On the ultimate complexity of factorials

It has long been observed that certain factorization algorithms provide a way to write the product of many different integers succinctly. In this paper, we study the problem of representing the product of all integers from 1 to n (i.e. n ! ) by straight-line programs. Formally, we say that a sequenc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Theoretical computer science Ročník 326; číslo 1; s. 419 - 429
Hlavní autor: Cheng, Qi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Amsterdam Elsevier B.V 20.10.2004
Elsevier
Témata:
ISSN:0304-3975, 1879-2294
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract It has long been observed that certain factorization algorithms provide a way to write the product of many different integers succinctly. In this paper, we study the problem of representing the product of all integers from 1 to n (i.e. n ! ) by straight-line programs. Formally, we say that a sequence of integers a n is ultimately f ( n ) -computable, if there exists a nonzero integer sequence m n such that for any n , a n m n can be computed by a straight-line program (using only additions, subtractions and multiplications) of length at most f ( n ) . Shub and Smale [12] showed that if n ! is ultimately hard to compute, then the algebraic version of NP ≠ P is true. Assuming a widely believed number theory conjecture concerning smooth numbers in a short interval, a subexponential upper bound ( exp ( c log n log log n ) ) for the ultimate complexity of n ! is proved in this paper, and a randomized subexponential algorithm constructing such a short straight-line program is presented as well.
AbstractList It has long been observed that certain factorization algorithms provide a way to write the product of many different integers succinctly. In this paper, we study the problem of representing the product of all integers from 1 to n (i.e. n ! ) by straight-line programs. Formally, we say that a sequence of integers a n is ultimately f ( n ) -computable, if there exists a nonzero integer sequence m n such that for any n , a n m n can be computed by a straight-line program (using only additions, subtractions and multiplications) of length at most f ( n ) . Shub and Smale [12] showed that if n ! is ultimately hard to compute, then the algebraic version of NP ≠ P is true. Assuming a widely believed number theory conjecture concerning smooth numbers in a short interval, a subexponential upper bound ( exp ( c log n log log n ) ) for the ultimate complexity of n ! is proved in this paper, and a randomized subexponential algorithm constructing such a short straight-line program is presented as well.
Author Cheng, Qi
Author_xml – sequence: 1
  givenname: Qi
  surname: Cheng
  fullname: Cheng, Qi
  email: qcheng@bachman.cs.ou.edu
  organization: School of Computer Science, University of Oklahoma, 200 Felgar Street, Norman, OK 73019, USA
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16172222$$DView record in Pascal Francis
BookMark eNp9kMtKAzEUhoNUsK0-gLvZCG5mzG2SDK6keINCN7oOmVwww3RSkij27U2pILjo2fyb_zuc8y3AbAqTBeAawQZBxO6GJuvUYAhpA1kDMTwDcyR4V2Pc0RmYQwJpTTreXoBFSgMs03I2B7ebqcoftvocs9-qbCsdtrvRfvu8r4KrnNI5RK_GdAnOXQl79ZtL8P70-LZ6qdeb59fVw7rWBLe5Nsx1pu-ZU1xw1nc9txgrTHtFEBLYCeoItcowZHAPYU862lIluCGGCSEYWYKb496dSlqNLqpJ-yR3sZwX9xIxxHGZ0kPHno4hpWjdXwXKgxI5yKJEHpRIyGRRUhj-j9E-q-zDlKPy40ny_kja8vqXt1Em7e2krfHR6ixN8CfoH6NHfGE
CODEN TCSCDI
CitedBy_id crossref_primary_10_1137_20M1374523
crossref_primary_10_1016_j_ejc_2015_01_007
crossref_primary_10_1016_j_tcs_2020_03_009
crossref_primary_10_1137_070697926
Cites_doi 10.2307/1971363
10.1016/0020-0190(79)90087-5
10.1109/SFCS.2001.959912
10.1090/S0273-0979-1989-15750-9
10.1016/0022-314X(83)90002-1
10.1016/B978-0-444-88071-0.50017-5
10.1017/S0027763000002816
10.1215/S0012-7094-95-08105-8
10.1007/BF01232025
ContentType Journal Article
Copyright 2004 Elsevier B.V.
2004 INIST-CNRS
Copyright_xml – notice: 2004 Elsevier B.V.
– notice: 2004 INIST-CNRS
DBID 6I.
AAFTH
AAYXX
CITATION
IQODW
DOI 10.1016/j.tcs.2004.06.020
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Computer Science
Applied Sciences
EISSN 1879-2294
EndPage 429
ExternalDocumentID 16172222
10_1016_j_tcs_2004_06_020
S0304397504004062
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
6I.
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
TAE
TN5
WH7
WUQ
XJT
YNT
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
ID FETCH-LOGICAL-c325t-d6f9dbb6fa7876b9b7e22a24ba31182f84f34ead61d2b00b39454a87d3d688863
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000224601400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0304-3975
IngestDate Mon Jul 21 09:14:41 EDT 2025
Sat Nov 29 05:14:43 EST 2025
Tue Nov 18 20:54:39 EST 2025
Fri Feb 23 02:33:40 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Computational and structural complexity
Integer
Upper bound
Computer theory
Structural complexity
Computational complexity
Factorization
Number theory
Language English
License http://www.elsevier.com/open-access/userlicense/1.0
https://www.elsevier.com/tdm/userlicense/1.0
https://www.elsevier.com/open-access/userlicense/1.0
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-d6f9dbb6fa7876b9b7e22a24ba31182f84f34ead61d2b00b39454a87d3d688863
OpenAccessLink https://dx.doi.org/10.1016/j.tcs.2004.06.020
PageCount 11
ParticipantIDs pascalfrancis_primary_16172222
crossref_primary_10_1016_j_tcs_2004_06_020
crossref_citationtrail_10_1016_j_tcs_2004_06_020
elsevier_sciencedirect_doi_10_1016_j_tcs_2004_06_020
PublicationCentury 2000
PublicationDate 2004-10-20
PublicationDateYYYYMMDD 2004-10-20
PublicationDate_xml – month: 10
  year: 2004
  text: 2004-10-20
  day: 20
PublicationDecade 2000
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Theoretical computer science
PublicationYear 2004
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Shub, Smale (bib12) 1995; 81
Canfield, Erdos, Pomerance (bib5) 1983
Blum, Cucker, Shub, Smale (bib1) 1997
Burgisser, Clausen, Shokrollahi (bib4) 1997
Silverman (bib13) 1986
Shamir (bib11) 1979; 1
Strassen (bib14) 1976/77; 78
Kamienny (bib7) 1992; 109
Cheng (bib6) 2002
P. Burgisser, The complexity of factors of multivariate polynomials, in: Proc. 42th IEEE Symp. on Foundations of Computer Science, 2001, pp. 1–46.
Kenku, Momose (bib8) 1988; 109
A. Lenstra, H.W. Lenstra Jr., Handbook of Theoretical Computer Science A, Algorithms in Number Theory, Elsevier and MIT Press, Amsterdam, 1990, pp. 673–715.
Lenstra (bib10) 1987; 126
Blum, Shub, Smale (bib2) 1989; 21
Kamienny (10.1016/j.tcs.2004.06.020_bib7) 1992; 109
Shamir (10.1016/j.tcs.2004.06.020_bib11) 1979; 1
Burgisser (10.1016/j.tcs.2004.06.020_bib4) 1997
Cheng (10.1016/j.tcs.2004.06.020_bib6) 2002
Blum (10.1016/j.tcs.2004.06.020_bib2) 1989; 21
10.1016/j.tcs.2004.06.020_bib9
Kenku (10.1016/j.tcs.2004.06.020_bib8) 1988; 109
Canfield (10.1016/j.tcs.2004.06.020_bib5) 1983
Lenstra (10.1016/j.tcs.2004.06.020_bib10) 1987; 126
Silverman (10.1016/j.tcs.2004.06.020_bib13) 1986
Blum (10.1016/j.tcs.2004.06.020_bib1) 1997
10.1016/j.tcs.2004.06.020_bib3
Shub (10.1016/j.tcs.2004.06.020_bib12) 1995; 81
Strassen (10.1016/j.tcs.2004.06.020_bib14) 1976; 78
References_xml – year: 1986
  ident: bib13
  article-title: The Arithmetic of Elliptic Curves
– year: 1997
  ident: bib4
  article-title: Algebraic Complexity Theory, Grundlehren der Mathematischen, Vol. 315
– start-page: 1
  year: 1983
  end-page: 28
  ident: bib5
  article-title: On a problem of Oppenheim concerning “Factorisatio Numerorum”
  publication-title: J. Number Theory
– volume: 109
  start-page: 125
  year: 1988
  end-page: 149
  ident: bib8
  article-title: Torsion points on elliptic curves defined over quadratic fields
  publication-title: Nagoya Math. J.
– volume: 126
  start-page: 649
  year: 1987
  end-page: 673
  ident: bib10
  article-title: Factoring integers with elliptic curves
  publication-title: Ann. Math.
– volume: 78
  start-page: 1
  year: 1976/77
  end-page: 8
  ident: bib14
  article-title: Einige resultate uber berechnungskomplexitat
  publication-title: Jber. Deutsch. Math.-Verein
– volume: 109
  start-page: 221
  year: 1992
  end-page: 229
  ident: bib7
  article-title: Torsion points on elliptic curves and
  publication-title: Invent. Math.
– reference: A. Lenstra, H.W. Lenstra Jr., Handbook of Theoretical Computer Science A, Algorithms in Number Theory, Elsevier and MIT Press, Amsterdam, 1990, pp. 673–715.
– year: 2002
  ident: bib6
  article-title: Some remarks on the
  publication-title: Proc. 13th Annu. Internat. Symp. on Algorithms and Computation (ISAAC), Lecture Notes in Computer Science, Vol. 2518
– volume: 21
  year: 1989
  ident: bib2
  article-title: On a theory of computation and complexity over the real numbers
  publication-title: Bull. Amer. Math. Soc.
– volume: 1
  start-page: 28
  year: 1979
  end-page: 31
  ident: bib11
  article-title: Factoring numbers in
  publication-title: Inform. Process. Lett.
– reference: P. Burgisser, The complexity of factors of multivariate polynomials, in: Proc. 42th IEEE Symp. on Foundations of Computer Science, 2001, pp. 1–46.
– year: 1997
  ident: bib1
  article-title: Complexity and Real Computation
– volume: 81
  start-page: 47
  year: 1995
  end-page: 54
  ident: bib12
  article-title: On the intractability of Hilbert's nullstellensatz and an algebraic version of “P=NP?”
  publication-title: Duke Math. J.
– year: 1997
  ident: 10.1016/j.tcs.2004.06.020_bib1
– volume: 126
  start-page: 649
  year: 1987
  ident: 10.1016/j.tcs.2004.06.020_bib10
  article-title: Factoring integers with elliptic curves
  publication-title: Ann. Math.
  doi: 10.2307/1971363
– volume: 78
  start-page: 1
  issue: 1
  year: 1976
  ident: 10.1016/j.tcs.2004.06.020_bib14
  article-title: Einige resultate uber berechnungskomplexitat
  publication-title: Jber. Deutsch. Math.-Verein
– volume: 1
  start-page: 28
  year: 1979
  ident: 10.1016/j.tcs.2004.06.020_bib11
  article-title: Factoring numbers in O(logn) arithmetic steps
  publication-title: Inform. Process. Lett.
  doi: 10.1016/0020-0190(79)90087-5
– ident: 10.1016/j.tcs.2004.06.020_bib3
  doi: 10.1109/SFCS.2001.959912
– year: 1986
  ident: 10.1016/j.tcs.2004.06.020_bib13
– year: 2002
  ident: 10.1016/j.tcs.2004.06.020_bib6
  article-title: Some remarks on the L-conjecture
– volume: 21
  issue: 1
  year: 1989
  ident: 10.1016/j.tcs.2004.06.020_bib2
  article-title: On a theory of computation and complexity over the real numbers
  publication-title: Bull. Amer. Math. Soc.
  doi: 10.1090/S0273-0979-1989-15750-9
– start-page: 1
  year: 1983
  ident: 10.1016/j.tcs.2004.06.020_bib5
  article-title: On a problem of Oppenheim concerning “Factorisatio Numerorum”
  publication-title: J. Number Theory
  doi: 10.1016/0022-314X(83)90002-1
– ident: 10.1016/j.tcs.2004.06.020_bib9
  doi: 10.1016/B978-0-444-88071-0.50017-5
– year: 1997
  ident: 10.1016/j.tcs.2004.06.020_bib4
– volume: 109
  start-page: 125
  year: 1988
  ident: 10.1016/j.tcs.2004.06.020_bib8
  article-title: Torsion points on elliptic curves defined over quadratic fields
  publication-title: Nagoya Math. J.
  doi: 10.1017/S0027763000002816
– volume: 81
  start-page: 47
  year: 1995
  ident: 10.1016/j.tcs.2004.06.020_bib12
  article-title: On the intractability of Hilbert's nullstellensatz and an algebraic version of “P=NP?”
  publication-title: Duke Math. J.
  doi: 10.1215/S0012-7094-95-08105-8
– volume: 109
  start-page: 221
  year: 1992
  ident: 10.1016/j.tcs.2004.06.020_bib7
  article-title: Torsion points on elliptic curves and q-coefficients of modular forms
  publication-title: Invent. Math.
  doi: 10.1007/BF01232025
SSID ssj0000576
Score 1.7656535
Snippet It has long been observed that certain factorization algorithms provide a way to write the product of many different integers succinctly. In this paper, we...
SourceID pascalfrancis
crossref
elsevier
SourceType Index Database
Enrichment Source
Publisher
StartPage 419
SubjectTerms Algebra
Algorithmics. Computability. Computer arithmetics
Applied sciences
Computational and structural complexity
Computer science; control theory; systems
Exact sciences and technology
Mathematics
Number theory
Sciences and techniques of general use
Theoretical computing
Title On the ultimate complexity of factorials
URI https://dx.doi.org/10.1016/j.tcs.2004.06.020
Volume 326
WOSCitedRecordID wos000224601400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2294
  dateEnd: 20180131
  omitProxy: false
  ssIdentifier: ssj0000576
  issn: 0304-3975
  databaseCode: AIEXJ
  dateStart: 19950109
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqtgcQaksBUVqqHDggUFBiO7F9rFARrdSPw1baW2THsUSF0lWzoP35jONxkraiwIFLtGslG8vP-2bGHs8j5J3Ja8O50KkGgFMOFiXVJWNpbpSVsq5Lk5lebEKcn8v5XF2inmPXywmItpWrlVr8V6ihDcD2R2f_Ae7hR6EBPgPocAXY4fpXwF-ExEWfKAjeaBOSxpsVpl4EfR3fi6lbOpscZ6xR5-EjGsdhafTE10_A-lNxnYB7gqXZuHiFlnbCL8xviqggXBLJkIXz6xH1lE3IjSO5BTvJw0rFAwoOqwHXn5Z1Xw2d9-VRsSN3yl3fM0NDcqCPuMBrAbu6QUWhgKo2jk6O56ejgS1E2ILG_sfN6j5t795rf-duPFvoDsbUBfWSiUsx2yFbGAskRwHD52StaXfJNsYFCbJuB01ReiO27ZKnZ0O53e4FeX_RJvA1iZgnI-bJjUtGzF-Sqy_Hs89fU5TASGtGi2VqS6esMaXTQKylUUY0lGrKjWY-MnSSO8aBDMrcUiBQwxQvuJbCMltKKUv2iqy3N23zmiSuyIWA4FQ7m3GXUSNFo_wmXE5tbqzbI1kcqarG-vBepuR7FRMBrysYXK9byiufDEmzPfJheGQRiqM8djOPw1_hBA5eWwUz57HHDu9ANb4Ip8mbP92wT56M_4cDsr68_dG8JZv1z-W37vYQJ9cvD-l05w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+ultimate+complexity+of+factorials&rft.jtitle=Theoretical+computer+science&rft.au=QI+CHENG&rft.date=2004-10-20&rft.pub=Elsevier&rft.issn=0304-3975&rft.volume=326&rft.issue=1-3&rft.spage=419&rft.epage=429&rft_id=info:doi/10.1016%2Fj.tcs.2004.06.020&rft.externalDBID=n%2Fa&rft.externalDocID=16172222
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon