Matrix semigroups with constant spectral radius

Multiplicative matrix semigroups with constant spectral radius (c.s.r.) are studied and applied to several problems of algebra, combinatorics, functional equations, and dynamical systems. We show that all such semigroups are characterized by means of irreducible ones. Each irreducible c.s.r. semigro...

Full description

Saved in:
Bibliographic Details
Published in:Linear algebra and its applications Vol. 513; pp. 376 - 408
Main Authors: Protasov, V.Yu, Voynov, A.S.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Inc 15.01.2017
American Elsevier Company, Inc
Subjects:
ISSN:0024-3795, 1873-1856
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Multiplicative matrix semigroups with constant spectral radius (c.s.r.) are studied and applied to several problems of algebra, combinatorics, functional equations, and dynamical systems. We show that all such semigroups are characterized by means of irreducible ones. Each irreducible c.s.r. semigroup defines walks on Euclidean sphere, all its nonsingular elements are similar (in the same basis) to orthogonal. We classify all nonnegative c.s.r. semigroups and arbitrary low-dimensional semigroups. For higher dimensions, we describe five classes and leave an open problem on completeness of that list. The problem of algorithmic recognition of c.s.r. property is proved to be polynomially solvable for irreducible semigroups and undecidable for reducible ones.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2016.10.013