A multi-resolution SPH-FEM method for fluid–structure interactions
This work presents a multi-resolution fluid–structure interaction (FSI) solver for hydroelastic issues by coupling the Weakly Compressive Smoothed Particle Hydrodynamics (WCSPH) method and the Finite Element Method (FEM). The fluid is simulated by the SPH method, and the structure response is consid...
Uloženo v:
| Vydáno v: | Computer methods in applied mechanics and engineering Ročník 401; s. 115659 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
01.11.2022
Elsevier BV |
| Témata: | |
| ISSN: | 0045-7825, 1879-2138 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This work presents a multi-resolution fluid–structure interaction (FSI) solver for hydroelastic issues by coupling the Weakly Compressive Smoothed Particle Hydrodynamics (WCSPH) method and the Finite Element Method (FEM). The fluid is simulated by the SPH method, and the structure response is considered by the FEM beam. The normal flux method is employed to calculate the coupled force between the fluid and structure by considering the surface integration term in SPH approximation equations. A multi-resolution technology is proposed by discretizing the fluid and structure with different resolutions. The resolution of beam elements can be either coarser or finer than that of SPH particles. Finally, the accuracy, robustness and efficiency of the current FSI solver are strictly validated by several typical benchmarks, including the hydrostatic, free-surface flow and water entry problems.
•We developed a coupled SPH-FEM method for fluid–structure interactions.•Different spatial–temporal resolution is employed for fluid and solid structure.•The accuracy, efficiency, and robustness of the FSI solver are strictly validated. |
|---|---|
| AbstractList | This work presents a multi-resolution fluid–structure interaction (FSI) solver for hydroelastic issues by coupling the Weakly Compressive Smoothed Particle Hydrodynamics (WCSPH) method and the Finite Element Method (FEM). The fluid is simulated by the SPH method, and the structure response is considered by the FEM beam. The normal flux method is employed to calculate the coupled force between the fluid and structure by considering the surface integration term in SPH approximation equations. A multi-resolution technology is proposed by discretizing the fluid and structure with different resolutions. The resolution of beam elements can be either coarser or finer than that of SPH particles. Finally, the accuracy, robustness and efficiency of the current FSI solver are strictly validated by several typical benchmarks, including the hydrostatic, free-surface flow and water entry problems. This work presents a multi-resolution fluid–structure interaction (FSI) solver for hydroelastic issues by coupling the Weakly Compressive Smoothed Particle Hydrodynamics (WCSPH) method and the Finite Element Method (FEM). The fluid is simulated by the SPH method, and the structure response is considered by the FEM beam. The normal flux method is employed to calculate the coupled force between the fluid and structure by considering the surface integration term in SPH approximation equations. A multi-resolution technology is proposed by discretizing the fluid and structure with different resolutions. The resolution of beam elements can be either coarser or finer than that of SPH particles. Finally, the accuracy, robustness and efficiency of the current FSI solver are strictly validated by several typical benchmarks, including the hydrostatic, free-surface flow and water entry problems. •We developed a coupled SPH-FEM method for fluid–structure interactions.•Different spatial–temporal resolution is employed for fluid and solid structure.•The accuracy, efficiency, and robustness of the FSI solver are strictly validated. |
| ArticleNumber | 115659 |
| Author | Shen, Yan-Ming Chen, Jian-Qiang Zhang, A-Man Shi, Wen-Kui Chen, Cheng |
| Author_xml | – sequence: 1 givenname: Cheng surname: Chen fullname: Chen, Cheng organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China – sequence: 2 givenname: Wen-Kui surname: Shi fullname: Shi, Wen-Kui organization: State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China – sequence: 3 givenname: Yan-Ming surname: Shen fullname: Shen, Yan-Ming email: ymshen@cardc.cn organization: State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China – sequence: 4 givenname: Jian-Qiang surname: Chen fullname: Chen, Jian-Qiang organization: State Key Laboratory of Aerodynamics, China Aerodynamics Research and Development Center, Mianyang 621000, China – sequence: 5 givenname: A-Man surname: Zhang fullname: Zhang, A-Man organization: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China |
| BookMark | eNp9kM9KxDAQh4MouK4-gLeC566ZdLNJ8bT4HxQF9RzSZIopbbMmqeDNd_ANfRK71JMH5zKX-Wbm9x2Q3d73SMgx0AVQWJ02C9PpBaOMLQD4ipc7ZAZSlDmDQu6SGaVLngvJ-D45iLGhY0lgM3KxzrqhTS4PGH07JOf77OnxJr-6vM86TK_eZrUPWd0Ozn5_fsUUBpOGgJnrEwZttkA8JHu1biMe_fY5ebm6fD6_ye8erm_P13e5KRhPOYKuSm4BreRyKUCLQpplLZmwBVSmAl1Xoi5ZVeESjOVWF8i4rscYRli5KubkZNq7Cf5twJhU44fQjycVE5yXlDOg45SYpkzwMQaslXFJbx9NQbtWAVVbZapRozK1VaYmZSMJf8hNcJ0OH_8yZxODY_B3h0FF47A3aF1Ak5T17h_6B6kZhuE |
| CitedBy_id | crossref_primary_10_1016_j_enganabound_2025_106179 crossref_primary_10_1016_j_cma_2023_116676 crossref_primary_10_1016_j_apor_2025_104760 crossref_primary_10_3390_met13081392 crossref_primary_10_1016_j_apor_2023_103800 crossref_primary_10_1016_j_apor_2025_104706 crossref_primary_10_3390_jmse11081483 crossref_primary_10_1016_j_marstruc_2023_103531 crossref_primary_10_1016_j_enganabound_2023_10_018 crossref_primary_10_1016_j_jcp_2023_112233 crossref_primary_10_1016_j_cma_2024_117398 crossref_primary_10_1016_j_cma_2024_117015 crossref_primary_10_1016_j_jfluidstructs_2025_104366 crossref_primary_10_1016_j_cma_2024_117179 crossref_primary_10_1016_j_cma_2025_118026 crossref_primary_10_1016_j_powtec_2024_119900 crossref_primary_10_1016_j_apor_2025_104433 crossref_primary_10_1016_j_apor_2025_104498 crossref_primary_10_1016_j_enganabound_2023_09_023 crossref_primary_10_1007_s11831_025_10346_0 crossref_primary_10_1016_j_jfluidstructs_2023_103855 crossref_primary_10_3389_fphy_2023_1325294 crossref_primary_10_1177_14644193231180685 crossref_primary_10_3390_act14040163 crossref_primary_10_1016_j_marstruc_2024_103721 crossref_primary_10_1016_j_compstruc_2025_107653 crossref_primary_10_3390_jmse12111968 crossref_primary_10_1016_j_cma_2023_115989 |
| Cites_doi | 10.1016/j.jfluidstructs.2021.103254 10.1142/S021987621846009X 10.1016/j.jfluidstructs.2015.06.017 10.1016/j.apm.2021.08.014 10.1016/j.oceaneng.2021.109679 10.1016/j.jfluidstructs.2012.09.006 10.1016/j.jsv.2015.02.007 10.1016/j.oceaneng.2021.109537 10.1016/0021-9991(81)90145-5 10.1093/mnras/181.3.375 10.1016/j.oceaneng.2012.06.031 10.1016/j.oceaneng.2020.108552 10.1016/j.engstruct.2010.10.020 10.1016/S0045-7825(99)00051-1 10.1016/j.oceaneng.2021.108652 10.1016/j.jcp.2020.110028 10.1016/j.cpc.2018.05.012 10.1016/j.compstruc.2007.01.002 10.1016/0021-9991(72)90065-4 10.1016/j.compfluid.2017.01.011 10.1016/j.oceaneng.2021.108580 10.1016/S1001-6058(13)60412-6 10.1016/j.jcp.2009.08.009 10.1016/j.cpc.2021.108066 10.1016/j.jcp.2019.109113 10.1016/0029-5493(94)90143-0 10.1016/j.jfluidstructs.2021.103342 10.1002/cnm.1341 10.1016/j.cma.2010.12.016 10.1016/j.euromechflu.2021.12.001 10.1007/s00466-017-1498-9 10.1007/s004660050285 10.1016/j.cpc.2017.04.005 10.1016/j.apor.2021.102938 10.1016/j.enganabound.2021.04.005 10.1016/j.apor.2015.02.002 10.1016/j.apor.2018.10.020 10.1142/S0217984919502385 10.1016/j.cpc.2008.12.004 10.1016/j.ijimpeng.2004.04.017 10.1016/0021-9991(83)90036-0 10.1016/j.cma.2009.04.001 10.1086/112164 10.1016/j.oceaneng.2021.108576 10.1016/j.oceaneng.2022.110849 10.1016/0029-5493(94)90136-8 10.1007/s11831-010-9040-7 10.1016/j.enganabound.2019.08.026 10.1016/j.enganabound.2019.03.033 10.1016/0045-7825(85)90050-7 10.1016/0021-9991(88)90002-2 10.1016/j.compfluid.2015.08.017 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Nov 1, 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Nov 1, 2022 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cma.2022.115659 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2138 |
| ExternalDocumentID | 10_1016_j_cma_2022_115659 S0045782522006144 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 JQ2 KR7 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c325t-e1ab95d1ed858471a738c4f827d31bcb1afb7f92bbe41cd5da3e25af879c7d863 |
| ISICitedReferencesCount | 37 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000872540500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Fri Jul 25 05:32:23 EDT 2025 Sat Nov 29 07:25:31 EST 2025 Tue Nov 18 22:35:14 EST 2025 Fri Feb 23 02:42:20 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Finite element method Fluid–structure interaction Multi-resolution technology Weakly compressive SPH Coupled SPH-FEM algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-e1ab95d1ed858471a738c4f827d31bcb1afb7f92bbe41cd5da3e25af879c7d863 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2755905210 |
| PQPubID | 2045269 |
| ParticipantIDs | proquest_journals_2755905210 crossref_citationtrail_10_1016_j_cma_2022_115659 crossref_primary_10_1016_j_cma_2022_115659 elsevier_sciencedirect_doi_10_1016_j_cma_2022_115659 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-11-01 2022-11-00 20221101 |
| PublicationDateYYYYMMDD | 2022-11-01 |
| PublicationDate_xml | – month: 11 year: 2022 text: 2022-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Liu, Liu (b41) 2010; 17 Panciroli, Porfiri (b62) 2015; 347 Attaway, Heinstein, Mello, Swegle (b26) 1993 Liao, Hu, Sueyoshi (b60) 2014 Wu, Yu, Zhang, Liu (b19) 2019; 108 Kjellgren, Hyvärinen (b8) 1998; 21 McLoone, Quinlan (b39) 2022; 92 Sun, Le Touzé, Oger, Zhang (b25) 2020 Liao, Hu, Sueyoshi (b61) 2015; 50 Peskin (b4) 1972; 10 Liu, Shao, Li (b18) 2013; 25 Caleyron, Chuzel-Marmot, Combescure (b28) 2011; 27 Hirt, Nichols (b7) 1981; 39 Molteni, Colagrossi (b45) 2009; 180 Peng, Zhang, Wang (b48) 2021; 102 Khayyer, Shimizu, Gotoh, Hattori (b36) 2021; 226 Zhang, Rezavand, Hu (b23) 2021; 429 Bonet, Lok (b44) 1999; 180 M. De Leffe, D. Le Touzé, B. Alessandrini, Normal flux method at the boundary for SPH, in: 4th Int. SPHERIC Workshop, SPHERIC 2009, 2009. Marrone, Antuono, Colagrossi, Colicchio, Le Touzé, Graziani (b51) 2011; 200 Hashimoto, Le Touzé (b20) 2014 Zhang, Qiang, Gao (b22) 2011; 33 Peng, Zhang, Ming (b52) 2021; 222 Simo (b50) 1985; 49 Tian, Zhang, Liu, Wang (b5) 2021; 236 Lyu, Sun (b12) 2022; 101 Yang, Jones, McCue (b59) 2012; 55 Zhang, Feng, Zhang, Chen, Sun, Zong (b2) 2021; 222 Zhang, Rezavand, Zhu, Yu, Wu, Zhang, Wang, Hu (b37) 2021; 267 Shams, Porfiri (b64) 2015; 57 Rafiee, Thiagarajan (b58) 2009; 198 Belytschko, Liu, Moran, Elkhodary (b33) 2014 Grenier, Antuono, Colagrossi, Le Touzé, Alessandrini (b43) 2009; 228 Zhang, Wan (b38) 2019; 16 Sun, Le Touze, Oger, Zhang (b11) 2021; 221 Liu, Liu (b42) 2003 Meng, Ming, Wang, Zhang (b17) 2021; 3 Chen, Zhang, Chen, Shen (b47) 2021; 238 Peng, Zhang, Ming (b53) 2018; 62 Gingold, Monaghan (b14) 1977; 181 Bouscasse, Colagrossi, Marrone, Souto-Iglesias (b16) 2017; 146 Khayyer, Gotoh, Shimizu, Nishijima (b34) 2021; 105 Fourey, Hermange, Le Touzé, Oger (b54) 2017; 217 Khayyer, Gotoh, Falahaty, Shimizu (b55) 2018; 232 Sun, Djidjeli, Xing (b9) 2015; 122 Yan, Pan, Shi, Ma (b24) 2019; 33 Ge, Zhang, Wang (b3) 2020; 404 Vignjevic, De Vuyst, Campbell, Source (b32) 2006; 13 Vignjevic, De Vuyst, Campbell (b31) 2002 Johnson (b29) 1994; 150 Sun, Le Touzé, Zhang (b35) 2019; 104 Monaghan, Gingold (b46) 1983; 52 Greco (b57) 2001 Piro, Maki (b63) 2013; 37 Xu, Yang, Zhu, Hu (b21) 2021; 128 Antoci, Gallati, Sibilla (b56) 2007; 85 Attaway, Heinstein, Swegle (b27) 1994; 150 Khayyer, Tsuruta, Shimizu, Gotoh (b10) 2019; 82 Cui, Chen, Sun, Li (b13) 2022; 248 Lyu, Sun, Huang, Chen, Zhang (b1) 2021; 117 De Vuyst, Vignjevic, Campbell (b30) 2005; 31 Lucy (b15) 1977; 82 Osher, Sethian (b6) 1988; 79 Wu, Gu (b49) 2012 Zhang (10.1016/j.cma.2022.115659_b23) 2021; 429 Liao (10.1016/j.cma.2022.115659_b60) 2014 Vignjevic (10.1016/j.cma.2022.115659_b31) 2002 Sun (10.1016/j.cma.2022.115659_b11) 2021; 221 Molteni (10.1016/j.cma.2022.115659_b45) 2009; 180 Cui (10.1016/j.cma.2022.115659_b13) 2022; 248 Simo (10.1016/j.cma.2022.115659_b50) 1985; 49 Piro (10.1016/j.cma.2022.115659_b63) 2013; 37 Liu (10.1016/j.cma.2022.115659_b41) 2010; 17 Ge (10.1016/j.cma.2022.115659_b3) 2020; 404 Zhang (10.1016/j.cma.2022.115659_b22) 2011; 33 Bouscasse (10.1016/j.cma.2022.115659_b16) 2017; 146 Vignjevic (10.1016/j.cma.2022.115659_b32) 2006; 13 Wu (10.1016/j.cma.2022.115659_b49) 2012 Marrone (10.1016/j.cma.2022.115659_b51) 2011; 200 Tian (10.1016/j.cma.2022.115659_b5) 2021; 236 Hirt (10.1016/j.cma.2022.115659_b7) 1981; 39 Fourey (10.1016/j.cma.2022.115659_b54) 2017; 217 Panciroli (10.1016/j.cma.2022.115659_b62) 2015; 347 Zhang (10.1016/j.cma.2022.115659_b37) 2021; 267 Liao (10.1016/j.cma.2022.115659_b61) 2015; 50 Attaway (10.1016/j.cma.2022.115659_b26) 1993 Antoci (10.1016/j.cma.2022.115659_b56) 2007; 85 Grenier (10.1016/j.cma.2022.115659_b43) 2009; 228 10.1016/j.cma.2022.115659_b40 McLoone (10.1016/j.cma.2022.115659_b39) 2022; 92 Lucy (10.1016/j.cma.2022.115659_b15) 1977; 82 Khayyer (10.1016/j.cma.2022.115659_b34) 2021; 105 Peng (10.1016/j.cma.2022.115659_b53) 2018; 62 Attaway (10.1016/j.cma.2022.115659_b27) 1994; 150 De Vuyst (10.1016/j.cma.2022.115659_b30) 2005; 31 Sun (10.1016/j.cma.2022.115659_b25) 2020 Liu (10.1016/j.cma.2022.115659_b42) 2003 Khayyer (10.1016/j.cma.2022.115659_b55) 2018; 232 Sun (10.1016/j.cma.2022.115659_b9) 2015; 122 Lyu (10.1016/j.cma.2022.115659_b12) 2022; 101 Peskin (10.1016/j.cma.2022.115659_b4) 1972; 10 Khayyer (10.1016/j.cma.2022.115659_b10) 2019; 82 Yan (10.1016/j.cma.2022.115659_b24) 2019; 33 Sun (10.1016/j.cma.2022.115659_b35) 2019; 104 Rafiee (10.1016/j.cma.2022.115659_b58) 2009; 198 Gingold (10.1016/j.cma.2022.115659_b14) 1977; 181 Khayyer (10.1016/j.cma.2022.115659_b36) 2021; 226 Peng (10.1016/j.cma.2022.115659_b48) 2021; 102 Bonet (10.1016/j.cma.2022.115659_b44) 1999; 180 Greco (10.1016/j.cma.2022.115659_b57) 2001 Chen (10.1016/j.cma.2022.115659_b47) 2021; 238 Wu (10.1016/j.cma.2022.115659_b19) 2019; 108 Johnson (10.1016/j.cma.2022.115659_b29) 1994; 150 Belytschko (10.1016/j.cma.2022.115659_b33) 2014 Monaghan (10.1016/j.cma.2022.115659_b46) 1983; 52 Osher (10.1016/j.cma.2022.115659_b6) 1988; 79 Caleyron (10.1016/j.cma.2022.115659_b28) 2011; 27 Lyu (10.1016/j.cma.2022.115659_b1) 2021; 117 Hashimoto (10.1016/j.cma.2022.115659_b20) 2014 Zhang (10.1016/j.cma.2022.115659_b38) 2019; 16 Xu (10.1016/j.cma.2022.115659_b21) 2021; 128 Kjellgren (10.1016/j.cma.2022.115659_b8) 1998; 21 Yang (10.1016/j.cma.2022.115659_b59) 2012; 55 Meng (10.1016/j.cma.2022.115659_b17) 2021; 3 Shams (10.1016/j.cma.2022.115659_b64) 2015; 57 Liu (10.1016/j.cma.2022.115659_b18) 2013; 25 Zhang (10.1016/j.cma.2022.115659_b2) 2021; 222 Peng (10.1016/j.cma.2022.115659_b52) 2021; 222 |
| References_xml | – volume: 347 start-page: 63 year: 2015 end-page: 78 ident: b62 article-title: Analysis of hydroelastic slamming through particle image velocimetry publication-title: J. Sound Vib. – volume: 128 start-page: 227 year: 2021 end-page: 243 ident: b21 article-title: A coupled SPH–FVM method for simulating incompressible interfacial flows with large density difference publication-title: Eng. Anal. Bound. Elem. – volume: 217 start-page: 66 year: 2017 end-page: 81 ident: b54 article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods publication-title: Comput. Phys. Comm. – volume: 404 year: 2020 ident: b3 article-title: Investigation of underwater explosion near composite structures using a combined RKDG-FEM approach publication-title: J. Comput. Phys. – volume: 267 year: 2021 ident: b37 article-title: SPHinXsys: An open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics publication-title: Comput. Phys. Comm. – volume: 238 year: 2021 ident: b47 article-title: SPH simulations of water entry problems using an improved boundary treatment publication-title: Ocean Eng. – volume: 55 start-page: 136 year: 2012 end-page: 147 ident: b59 article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model publication-title: Ocean Eng. – year: 2014 ident: b33 article-title: Nonlinear Finite Elements for Continua and Structures – volume: 21 start-page: 81 year: 1998 end-page: 90 ident: b8 article-title: An arbitrary Lagrangian-Eulerian finite element method publication-title: Comput. Mech. – year: 1993 ident: b26 article-title: Coupling of Smooth Particle Hydrodynamics with PRONTO – year: 2001 ident: b57 article-title: A two-dimensional study of green-water loading – volume: 50 start-page: 192 year: 2015 end-page: 208 ident: b61 article-title: Free surface flow impacting on an elastic structure: Experiment versus numerical simulation publication-title: Appl. Ocean Res. – volume: 222 year: 2021 ident: b2 article-title: Investigation of hydroelasticity in water entry of flexible wedges with flow detachment publication-title: Ocean Eng. – volume: 82 start-page: 1013 year: 1977 end-page: 1024 ident: b15 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron. J. – volume: 180 start-page: 861 year: 2009 end-page: 872 ident: b45 article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH publication-title: Comput. Phys. Comm. – volume: 108 start-page: 472 year: 2019 end-page: 483 ident: b19 article-title: Micro-mechanism study on rock breaking behavior under water jet impact using coupled SPH-FEM/DEM method with voronoi grains publication-title: Eng. Anal. Bound. Elem. – volume: 25 start-page: 673 year: 2013 end-page: 682 ident: b18 article-title: Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method publication-title: J. Hydrodyn. – volume: 226 year: 2021 ident: b36 article-title: Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering publication-title: Ocean Eng. – volume: 33 start-page: 255 year: 2011 end-page: 264 ident: b22 article-title: Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation publication-title: Eng. Struct. – volume: 37 start-page: 134 year: 2013 end-page: 150 ident: b63 article-title: Hydroelastic analysis of bodies that enter and exit water publication-title: J. Fluids Struct. – volume: 105 year: 2021 ident: b34 article-title: A 3D Lagrangian meshfree projection-based solver for hydroelastic fluid-structure interactions publication-title: J. Fluids Struct. – reference: M. De Leffe, D. Le Touzé, B. Alessandrini, Normal flux method at the boundary for SPH, in: 4th Int. SPHERIC Workshop, SPHERIC 2009, 2009. – volume: 82 start-page: 397 year: 2019 end-page: 414 ident: b10 article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering publication-title: Appl. Ocean Res. – volume: 232 start-page: 139 year: 2018 end-page: 164 ident: b55 article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions publication-title: Comput. Phys. Comm. – volume: 92 start-page: 117 year: 2022 end-page: 131 ident: b39 article-title: Coupling of the meshless finite volume particle method and the finite element method for fluid–structure interaction with thin elastic structures publication-title: Eur. J. Mech. B Fluids – volume: 52 start-page: 374 year: 1983 end-page: 389 ident: b46 article-title: Shock simulation by the particle method SPH publication-title: J. Comput. Phys. – volume: 102 year: 2021 ident: b48 article-title: Coupling of WCSPH and RKPM for the simulation of incompressible fluid–structure interactions publication-title: J. Fluids Struct. – volume: 200 start-page: 1526 year: 2011 end-page: 1542 ident: b51 article-title: -SPH model for simulating violent impact flows publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2012 ident: b49 article-title: Introduction To the Explicit Finite Element Method for Nonlinear Transient Dynamics – volume: 181 start-page: 375 year: 1977 end-page: 389 ident: b14 article-title: Smoothed particle hydrodynamics: Theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. – volume: 429 year: 2021 ident: b23 article-title: A multi-resolution SPH method for fluid-structure interactions publication-title: J. Comput. Phys. – volume: 79 start-page: 12 year: 1988 end-page: 49 ident: b6 article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations publication-title: J. Comput. Phys. – year: 2002 ident: b31 article-title: The use of a homogeneous repulsive force for contact treatment in SPH – volume: 13 start-page: 35 year: 2006 ident: b32 article-title: A frictionless contact algorithm for meshless methods publication-title: Comput. Model. Eng. Sci. – volume: 57 start-page: 229 year: 2015 end-page: 246 ident: b64 article-title: Treatment of hydroelastic impact of flexible wedges publication-title: J. Fluids Struct. – volume: 150 start-page: 265 year: 1994 end-page: 274 ident: b29 article-title: Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations publication-title: Nucl. Eng. Des. – year: 2003 ident: b42 article-title: Smoothed Particle Hydrodynamics: A Meshfree Particle Method – volume: 85 start-page: 879 year: 2007 end-page: 890 ident: b56 article-title: Numerical simulation of fluid–structure interaction by SPH publication-title: Comput. Struct. – volume: 236 year: 2021 ident: b5 article-title: Transient fluid–solid interaction with the improved penalty immersed boundary method publication-title: Ocean Eng. – volume: 39 start-page: 201 year: 1981 end-page: 225 ident: b7 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. – year: 2014 ident: b60 article-title: Numerical simulation of free surface flow impacting on an elastic plate publication-title: Proceedings of 29th Intl Workshop on Water Wave and Floating Bodies – volume: 27 start-page: 882 year: 2011 end-page: 898 ident: b28 article-title: Modeling of reinforced concrete through SPH-FE coupling and its application to the simulation of a projectile’s impact onto a slab publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 117 year: 2021 ident: b1 article-title: On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering publication-title: Appl. Ocean Res. – volume: 150 start-page: 199 year: 1994 end-page: 205 ident: b27 article-title: Coupling of smooth particle hydrodynamics with the finite element method publication-title: Nucl. Eng. Des. – volume: 228 start-page: 8380 year: 2009 end-page: 8393 ident: b43 article-title: An Hamiltonian interface SPH formulation for multi-fluid and free surface flows publication-title: J. Comput. Phys. – volume: 10 start-page: 252 year: 1972 end-page: 271 ident: b4 article-title: Flow patterns around heart valves: A numerical method publication-title: J. Comput. Phys. – volume: 33 year: 2019 ident: b24 article-title: Numerical investigation of the skip characteristics of a disk based on the coupled FEM-SPH method publication-title: Modern Phys. Lett. B – volume: 17 start-page: 25 year: 2010 end-page: 76 ident: b41 article-title: Smoothed particle hydrodynamics (SPH): An overview and recent developments publication-title: Arch. Comput. Methods Eng. – volume: 31 start-page: 1054 year: 2005 end-page: 1064 ident: b30 article-title: Coupling between meshless and finite element methods publication-title: Int. J. Impact Eng. – volume: 122 start-page: 47 year: 2015 end-page: 65 ident: b9 article-title: Modified MPS method for the 2D fluid structure interaction problem with free surface publication-title: Comput. & Fluids – volume: 49 start-page: 55 year: 1985 end-page: 70 ident: b50 article-title: A finite strain beam formulation. The three-dimensional dynamic problem. Part I publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 16 year: 2019 ident: b38 article-title: MPS-FEM coupled method for fluid–structure interaction in 3d dam-break flows publication-title: Int. J. Comput. Methods – volume: 248 year: 2022 ident: b13 article-title: Numerical investigation on the hydrodynamic behavior of a floating breakwater with moon pool through a coupling SPH model publication-title: Ocean Eng. – volume: 180 start-page: 97 year: 1999 end-page: 115 ident: b44 article-title: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations publication-title: Comput. Methods Appl. Mech. Engrg. – year: 2020 ident: b25 article-title: An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows. Part 1: Numerical scheme and validations with basic 1D and 2D benchmarks publication-title: J. Comput. Phys. – volume: 198 start-page: 2785 year: 2009 end-page: 2795 ident: b58 article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 221 year: 2021 ident: b11 article-title: An accurate FSI-sph modeling of challenging fluid-structure interaction problems in two and three dimensions publication-title: Ocean Eng. – volume: 101 start-page: 214 year: 2022 end-page: 238 ident: b12 article-title: Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows publication-title: Appl. Math. Model. – volume: 146 start-page: 190 year: 2017 end-page: 212 ident: b16 article-title: SPH modelling of viscous flow past a circular cylinder interacting with a free surface publication-title: Comput. & Fluids – year: 2014 ident: b20 article-title: Coupled MPS-FEM model for violent flows-structures interaction – volume: 104 start-page: 240 year: 2019 end-page: 258 ident: b35 article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR publication-title: Eng. Anal. Bound. Elem. – volume: 3 start-page: 1 year: 2021 end-page: 16 ident: b17 article-title: Numerical simulation of water entry problems considering air effect using a multiphase Riemann-SPH model publication-title: Adv. Aerodyn. – volume: 222 year: 2021 ident: b52 article-title: Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM publication-title: Ocean Eng. – volume: 62 start-page: 309 year: 2018 end-page: 321 ident: b53 article-title: A thick shell model based on reproducing kernel particle method and its application in geometrically nonlinear analysis publication-title: Comput. Mech. – year: 2014 ident: 10.1016/j.cma.2022.115659_b60 article-title: Numerical simulation of free surface flow impacting on an elastic plate – volume: 102 year: 2021 ident: 10.1016/j.cma.2022.115659_b48 article-title: Coupling of WCSPH and RKPM for the simulation of incompressible fluid–structure interactions publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2021.103254 – volume: 16 issue: 02 year: 2019 ident: 10.1016/j.cma.2022.115659_b38 article-title: MPS-FEM coupled method for fluid–structure interaction in 3d dam-break flows publication-title: Int. J. Comput. Methods doi: 10.1142/S021987621846009X – volume: 57 start-page: 229 year: 2015 ident: 10.1016/j.cma.2022.115659_b64 article-title: Treatment of hydroelastic impact of flexible wedges publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2015.06.017 – volume: 101 start-page: 214 year: 2022 ident: 10.1016/j.cma.2022.115659_b12 article-title: Further enhancement of the particle shifting technique: Towards better volume conservation and particle distribution in SPH simulations of violent free-surface flows publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2021.08.014 – volume: 238 year: 2021 ident: 10.1016/j.cma.2022.115659_b47 article-title: SPH simulations of water entry problems using an improved boundary treatment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109679 – volume: 37 start-page: 134 year: 2013 ident: 10.1016/j.cma.2022.115659_b63 article-title: Hydroelastic analysis of bodies that enter and exit water publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2012.09.006 – year: 2020 ident: 10.1016/j.cma.2022.115659_b25 article-title: An accurate SPH volume adaptive scheme for modeling strongly-compressible multiphase flows. Part 1: Numerical scheme and validations with basic 1D and 2D benchmarks publication-title: J. Comput. Phys. – volume: 13 start-page: 35 issue: 1 year: 2006 ident: 10.1016/j.cma.2022.115659_b32 article-title: A frictionless contact algorithm for meshless methods publication-title: Comput. Model. Eng. Sci. – volume: 347 start-page: 63 year: 2015 ident: 10.1016/j.cma.2022.115659_b62 article-title: Analysis of hydroelastic slamming through particle image velocimetry publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.02.007 – year: 2014 ident: 10.1016/j.cma.2022.115659_b20 – volume: 236 year: 2021 ident: 10.1016/j.cma.2022.115659_b5 article-title: Transient fluid–solid interaction with the improved penalty immersed boundary method publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.109537 – volume: 39 start-page: 201 issue: 1 year: 1981 ident: 10.1016/j.cma.2022.115659_b7 article-title: Volume of fluid (VOF) method for the dynamics of free boundaries publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(81)90145-5 – volume: 181 start-page: 375 issue: 3 year: 1977 ident: 10.1016/j.cma.2022.115659_b14 article-title: Smoothed particle hydrodynamics: Theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/181.3.375 – volume: 55 start-page: 136 year: 2012 ident: 10.1016/j.cma.2022.115659_b59 article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.06.031 – volume: 221 year: 2021 ident: 10.1016/j.cma.2022.115659_b11 article-title: An accurate FSI-sph modeling of challenging fluid-structure interaction problems in two and three dimensions publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2020.108552 – year: 1993 ident: 10.1016/j.cma.2022.115659_b26 – volume: 33 start-page: 255 issue: 1 year: 2011 ident: 10.1016/j.cma.2022.115659_b22 article-title: Coupling of smoothed particle hydrodynamics and finite element method for impact dynamics simulation publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2010.10.020 – volume: 180 start-page: 97 issue: 1–2 year: 1999 ident: 10.1016/j.cma.2022.115659_b44 article-title: Variational and momentum preservation aspects of smooth particle hydrodynamic formulations publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/S0045-7825(99)00051-1 – volume: 226 year: 2021 ident: 10.1016/j.cma.2022.115659_b36 article-title: Multi-resolution ISPH-SPH for accurate and efficient simulation of hydroelastic fluid-structure interactions in ocean engineering publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108652 – volume: 429 year: 2021 ident: 10.1016/j.cma.2022.115659_b23 article-title: A multi-resolution SPH method for fluid-structure interactions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.110028 – volume: 232 start-page: 139 year: 2018 ident: 10.1016/j.cma.2022.115659_b55 article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2018.05.012 – volume: 85 start-page: 879 issue: 11–14 year: 2007 ident: 10.1016/j.cma.2022.115659_b56 article-title: Numerical simulation of fluid–structure interaction by SPH publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.01.002 – volume: 10 start-page: 252 issue: 2 year: 1972 ident: 10.1016/j.cma.2022.115659_b4 article-title: Flow patterns around heart valves: A numerical method publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(72)90065-4 – volume: 146 start-page: 190 year: 2017 ident: 10.1016/j.cma.2022.115659_b16 article-title: SPH modelling of viscous flow past a circular cylinder interacting with a free surface publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2017.01.011 – volume: 222 year: 2021 ident: 10.1016/j.cma.2022.115659_b2 article-title: Investigation of hydroelasticity in water entry of flexible wedges with flow detachment publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108580 – volume: 3 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.cma.2022.115659_b17 article-title: Numerical simulation of water entry problems considering air effect using a multiphase Riemann-SPH model publication-title: Adv. Aerodyn. – volume: 25 start-page: 673 issue: 5 year: 2013 ident: 10.1016/j.cma.2022.115659_b18 article-title: Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method publication-title: J. Hydrodyn. doi: 10.1016/S1001-6058(13)60412-6 – volume: 228 start-page: 8380 issue: 22 year: 2009 ident: 10.1016/j.cma.2022.115659_b43 article-title: An Hamiltonian interface SPH formulation for multi-fluid and free surface flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.08.009 – volume: 267 year: 2021 ident: 10.1016/j.cma.2022.115659_b37 article-title: SPHinXsys: An open-source multi-physics and multi-resolution library based on smoothed particle hydrodynamics publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2021.108066 – year: 2002 ident: 10.1016/j.cma.2022.115659_b31 – volume: 404 year: 2020 ident: 10.1016/j.cma.2022.115659_b3 article-title: Investigation of underwater explosion near composite structures using a combined RKDG-FEM approach publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109113 – volume: 150 start-page: 265 issue: 2–3 year: 1994 ident: 10.1016/j.cma.2022.115659_b29 article-title: Linking of Lagrangian particle methods to standard finite element methods for high velocity impact computations publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(94)90143-0 – volume: 105 year: 2021 ident: 10.1016/j.cma.2022.115659_b34 article-title: A 3D Lagrangian meshfree projection-based solver for hydroelastic fluid-structure interactions publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2021.103342 – year: 2001 ident: 10.1016/j.cma.2022.115659_b57 – volume: 27 start-page: 882 issue: 6 year: 2011 ident: 10.1016/j.cma.2022.115659_b28 article-title: Modeling of reinforced concrete through SPH-FE coupling and its application to the simulation of a projectile’s impact onto a slab publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/cnm.1341 – volume: 200 start-page: 1526 issue: 13–16 year: 2011 ident: 10.1016/j.cma.2022.115659_b51 article-title: δ-SPH model for simulating violent impact flows publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2010.12.016 – volume: 92 start-page: 117 year: 2022 ident: 10.1016/j.cma.2022.115659_b39 article-title: Coupling of the meshless finite volume particle method and the finite element method for fluid–structure interaction with thin elastic structures publication-title: Eur. J. Mech. B Fluids doi: 10.1016/j.euromechflu.2021.12.001 – volume: 62 start-page: 309 issue: 3 year: 2018 ident: 10.1016/j.cma.2022.115659_b53 article-title: A thick shell model based on reproducing kernel particle method and its application in geometrically nonlinear analysis publication-title: Comput. Mech. doi: 10.1007/s00466-017-1498-9 – volume: 21 start-page: 81 issue: 1 year: 1998 ident: 10.1016/j.cma.2022.115659_b8 article-title: An arbitrary Lagrangian-Eulerian finite element method publication-title: Comput. Mech. doi: 10.1007/s004660050285 – volume: 217 start-page: 66 year: 2017 ident: 10.1016/j.cma.2022.115659_b54 article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2017.04.005 – volume: 117 year: 2021 ident: 10.1016/j.cma.2022.115659_b1 article-title: On removing the numerical instability induced by negative pressures in SPH simulations of typical fluid–structure interaction problems in ocean engineering publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2021.102938 – volume: 128 start-page: 227 year: 2021 ident: 10.1016/j.cma.2022.115659_b21 article-title: A coupled SPH–FVM method for simulating incompressible interfacial flows with large density difference publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2021.04.005 – year: 2003 ident: 10.1016/j.cma.2022.115659_b42 – year: 2012 ident: 10.1016/j.cma.2022.115659_b49 – volume: 50 start-page: 192 year: 2015 ident: 10.1016/j.cma.2022.115659_b61 article-title: Free surface flow impacting on an elastic structure: Experiment versus numerical simulation publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2015.02.002 – ident: 10.1016/j.cma.2022.115659_b40 – volume: 82 start-page: 397 year: 2019 ident: 10.1016/j.cma.2022.115659_b10 article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.10.020 – volume: 33 issue: 20 year: 2019 ident: 10.1016/j.cma.2022.115659_b24 article-title: Numerical investigation of the skip characteristics of a disk based on the coupled FEM-SPH method publication-title: Modern Phys. Lett. B doi: 10.1142/S0217984919502385 – volume: 180 start-page: 861 issue: 6 year: 2009 ident: 10.1016/j.cma.2022.115659_b45 article-title: A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH publication-title: Comput. Phys. Comm. doi: 10.1016/j.cpc.2008.12.004 – volume: 31 start-page: 1054 issue: 8 year: 2005 ident: 10.1016/j.cma.2022.115659_b30 article-title: Coupling between meshless and finite element methods publication-title: Int. J. Impact Eng. doi: 10.1016/j.ijimpeng.2004.04.017 – volume: 52 start-page: 374 issue: 2 year: 1983 ident: 10.1016/j.cma.2022.115659_b46 article-title: Shock simulation by the particle method SPH publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(83)90036-0 – volume: 198 start-page: 2785 issue: 33–36 year: 2009 ident: 10.1016/j.cma.2022.115659_b58 article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2009.04.001 – volume: 82 start-page: 1013 year: 1977 ident: 10.1016/j.cma.2022.115659_b15 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron. J. doi: 10.1086/112164 – year: 2014 ident: 10.1016/j.cma.2022.115659_b33 – volume: 222 year: 2021 ident: 10.1016/j.cma.2022.115659_b52 article-title: Numerical simulation of structural damage subjected to the near-field underwater explosion based on SPH and RKPM publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2021.108576 – volume: 248 year: 2022 ident: 10.1016/j.cma.2022.115659_b13 article-title: Numerical investigation on the hydrodynamic behavior of a floating breakwater with moon pool through a coupling SPH model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2022.110849 – volume: 150 start-page: 199 issue: 2–3 year: 1994 ident: 10.1016/j.cma.2022.115659_b27 article-title: Coupling of smooth particle hydrodynamics with the finite element method publication-title: Nucl. Eng. Des. doi: 10.1016/0029-5493(94)90136-8 – volume: 17 start-page: 25 issue: 1 year: 2010 ident: 10.1016/j.cma.2022.115659_b41 article-title: Smoothed particle hydrodynamics (SPH): An overview and recent developments publication-title: Arch. Comput. Methods Eng. doi: 10.1007/s11831-010-9040-7 – volume: 108 start-page: 472 year: 2019 ident: 10.1016/j.cma.2022.115659_b19 article-title: Micro-mechanism study on rock breaking behavior under water jet impact using coupled SPH-FEM/DEM method with voronoi grains publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2019.08.026 – volume: 104 start-page: 240 year: 2019 ident: 10.1016/j.cma.2022.115659_b35 article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2019.03.033 – volume: 49 start-page: 55 issue: 1 year: 1985 ident: 10.1016/j.cma.2022.115659_b50 article-title: A finite strain beam formulation. The three-dimensional dynamic problem. Part I publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/0045-7825(85)90050-7 – volume: 79 start-page: 12 issue: 1 year: 1988 ident: 10.1016/j.cma.2022.115659_b6 article-title: Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations publication-title: J. Comput. Phys. doi: 10.1016/0021-9991(88)90002-2 – volume: 122 start-page: 47 year: 2015 ident: 10.1016/j.cma.2022.115659_b9 article-title: Modified MPS method for the 2D fluid structure interaction problem with free surface publication-title: Comput. & Fluids doi: 10.1016/j.compfluid.2015.08.017 |
| SSID | ssj0000812 |
| Score | 2.5451515 |
| Snippet | This work presents a multi-resolution fluid–structure interaction (FSI) solver for hydroelastic issues by coupling the Weakly Compressive Smoothed Particle... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115659 |
| SubjectTerms | Coupled SPH-FEM algorithm Finite element method Fluid-structure interaction Free surfaces Mathematical analysis Multi-resolution technology Smooth particle hydrodynamics Solvers Weakly compressive SPH |
| Title | A multi-resolution SPH-FEM method for fluid–structure interactions |
| URI | https://dx.doi.org/10.1016/j.cma.2022.115659 https://www.proquest.com/docview/2755905210 |
| Volume | 401 |
| WOSCitedRecordID | wos000872540500007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELaWlgMc-CkgCgX5wInK1dpx1s5xBVuVolZFLWI5WY7jVK2WUHXbqkfEK_CGPAnjePLDQit64BJFljNr7Xwez9jjbwh5xYelhqhBMlgKLJM2HcFbAdN9lHmnZaC403WxCbW7q6fTbG8w-N7chbmYqarSl5fZyX9VNbSBssPV2RuouxUKDfAOSocnqB2e_6T4cUwSZBBH4--s7-9tsc3JDpaLrjMLy9k5jAwzHZLIIhvOEgJ9xGm87DDvO65N9QeUUWfRWvRgv_hwfbihe_Ydw2GXO-DxbN93jft1OeH1T75i78-PutbY9bOt2M5fRGwDnNkHeBz29ysg1OXtfgXaYJky8EvSvg2W2CNaUfBSR5En_A8DH_cajjdcTRolxEbX93cy7YVFrk09bLLajg2IMEGEiSJukWWh0gws4_L43WS63a3nmkfOeRx3czZeZwkujOMq72Zhna-dl4MH5B5GHXQc0fKQDHy1Qu5jBELRvs9XyN0ePeUj8nZMF6FEEUo0woAClGgNpZ_ffrQgon0QPSYfNycHb7YYVt1gLhHpGfPc5llacF_ocITOrUq0k6UWqkh47nJuy1yVmchzL7kr0sImXqS21CpzqtCj5AlZqr5W_imhw1w7Jzn3AqJW7b32JcSzVhdWaZ6UYpUMm3_LOKSkD5VRZuZKLa2S1-0nJ5GP5brOslGBQYcyOooG4HTdZ2uNugxO7LkBbKRZuOk-fHaTITwnd7pJsEaWQBP-BbntLs6O5qcvEWq_AHszngY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-resolution+SPH-FEM+method+for+fluid%E2%80%93structure+interactions&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Chen%2C+Cheng&rft.au=Shi%2C+Wen-Kui&rft.au=Shen%2C+Yan-Ming&rft.au=Chen%2C+Jian-Qiang&rft.date=2022-11-01&rft.issn=0045-7825&rft.volume=401&rft.spage=115659&rft_id=info:doi/10.1016%2Fj.cma.2022.115659&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2022_115659 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |