primary_10_3389_fphy_2023_1325294
crossref_primary_10_1177_14644193231180685
crossref_primary_10_3390_act14040163
crossref_primary_10_1016_j_marstruc_2024_103721
crossref_primary_10_1016_j_compstruc_2025_107653
crossref_primary_10_3390_jmse12111968
crossref_primary_10_1016_j_cma_2023_115989
Cites_doi 10.1016/j.jfluidstructs.2021.103254
10.1142/S021987621846009X
10.1016/j.jfluidstructs.2015.06.017
10.1016/j.apm.2021.08.014
10.1016/j.oceaneng.2021.109679
10.1016/j.jfluidstructs.2012.09.006
10.1016/j.jsv.2015.02.007
10.1016/j.oceaneng.2021.109537
10.1016/0021-9991(81)90145-5
10.1093/mnras/181.3.375
10.1016/j.oceaneng.2012.06.031
10.1016/j.oceaneng.2020.108552
10.1016/j.engstruct.2010.10.020
10.1016/S0045-7825(99)00051-1
10.1016/j.oceaneng.2021.108652
10.1016/j.jcp.2020.110028
10.1016/j.cpc.2018.05.012
10.1016/j.compstruc.2007.01.002
10.1016/0021-9991(72)90065-4
10.1016/j.compfluid.2017.01.011
10.1016/j.oceaneng.2021.108580
10.1016/S1001-6058(13)60412-6
10.1016/j.jcp.2009.08.009
10.1016/j.cpc.2021.108066
10.1016/j.jcp.2019.109113
10.1016/0029-5493(94)90143-0
10.1016/j.jfluidstructs.2021.103342
10.1002/cnm.1341
10.1016/j.cma.2010.12.016
10.1016/j.euromechflu.2021.12.001
10.1007/s00466-017-1498-9
10.1007/s004660050285
10.1016/j.cpc.2017.04.005
10.1016/j.apor.2021.102938
10.1016/j.enganabound.2021.04.005
10.1016/j.apor.2015.02.002
10.1016/j.apor.2018.10.020
10.1142/S0217984919502385
10.1016/j.cpc.2008.12.004
10.1016/j.ijimpeng.2004.04.017
10.1016/0021-9991(83)90036-0
10.1016/j.cma.2009.04.001
10.1086/112164
10.1016/j.oceaneng.2021.108576
10.1016/j.oceaneng.2022.110849
10.1016/0029-5493(94)90136-8
10.1007/s11831-010-9040-7
10.1016/j.enganabound.2019.08.026
10.1016/j.enganabound.2019.03.033
10.1016/0045-7825(85)90050-7
10.1016/0021-9991(88)90002-2
10.1016/j.compfluid.2015.08.017
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Nov 1, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Nov 1, 2022
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2022.115659
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2022_115659
S0045782522006144
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c325t-e1ab95d1ed858471a738c4f827d31bcb1afb7f92bbe41cd5da3e25af879c7d863
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000872540500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Fri Jul 25 05:32:23 EDT 2025
Sat Nov 29 07:25:31 EST 2025
Tue Nov 18 22:35:14 EST 2025
Fri Feb 23 02:42:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Fluid–structure interaction
Multi-resolution technology
Weakly compressive SPH
Coupled SPH-FEM algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-e1ab95d1ed858471a738c4f827d31bcb1afb7f92bbe41cd5da3e25af879c7d863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2755905210
PQPubID 2045269
ParticipantIDs proquest_journals_2755905210
crossref_citationtrail_10_1016_j_cma_2022_115659
crossref_primary_10_1016_j_cma_2022_115659
elsevier_sciencedirect_doi_10_1016_j_cma_2022_115659
PublicationCentury 2000
PublicationDate 2022-11-01
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Liu, Liu (b41) 2010; 17
Panciroli, Porfiri (b62) 2015; 347
Attaway, Heinstein, Mello, Swegle (b26) 1993
Liao, Hu, Sueyoshi (b60) 2014
Wu, Yu, Zhang, Liu (b19) 2019; 108
Kjellgren, Hyvärinen (b8) 1998; 21
McLoone, Quinlan (b39) 2022; 92
Sun, Le Touzé, Oger, Zhang (b25) 2020
Liao, Hu, Sueyoshi (b61) 2015; 50
Peskin (b4) 1972; 10
Liu, Shao, Li (b18) 2013; 25
Caleyron, Chuzel-Marmot, Combescure (b28) 2011; 27
Hirt, Nichols (b7) 1981; 39
Molteni, Colagrossi (b45) 2009; 180
Peng, Zhang, Wang (b48) 2021; 102
Khayyer, Shimizu, Gotoh, Hattori (b36) 2021; 226
Zhang, Rezavand, Hu (b23) 2021; 429
Bonet, Lok (b44) 1999; 180
M. De Leffe, D. Le Touzé, B. Alessandrini, Normal flux method at the boundary for SPH, in: 4th Int. SPHERIC Workshop, SPHERIC 2009, 2009.
Marrone, Antuono, Colagrossi, Colicchio, Le Touzé, Graziani (b51) 2011; 200
Hashimoto, Le Touzé (b20) 2014
Zhang, Qiang, Gao (b22) 2011; 33
Peng, Zhang, Ming (b52) 2021; 222
Simo (b50) 1985; 49
Tian, Zhang, Liu, Wang (b5) 2021; 236
Lyu, Sun (b12) 2022; 101
Yang, Jones, McCue (b59) 2012; 55
Zhang, Feng, Zhang, Chen, Sun, Zong (b2) 2021; 222
Zhang, Rezavand, Zhu, Yu, Wu, Zhang, Wang, Hu (b37) 2021; 267
Shams, Porfiri (b64) 2015; 57
Rafiee, Thiagarajan (b58) 2009; 198
Belytschko, Liu, Moran, Elkhodary (b33) 2014
Grenier, Antuono, Colagrossi, Le Touzé, Alessandrini (b43) 2009; 228
Zhang, Wan (b38) 2019; 16
Sun, Le Touze, Oger, Zhang (b11) 2021; 221
Liu, Liu (b42) 2003
Meng, Ming, Wang, Zhang (b17) 2021; 3
Chen, Zhang, Chen, Shen (b47) 2021; 238
Peng, Zhang, Ming (b53) 2018; 62
Gingold, Monaghan (b14) 1977; 181
Bouscasse, Colagrossi, Marrone, Souto-Iglesias (b16) 2017; 146
Khayyer, Gotoh, Shimizu, Nishijima (b34) 2021; 105
Fourey, Hermange, Le Touzé, Oger (b54) 2017; 217
Khayyer, Gotoh, Falahaty, Shimizu (b55) 2018; 232
Sun, Djidjeli, Xing (b9) 2015; 122
Yan, Pan, Shi, Ma (b24) 2019; 33
Ge, Zhang, Wang (b3) 2020; 404
Vignjevic, De Vuyst, Campbell, Source (b32) 2006; 13
Vignjevic, De Vuyst, Campbell (b31) 2002
Johnson (b29) 1994; 150
Sun, Le Touzé, Zhang (b35) 2019; 104
Monaghan, Gingold (b46) 1983; 52
Greco (b57) 2001
Piro, Maki (b63) 2013; 37
Xu, Yang, Zhu, Hu (b21) 2021; 128
Antoci, Gallati, Sibilla (b56) 2007; 85
Attaway, Heinstein, Swegle (b27) 1994; 150
Khayyer, Tsuruta, Shimizu, Gotoh (b10) 2019; 82
Cui, Chen, Sun, Li (b13) 2022; 248
Lyu, Sun, Huang, Chen, Zhang (b1) 2021; 117
De Vuyst, Vignjevic, Campbell (b30) 2005; 31
Lucy (b15) 1977; 82
Osher, Sethian (b6) 1988; 79
Wu, Gu (b49) 2012
Zhang (10.1016/j.cma.2022.115659_b23) 2021; 429
Liao (10.1016/j.cma.2022.115659_b60) 2014
Vignjevic (10.1016/j.cma.2022.115659_b31) 2002
Sun (10.1016/j.cma.2022.115659_b11) 2021; 221
Molteni (10.1016/j.cma.2022.115659_b45) 2009; 180
Cui (10.1016/j.cma.2022.115659_b13) 2022; 248
Simo (10.1016/j.cma.2022.115659_b50) 1985; 49
Piro (10.1016/j.cma.2022.115659_b63) 2013; 37
Liu (10.1016/j.cma.2022.115659_b41) 2010; 17
Ge (10.1016/j.cma.2022.115659_b3) 2020; 404
Zhang (10.1016/j.cma.2022.115659_b22) 2011; 33
Bouscasse (10.1016/j.cma.2022.115659_b16) 2017; 146
Vignjevic (10.1016/j.cma.2022.115659_b32) 2006; 13
Wu (10.1016/j.cma.2022.115659_b49) 2012
Marrone (10.1016/j.cma.2022.115659_b51) 2011; 200
Tian (10.1016/j.cma.2022.115659_b5) 2021; 236
Hirt (10.1016/j.cma.2022.115659_b7) 1981; 39
Fourey (10.1016/j.cma.2022.115659_b54) 2017; 217
Panciroli (10.1016/j.cma.2022.115659_b62) 2015; 347
Zhang (10.1016/j.cma.2022.115659_b37) 2021; 267
Liao (10.1016/j.cma.2022.115659_b61) 2015; 50
Attaway (10.1016/j.cma.2022.115659_b26) 1993
Antoci (10.1016/j.cma.2022.115659_b56) 2007; 85
Grenier (10.1016/j.cma.2022.115659_b43) 2009; 228
10.1016/j.cma.2022.115659_b40
McLoone (10.1016/j.cma.2022.115659_b39) 2022; 92
Lucy (10.1016/j.cma.2022.115659_b15) 1977; 82
Khayyer (10.1016/j.cma.2022.115659_b34) 2021; 105
Peng (10.1016/j.cma.2022.115659_b53) 2018; 62
Attaway (10.1016/j.cma.2022.115659_b27) 1994; 150
De Vuyst (10.1016/j.cma.2022.115659_b30) 2005; 31
Sun (10.1016/j.cma.2022.115659_b25) 2020
Liu (10.1016/j.cma.2022.115659_b42) 2003
Khayyer (10.1016/j.cma.2022.115659_b55) 2018; 232
Sun (10.1016/j.cma.2022.115659_b9) 2015; 122
Lyu (10.1016/j.cma.2022.115659_b12) 2022; 101
Peskin (10.1016/j.cma.2022.115659_b4) 1972; 10
Khayyer (10.1016/j.cma.2022.115659_b10) 2019; 82
Yan (10.1016/j.cma.2022.115659_b24) 2019; 33
Sun (10.1016/j.cma.2022.115659_b35) 2019; 104
Rafiee (10.1016/j.cma.2022.115659_b58) 2009; 198
Gingold (10.1016/j.cma.2022.115659_b14) 1977; 181
Khayyer (10.1016/j.cma.2022.115659_b36) 2021; 226
Peng (10.1016/j.cma.2022.115659_b48) 2021; 102
Bonet (10.1016/j.cma.2022.115659_b44) 1999; 180
Greco (10.1016/j.cma.2022.115659_b57) 2001
Chen (10.1016/j.cma.2022.115659_b47) 2021; 238
Wu (10.1016/j.cma.2022.115659_b19) 2019; 108
Johnson (10.1016/j.cma.2022.115659_b29) 1994; 150
Belytschko (10.1016/j.cma.2022.115659_b33) 2014
Monaghan (10.1016/j.cma.2022.115659_b46) 1983; 52
Osher (10.1016/j.cma.2022.115659_b6) 1988; 79
Caleyron (10.1016/j.cma.2022.115659_b28) 2011; 27
Lyu (10.1016/j.cma.2022.115659_b1) 2021; 117
Hashimoto (10.1016/j.cma.2022.115659_b20) 2014
Zhang (10.1016/j.cma.2022.115659_b38) 2019; 16
Xu (10.1016/j.cma.2022.115659_b21) 2021; 128
Kjellgren (10.1016/j.cma.2022.115659_b8) 1998; 21
Yang (10.1016/j.cma.2022.115659_b59) 2012; 55
Meng (10.1016/j.cma.2022.115659_b17) 2021; 3
Shams (10.1016/j.cma.2022.115659_b64) 2015; 57
Liu (10.1016/j.cma.2022.115659_b18) 2013; 25
Zhang (10.1016/j.cma.2022.115659_b2) 2021; 222
Peng (10.1016/j.cma.2022.115659_b52) 2021; 222
References_xml – volume: 347
  start-page: 63
  year: 2015
  end-page: 78
  ident: b62
  article-title: Analysis of hydroelastic slamming through particle image velocimetry
  publication-title: J. Sound Vib.
– volume: 128
  start-page: 227
  year: 2021
  end-page: 243
  ident: b21
  article-title: A coupled SPH–FVM method for simulating incompressible interfacial flows with large density difference
  publication-title: Eng. Anal. Bound. Elem.
– volume: 217
  start-page: 66
  year: 2017
  end-page: 81
  ident: b54
  article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods
  publication-title: Comput. Phys. Comm.
– volume: 404
  year: 2020
  ident: b3
  article-title: Investigation of underwater explosion near composite structures using a combined RKDG-FEM approach
  publication-title: J. Comput. Phys.
– volume: 267
  year: 2021
  ident: b37
  article-title: SPHinXsys: An open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics
  publication-title: Comput. Phys. Comm.
– volume: 238
  year: 2021
  ident: b47
  article-title: SPH simulations of water entry problems using an improved boundary treatment
  publication-title: Ocean Eng.
– volume: 55
  start-page: 136
  year: 2012
  end-page: 147
  ident: b59
  article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model
  publication-title: Ocean Eng.
– year: 2014
  ident: b33
  article-title: Nonlinear Finite Elements for Continua and Structures
– volume: 21
  start-page: 81
  year: 1998
  end-page: 90
  ident: b8
  article-title: An arbitrary Lagrangian-Eulerian finite element method
  publication-title: Comput. Mech.
– year: 1993
  ident: b26
  article-title: Coupling of Smooth Particle Hydrodynamics with PRONTO
– year: 2001
  ident: b57
  article-title: A two-dimensional study of green-water loading
– volume: 50
  start-page: 192
  year: 2015
  end-page: 208
  ident: b61
  article-title: Free surface flow impacting on an elastic structure: Experiment versus numerical simulation
  publication-title: Appl. Ocean Res.
– volume: 222
  year: 2021
  ident: b2
  article-title: Investigation of hydroelasticity in water entry of flexible wedges with flow detachment
  publication-title: Ocean Eng.
– volume: 82
  start-page: 1013
  year: 1977
  end-page: 1024
  ident: b15
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
– volume: 180
  start-page: 861
  year: 2009
  end-page: 872
  ident: b45
  article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH
  publication-title: Comput. Phys. Comm.
– volume: 108
  start-page: 472
  year: 2019
  end-page: 483
  ident: b19
  article-title: Micro-mechanism study on rock breaking behavior under water jet impact using coupled SPH-FEM/DEM method with voronoi grains
  publication-title: Eng. Anal. Bound. Elem.
– volume: 25
  start-page: 673
  year: 2013
  end-page: 682
  ident: b18
  article-title: Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method
  publication-title: J. Hydrodyn.
– volume: 226
  year: 2021
  ident: b36
  article-title: Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering
  publication-title: Ocean Eng.
– volume: 33
  start-page: 255
  year: 2011
  end-page: 264
  ident: b22
  article-title: Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation
  publication-title: Eng. Struct.
– volume: 37
  start-page: 134
  year: 2013
  end-page: 150
  ident: b63
  article-title: Hydroelastic analysis of bodies that enter and exit water
  publication-title: J. Fluids Struct.
– volume: 105
  year: 2021
  ident: b34
  article-title: A 3D Lagrangian meshfree projection-based solver for hydroelastic fluid-structure interactions
  publication-title: J. Fluids Struct.
– reference: M. De Leffe, D. Le Touzé, B. Alessandrini, Normal flux method at the boundary for SPH, in: 4th Int. SPHERIC Workshop, SPHERIC 2009, 2009.
– volume: 82
  start-page: 397
  year: 2019
  end-page: 414
  ident: b10
  article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering
  publication-title: Appl. Ocean Res.
– volume: 232
  start-page: 139
  year: 2018
  end-page: 164
  ident: b55
  article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions
  publication-title: Comput. Phys. Comm.
– volume: 92
  start-page: 117
  year: 2022
  end-page: 131
  ident: b39
  article-title: Coupling of the meshless finite volume particle method and the finite element method for fluid–structure interaction with thin elastic structures
  publication-title: Eur. J. Mech. B Fluids
– volume: 52
  start-page: 374
  year: 1983
  end-page: 389
  ident: b46
  article-title: Shock simulation by the particle method SPH
  publication-title: J. Comput. Phys.
– volume: 102
  year: 2021
  ident: b48
  article-title: Coupling of WCSPH and RKPM for the simulation of incompressible fluid–structure interactions
  publication-title: J. Fluids Struct.
– volume: 200
  start-page: 1526
  year: 2011
  end-page: 1542
  ident: b51
  article-title: -SPH model for simulating violent impact flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2012
  ident: b49
  article-title: Introduction To the Explicit Finite Element Method for Nonlinear Transient Dynamics
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: b14
  article-title: Smoothed particle hydrodynamics: Theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
– volume: 429
  year: 2021
  ident: b23
  article-title: A multi-resolution SPH method for fluid-structure interactions
  publication-title: J. Comput. Phys.
– volume: 79
  start-page: 12
  year: 1988
  end-page: 49
  ident: b6
  article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
– year: 2002
  ident: b31
  article-title: The use of a homogeneous repulsive force for contact treatment in SPH
– volume: 13
  start-page: 35
  year: 2006
  ident: b32
  article-title: A frictionless contact algorithm for meshless methods
  publication-title: Comput. Model. Eng. Sci.
– volume: 57
  start-page: 229
  year: 2015
  end-page: 246
  ident: b64
  article-title: Treatment of hydroelastic impact of flexible wedges
  publication-title: J. Fluids Struct.
– volume: 150
  start-page: 265
  year: 1994
  end-page: 274
  ident: b29
  article-title: Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations
  publication-title: Nucl. Eng. Des.
– year: 2003
  ident: b42
  article-title: Smoothed Particle Hydrodynamics: A Meshfree Particle Method
– volume: 85
  start-page: 879
  year: 2007
  end-page: 890
  ident: b56
  article-title: Numerical simulation of fluid–structure interaction by SPH
  publication-title: Comput. Struct.
– volume: 236
  year: 2021
  ident: b5
  article-title: Transient fluid–solid interaction with the improved penalty immersed boundary method
  publication-title: Ocean Eng.
– volume: 39
  start-page: 201
  year: 1981
  end-page: 225
  ident: b7
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
– year: 2014
  ident: b60
  article-title: Numerical simulation of free surface flow impacting on an elastic plate
  publication-title: Proceedings of 29th Intl Workshop on Water Wave and Floating Bodies
– volume: 27
  start-page: 882
  year: 2011
  end-page: 898
  ident: b28
  article-title: Modeling of reinforced concrete through SPH-FE coupling and its application to the simulation of a projectile’s impact onto a slab
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 117
  year: 2021
  ident: b1
  article-title: On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering
  publication-title: Appl. Ocean Res.
– volume: 150
  start-page: 199
  year: 1994
  end-page: 205
  ident: b27
  article-title: Coupling of smooth particle hydrodynamics with the finite element method
  publication-title: Nucl. Eng. Des.
– volume: 228
  start-page: 8380
  year: 2009
  end-page: 8393
  ident: b43
  article-title: An Hamiltonian interface SPH formulation for multi-fluid and free surface flows
  publication-title: J. Comput. Phys.
– volume: 10
  start-page: 252
  year: 1972
  end-page: 271
  ident: b4
  article-title: Flow patterns around heart valves: A numerical method
  publication-title: J. Comput. Phys.
– volume: 33
  year: 2019
  ident: b24
  article-title: Numerical investigation of the skip characteristics of a disk based on the coupled FEM-SPH method
  publication-title: Modern Phys. Lett. B
– volume: 17
  start-page: 25
  year: 2010
  end-page: 76
  ident: b41
  article-title: Smoothed particle hydrodynamics (SPH): An overview and recent developments
  publication-title: Arch. Comput. Methods Eng.
– volume: 31
  start-page: 1054
  year: 2005
  end-page: 1064
  ident: b30
  article-title: Coupling between meshless and finite element methods
  publication-title: Int. J. Impact Eng.
– volume: 122
  start-page: 47
  year: 2015
  end-page: 65
  ident: b9
  article-title: Modified MPS method for the 2D fluid structure interaction problem with free surface
  publication-title: Comput. & Fluids
– volume: 49
  start-page: 55
  year: 1985
  end-page: 70
  ident: b50
  article-title: A finite strain beam formulation. The three-dimensional dynamic problem. Part I
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 16
  year: 2019
  ident: b38
  article-title: MPS-FEM coupled method for fluid–structure interaction in 3d dam-break flows
  publication-title: Int. J. Comput. Methods
– volume: 248
  year: 2022
  ident: b13
  article-title: Numerical investigation on the hydrodynamic behavior of a floating breakwater with moon pool through a coupling SPH model
  publication-title: Ocean Eng.
– volume: 180
  start-page: 97
  year: 1999
  end-page: 115
  ident: b44
  article-title: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2020
  ident: b25
  article-title: An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows. Part 1: Numerical scheme and validations with basic 1D and 2D benchmarks
  publication-title: J. Comput. Phys.
– volume: 198
  start-page: 2785
  year: 2009
  end-page: 2795
  ident: b58
  article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 221
  year: 2021
  ident: b11
  article-title: An accurate FSI-sph modeling of challenging fluid-structure interaction problems in two and three dimensions
  publication-title: Ocean Eng.
– volume: 101
  start-page: 214
  year: 2022
  end-page: 238
  ident: b12
  article-title: Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows
  publication-title: Appl. Math. Model.
– volume: 146
  start-page: 190
  year: 2017
  end-page: 212
  ident: b16
  article-title: SPH modelling of viscous flow past a circular cylinder interacting with a free surface
  publication-title: Comput. & Fluids
– year: 2014
  ident: b20
  article-title: Coupled MPS-FEM model for violent flows-structures interaction
– volume: 104
  start-page: 240
  year: 2019
  end-page: 258
  ident: b35
  article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR
  publication-title: Eng. Anal. Bound. Elem.
– volume: 3
  start-page: 1
  year: 2021
  end-page: 16
  ident: b17
  article-title: Numerical simulation of water entry problems considering air effect using a multiphase Riemann-SPH model
  publication-title: Adv. Aerodyn.
– volume: 222
  year: 2021
  ident: b52
  article-title: Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM
  publication-title: Ocean Eng.
– volume: 62
  start-page: 309
  year: 2018
  end-page: 321
  ident: b53
  article-title: A thick shell model based on reproducing kernel particle method and its application in geometrically nonlinear analysis
  publication-title: Comput. Mech.
– year: 2014
  ident: 10.1016/j.cma.2022.115659_b60
  article-title: Numerical simulation of free surface flow impacting on an elastic plate
– volume: 102
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b48
  article-title: Coupling of WCSPH and RKPM for the simulation of incompressible fluid–structure interactions
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2021.103254
– volume: 16
  issue: 02
  year: 2019
  ident: 10.1016/j.cma.2022.115659_b38
  article-title: MPS-FEM coupled method for fluid–structure interaction in 3d dam-break flows
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S021987621846009X
– volume: 57
  start-page: 229
  year: 2015
  ident: 10.1016/j.cma.2022.115659_b64
  article-title: Treatment of hydroelastic impact of flexible wedges
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2015.06.017
– volume: 101
  start-page: 214
  year: 2022
  ident: 10.1016/j.cma.2022.115659_b12
  article-title: Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2021.08.014
– volume: 238
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b47
  article-title: SPH simulations of water entry problems using an improved boundary treatment
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109679
– volume: 37
  start-page: 134
  year: 2013
  ident: 10.1016/j.cma.2022.115659_b63
  article-title: Hydroelastic analysis of bodies that enter and exit water
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2012.09.006
– year: 2020
  ident: 10.1016/j.cma.2022.115659_b25
  article-title: An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows. Part 1: Numerical scheme and validations with basic 1D and 2D benchmarks
  publication-title: J. Comput. Phys.
– volume: 13
  start-page: 35
  issue: 1
  year: 2006
  ident: 10.1016/j.cma.2022.115659_b32
  article-title: A frictionless contact algorithm for meshless methods
  publication-title: Comput. Model. Eng. Sci.
– volume: 347
  start-page: 63
  year: 2015
  ident: 10.1016/j.cma.2022.115659_b62
  article-title: Analysis of hydroelastic slamming through particle image velocimetry
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.02.007
– year: 2014
  ident: 10.1016/j.cma.2022.115659_b20
– volume: 236
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b5
  article-title: Transient fluid–solid interaction with the improved penalty immersed boundary method
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.109537
– volume: 39
  start-page: 201
  issue: 1
  year: 1981
  ident: 10.1016/j.cma.2022.115659_b7
  article-title: Volume of fluid (VOF) method for the dynamics of free boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(81)90145-5
– volume: 181
  start-page: 375
  issue: 3
  year: 1977
  ident: 10.1016/j.cma.2022.115659_b14
  article-title: Smoothed particle hydrodynamics: Theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/181.3.375
– volume: 55
  start-page: 136
  year: 2012
  ident: 10.1016/j.cma.2022.115659_b59
  article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.06.031
– volume: 221
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b11
  article-title: An accurate FSI-sph modeling of challenging fluid-structure interaction problems in two and three dimensions
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2020.108552
– year: 1993
  ident: 10.1016/j.cma.2022.115659_b26
– volume: 33
  start-page: 255
  issue: 1
  year: 2011
  ident: 10.1016/j.cma.2022.115659_b22
  article-title: Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2010.10.020
– volume: 180
  start-page: 97
  issue: 1–2
  year: 1999
  ident: 10.1016/j.cma.2022.115659_b44
  article-title: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/S0045-7825(99)00051-1
– volume: 226
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b36
  article-title: Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108652
– volume: 429
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b23
  article-title: A multi-resolution SPH method for fluid-structure interactions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110028
– volume: 232
  start-page: 139
  year: 2018
  ident: 10.1016/j.cma.2022.115659_b55
  article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2018.05.012
– volume: 85
  start-page: 879
  issue: 11–14
  year: 2007
  ident: 10.1016/j.cma.2022.115659_b56
  article-title: Numerical simulation of fluid–structure interaction by SPH
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.01.002
– volume: 10
  start-page: 252
  issue: 2
  year: 1972
  ident: 10.1016/j.cma.2022.115659_b4
  article-title: Flow patterns around heart valves: A numerical method
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(72)90065-4
– volume: 146
  start-page: 190
  year: 2017
  ident: 10.1016/j.cma.2022.115659_b16
  article-title: SPH modelling of viscous flow past a circular cylinder interacting with a free surface
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2017.01.011
– volume: 222
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b2
  article-title: Investigation of hydroelasticity in water entry of flexible wedges with flow detachment
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108580
– volume: 3
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b17
  article-title: Numerical simulation of water entry problems considering air effect using a multiphase Riemann-SPH model
  publication-title: Adv. Aerodyn.
– volume: 25
  start-page: 673
  issue: 5
  year: 2013
  ident: 10.1016/j.cma.2022.115659_b18
  article-title: Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(13)60412-6
– volume: 228
  start-page: 8380
  issue: 22
  year: 2009
  ident: 10.1016/j.cma.2022.115659_b43
  article-title: An Hamiltonian interface SPH formulation for multi-fluid and free surface flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.08.009
– volume: 267
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b37
  article-title: SPHinXsys: An open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2021.108066
– year: 2002
  ident: 10.1016/j.cma.2022.115659_b31
– volume: 404
  year: 2020
  ident: 10.1016/j.cma.2022.115659_b3
  article-title: Investigation of underwater explosion near composite structures using a combined RKDG-FEM approach
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109113
– volume: 150
  start-page: 265
  issue: 2–3
  year: 1994
  ident: 10.1016/j.cma.2022.115659_b29
  article-title: Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(94)90143-0
– volume: 105
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b34
  article-title: A 3D Lagrangian meshfree projection-based solver for hydroelastic fluid-structure interactions
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2021.103342
– year: 2001
  ident: 10.1016/j.cma.2022.115659_b57
– volume: 27
  start-page: 882
  issue: 6
  year: 2011
  ident: 10.1016/j.cma.2022.115659_b28
  article-title: Modeling of reinforced concrete through SPH-FE coupling and its application to the simulation of a projectile’s impact onto a slab
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.1341
– volume: 200
  start-page: 1526
  issue: 13–16
  year: 2011
  ident: 10.1016/j.cma.2022.115659_b51
  article-title: δ-SPH model for simulating violent impact flows
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2010.12.016
– volume: 92
  start-page: 117
  year: 2022
  ident: 10.1016/j.cma.2022.115659_b39
  article-title: Coupling of the meshless finite volume particle method and the finite element method for fluid–structure interaction with thin elastic structures
  publication-title: Eur. J. Mech. B Fluids
  doi: 10.1016/j.euromechflu.2021.12.001
– volume: 62
  start-page: 309
  issue: 3
  year: 2018
  ident: 10.1016/j.cma.2022.115659_b53
  article-title: A thick shell model based on reproducing kernel particle method and its application in geometrically nonlinear analysis
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-017-1498-9
– volume: 21
  start-page: 81
  issue: 1
  year: 1998
  ident: 10.1016/j.cma.2022.115659_b8
  article-title: An arbitrary Lagrangian-Eulerian finite element method
  publication-title: Comput. Mech.
  doi: 10.1007/s004660050285
– volume: 217
  start-page: 66
  year: 2017
  ident: 10.1016/j.cma.2022.115659_b54
  article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2017.04.005
– volume: 117
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b1
  article-title: On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2021.102938
– volume: 128
  start-page: 227
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b21
  article-title: A coupled SPH–FVM method for simulating incompressible interfacial flows with large density difference
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2021.04.005
– year: 2003
  ident: 10.1016/j.cma.2022.115659_b42
– year: 2012
  ident: 10.1016/j.cma.2022.115659_b49
– volume: 50
  start-page: 192
  year: 2015
  ident: 10.1016/j.cma.2022.115659_b61
  article-title: Free surface flow impacting on an elastic structure: Experiment versus numerical simulation
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2015.02.002
– ident: 10.1016/j.cma.2022.115659_b40
– volume: 82
  start-page: 397
  year: 2019
  ident: 10.1016/j.cma.2022.115659_b10
  article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2018.10.020
– volume: 33
  issue: 20
  year: 2019
  ident: 10.1016/j.cma.2022.115659_b24
  article-title: Numerical investigation of the skip characteristics of a disk based on the coupled FEM-SPH method
  publication-title: Modern Phys. Lett. B
  doi: 10.1142/S0217984919502385
– volume: 180
  start-page: 861
  issue: 6
  year: 2009
  ident: 10.1016/j.cma.2022.115659_b45
  article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/j.cpc.2008.12.004
– volume: 31
  start-page: 1054
  issue: 8
  year: 2005
  ident: 10.1016/j.cma.2022.115659_b30
  article-title: Coupling between meshless and finite element methods
  publication-title: Int. J. Impact Eng.
  doi: 10.1016/j.ijimpeng.2004.04.017
– volume: 52
  start-page: 374
  issue: 2
  year: 1983
  ident: 10.1016/j.cma.2022.115659_b46
  article-title: Shock simulation by the particle method SPH
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(83)90036-0
– volume: 198
  start-page: 2785
  issue: 33–36
  year: 2009
  ident: 10.1016/j.cma.2022.115659_b58
  article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2009.04.001
– volume: 82
  start-page: 1013
  year: 1977
  ident: 10.1016/j.cma.2022.115659_b15
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
  doi: 10.1086/112164
– year: 2014
  ident: 10.1016/j.cma.2022.115659_b33
– volume: 222
  year: 2021
  ident: 10.1016/j.cma.2022.115659_b52
  article-title: Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2021.108576
– volume: 248
  year: 2022
  ident: 10.1016/j.cma.2022.115659_b13
  article-title: Numerical investigation on the hydrodynamic behavior of a floating breakwater with moon pool through a coupling SPH model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2022.110849
– volume: 150
  start-page: 199
  issue: 2–3
  year: 1994
  ident: 10.1016/j.cma.2022.115659_b27
  article-title: Coupling of smooth particle hydrodynamics with the finite element method
  publication-title: Nucl. Eng. Des.
  doi: 10.1016/0029-5493(94)90136-8
– volume: 17
  start-page: 25
  issue: 1
  year: 2010
  ident: 10.1016/j.cma.2022.115659_b41
  article-title: Smoothed particle hydrodynamics (SPH): An overview and recent developments
  publication-title: Arch. Comput. Methods Eng.
  doi: 10.1007/s11831-010-9040-7
– volume: 108
  start-page: 472
  year: 2019
  ident: 10.1016/j.cma.2022.115659_b19
  article-title: Micro-mechanism study on rock breaking behavior under water jet impact using coupled SPH-FEM/DEM method with voronoi grains
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2019.08.026
– volume: 104
  start-page: 240
  year: 2019
  ident: 10.1016/j.cma.2022.115659_b35
  article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2019.03.033
– volume: 49
  start-page: 55
  issue: 1
  year: 1985
  ident: 10.1016/j.cma.2022.115659_b50
  article-title: A finite strain beam formulation. The three-dimensional dynamic problem. Part I
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(85)90050-7
– volume: 79
  start-page: 12
  issue: 1
  year: 1988
  ident: 10.1016/j.cma.2022.115659_b6
  article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(88)90002-2
– volume: 122
  start-page: 47
  year: 2015
  ident: 10.1016/j.cma.2022.115659_b9
  article-title: Modified MPS method for the 2D fluid structure interaction problem with free surface
  publication-title: Comput. & Fluids
  doi: 10.1016/j.compfluid.2015.08.017
SSID ssj0000812
Score 2.5451515
Snippet This work presents a multi-resolution fluid–structure interaction (FSI) solver for hydroelastic issues by coupling the Weakly Compressive Smoothed Particle...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115659
SubjectTerms Coupled SPH-FEM algorithm
Finite element method
Fluid-structure interaction
Free surfaces
Mathematical analysis
Multi-resolution technology
Smooth particle hydrodynamics
Solvers
Weakly compressive SPH
Title A multi-resolution SPH-FEM method for fluid–structure interactions
URI https://dx.doi.org/10.1016/j.cma.2022.115659
https://www.proquest.com/docview/2755905210
Volume 401
WOSCitedRecordID wos000872540500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaWlgMc-CkgCgX5wInK1dpx1s5xBVuVolZFLWI5WY7jVK2WUHXbqkfEK_CGPAnjePLDQit64BJFljNr7Xwez9jjbwh5xYelhqhBMlgKLJM2HcFbAdN9lHmnZaC403WxCbW7q6fTbG8w-N7chbmYqarSl5fZyX9VNbSBssPV2RuouxUKDfAOSocnqB2e_6T4cUwSZBBH4--s7-9tsc3JDpaLrjMLy9k5jAwzHZLIIhvOEgJ9xGm87DDvO65N9QeUUWfRWvRgv_hwfbihe_Ydw2GXO-DxbN93jft1OeH1T75i78-PutbY9bOt2M5fRGwDnNkHeBz29ysg1OXtfgXaYJky8EvSvg2W2CNaUfBSR5En_A8DH_cajjdcTRolxEbX93cy7YVFrk09bLLajg2IMEGEiSJukWWh0gws4_L43WS63a3nmkfOeRx3czZeZwkujOMq72Zhna-dl4MH5B5GHXQc0fKQDHy1Qu5jBELRvs9XyN0ePeUj8nZMF6FEEUo0woAClGgNpZ_ffrQgon0QPSYfNycHb7YYVt1gLhHpGfPc5llacF_ocITOrUq0k6UWqkh47nJuy1yVmchzL7kr0sImXqS21CpzqtCj5AlZqr5W_imhw1w7Jzn3AqJW7b32JcSzVhdWaZ6UYpUMm3_LOKSkD5VRZuZKLa2S1-0nJ5GP5brOslGBQYcyOooG4HTdZ2uNugxO7LkBbKRZuOk-fHaTITwnd7pJsEaWQBP-BbntLs6O5qcvEWq_AHszngY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-resolution+SPH-FEM+method+for+fluid%E2%80%93structure+interactions&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Chen%2C+Cheng&rft.au=Shi%2C+Wen-Kui&rft.au=Shen%2C+Yan-Ming&rft.au=Chen%2C+Jian-Qiang&rft.date=2022-11-01&rft.issn=0045-7825&rft.volume=401&rft.spage=115659&rft_id=info:doi/10.1016%2Fj.cma.2022.115659&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2022_115659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon