On the ultimate complexity of factorials
It has long been observed that certain factorization algorithms provide a way to write the product of many different integers succinctly. In this paper, we study the problem of representing the product of all integers from 1 to n (i.e. n ! ) by straight-line programs. Formally, we say that a sequenc...
Uloženo v:
| Vydáno v: | Theoretical computer science Ročník 326; číslo 1; s. 419 - 429 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Amsterdam
Elsevier B.V
20.10.2004
Elsevier |
| Témata: | |
| ISSN: | 0304-3975, 1879-2294 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | It has long been observed that certain factorization algorithms provide a way to write the product of many different integers succinctly. In this paper, we study the problem of representing the product of all integers from
1
to
n
(i.e.
n
!
) by straight-line programs. Formally, we say that a sequence of integers
a
n
is ultimately
f
(
n
)
-computable, if there exists a nonzero integer sequence
m
n
such that for any
n
,
a
n
m
n
can be computed by a straight-line program (using only additions, subtractions and multiplications) of length at most
f
(
n
)
. Shub and Smale [12] showed that if
n
!
is ultimately hard to compute, then the algebraic version of
NP
≠
P
is true. Assuming a widely believed number theory conjecture concerning smooth numbers in a short interval, a subexponential upper bound (
exp
(
c
log
n
log
log
n
)
) for the ultimate complexity of
n
!
is proved in this paper, and a randomized subexponential algorithm constructing such a short straight-line program is presented as well. |
|---|---|
| AbstractList | It has long been observed that certain factorization algorithms provide a way to write the product of many different integers succinctly. In this paper, we study the problem of representing the product of all integers from
1
to
n
(i.e.
n
!
) by straight-line programs. Formally, we say that a sequence of integers
a
n
is ultimately
f
(
n
)
-computable, if there exists a nonzero integer sequence
m
n
such that for any
n
,
a
n
m
n
can be computed by a straight-line program (using only additions, subtractions and multiplications) of length at most
f
(
n
)
. Shub and Smale [12] showed that if
n
!
is ultimately hard to compute, then the algebraic version of
NP
≠
P
is true. Assuming a widely believed number theory conjecture concerning smooth numbers in a short interval, a subexponential upper bound (
exp
(
c
log
n
log
log
n
)
) for the ultimate complexity of
n
!
is proved in this paper, and a randomized subexponential algorithm constructing such a short straight-line program is presented as well. |
| Author | Cheng, Qi |
| Author_xml | – sequence: 1 givenname: Qi surname: Cheng fullname: Cheng, Qi email: qcheng@bachman.cs.ou.edu organization: School of Computer Science, University of Oklahoma, 200 Felgar Street, Norman, OK 73019, USA |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=16172222$$DView record in Pascal Francis |
| BookMark | eNp9kMtKAzEUhoNUsK0-gLvZCG5mzG2SDK6keINCN7oOmVwww3RSkij27U2pILjo2fyb_zuc8y3AbAqTBeAawQZBxO6GJuvUYAhpA1kDMTwDcyR4V2Pc0RmYQwJpTTreXoBFSgMs03I2B7ebqcoftvocs9-qbCsdtrvRfvu8r4KrnNI5RK_GdAnOXQl79ZtL8P70-LZ6qdeb59fVw7rWBLe5Nsx1pu-ZU1xw1nc9txgrTHtFEBLYCeoItcowZHAPYU862lIluCGGCSEYWYKb496dSlqNLqpJ-yR3sZwX9xIxxHGZ0kPHno4hpWjdXwXKgxI5yKJEHpRIyGRRUhj-j9E-q-zDlKPy40ny_kja8vqXt1Em7e2krfHR6ixN8CfoH6NHfGE |
| CODEN | TCSCDI |
| CitedBy_id | crossref_primary_10_1137_20M1374523 crossref_primary_10_1016_j_ejc_2015_01_007 crossref_primary_10_1016_j_tcs_2020_03_009 crossref_primary_10_1137_070697926 |
| Cites_doi | 10.2307/1971363 10.1016/0020-0190(79)90087-5 10.1109/SFCS.2001.959912 10.1090/S0273-0979-1989-15750-9 10.1016/0022-314X(83)90002-1 10.1016/B978-0-444-88071-0.50017-5 10.1017/S0027763000002816 10.1215/S0012-7094-95-08105-8 10.1007/BF01232025 |
| ContentType | Journal Article |
| Copyright | 2004 Elsevier B.V. 2004 INIST-CNRS |
| Copyright_xml | – notice: 2004 Elsevier B.V. – notice: 2004 INIST-CNRS |
| DBID | 6I. AAFTH AAYXX CITATION IQODW |
| DOI | 10.1016/j.tcs.2004.06.020 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Pascal-Francis |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Computer Science Applied Sciences |
| EISSN | 1879-2294 |
| EndPage | 429 |
| ExternalDocumentID | 16172222 10_1016_j_tcs_2004_06_020 S0304397504004062 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29Q 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABAOU ABBOA ABEFU ABFNM ABJNI ABMAC ABTAH ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HVGLF HZ~ IHE IXB J1W KOM LG9 M26 M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SCC SDF SDG SES SEW SPC SPCBC SSV SSW SSZ T5K TAE TN5 WH7 WUQ XJT YNT ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD AFXIZ AGCQF AGRNS BNPGV IQODW SSH |
| ID | FETCH-LOGICAL-c325t-d6f9dbb6fa7876b9b7e22a24ba31182f84f34ead61d2b00b39454a87d3d688863 |
| ISICitedReferencesCount | 5 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000224601400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0304-3975 |
| IngestDate | Mon Jul 21 09:14:41 EDT 2025 Sat Nov 29 05:14:43 EST 2025 Tue Nov 18 20:54:39 EST 2025 Fri Feb 23 02:33:40 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Computational and structural complexity Integer Upper bound Computer theory Structural complexity Computational complexity Factorization Number theory |
| Language | English |
| License | http://www.elsevier.com/open-access/userlicense/1.0 https://www.elsevier.com/tdm/userlicense/1.0 https://www.elsevier.com/open-access/userlicense/1.0 CC BY 4.0 |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-d6f9dbb6fa7876b9b7e22a24ba31182f84f34ead61d2b00b39454a87d3d688863 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.tcs.2004.06.020 |
| PageCount | 11 |
| ParticipantIDs | pascalfrancis_primary_16172222 crossref_primary_10_1016_j_tcs_2004_06_020 crossref_citationtrail_10_1016_j_tcs_2004_06_020 elsevier_sciencedirect_doi_10_1016_j_tcs_2004_06_020 |
| PublicationCentury | 2000 |
| PublicationDate | 2004-10-20 |
| PublicationDateYYYYMMDD | 2004-10-20 |
| PublicationDate_xml | – month: 10 year: 2004 text: 2004-10-20 day: 20 |
| PublicationDecade | 2000 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Theoretical computer science |
| PublicationYear | 2004 |
| Publisher | Elsevier B.V Elsevier |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier |
| References | Shub, Smale (bib12) 1995; 81 Canfield, Erdos, Pomerance (bib5) 1983 Blum, Cucker, Shub, Smale (bib1) 1997 Burgisser, Clausen, Shokrollahi (bib4) 1997 Silverman (bib13) 1986 Shamir (bib11) 1979; 1 Strassen (bib14) 1976/77; 78 Kamienny (bib7) 1992; 109 Cheng (bib6) 2002 P. Burgisser, The complexity of factors of multivariate polynomials, in: Proc. 42th IEEE Symp. on Foundations of Computer Science, 2001, pp. 1–46. Kenku, Momose (bib8) 1988; 109 A. Lenstra, H.W. Lenstra Jr., Handbook of Theoretical Computer Science A, Algorithms in Number Theory, Elsevier and MIT Press, Amsterdam, 1990, pp. 673–715. Lenstra (bib10) 1987; 126 Blum, Shub, Smale (bib2) 1989; 21 Kamienny (10.1016/j.tcs.2004.06.020_bib7) 1992; 109 Shamir (10.1016/j.tcs.2004.06.020_bib11) 1979; 1 Burgisser (10.1016/j.tcs.2004.06.020_bib4) 1997 Cheng (10.1016/j.tcs.2004.06.020_bib6) 2002 Blum (10.1016/j.tcs.2004.06.020_bib2) 1989; 21 10.1016/j.tcs.2004.06.020_bib9 Kenku (10.1016/j.tcs.2004.06.020_bib8) 1988; 109 Canfield (10.1016/j.tcs.2004.06.020_bib5) 1983 Lenstra (10.1016/j.tcs.2004.06.020_bib10) 1987; 126 Silverman (10.1016/j.tcs.2004.06.020_bib13) 1986 Blum (10.1016/j.tcs.2004.06.020_bib1) 1997 10.1016/j.tcs.2004.06.020_bib3 Shub (10.1016/j.tcs.2004.06.020_bib12) 1995; 81 Strassen (10.1016/j.tcs.2004.06.020_bib14) 1976; 78 |
| References_xml | – year: 1986 ident: bib13 article-title: The Arithmetic of Elliptic Curves – year: 1997 ident: bib4 article-title: Algebraic Complexity Theory, Grundlehren der Mathematischen, Vol. 315 – start-page: 1 year: 1983 end-page: 28 ident: bib5 article-title: On a problem of Oppenheim concerning “Factorisatio Numerorum” publication-title: J. Number Theory – volume: 109 start-page: 125 year: 1988 end-page: 149 ident: bib8 article-title: Torsion points on elliptic curves defined over quadratic fields publication-title: Nagoya Math. J. – volume: 126 start-page: 649 year: 1987 end-page: 673 ident: bib10 article-title: Factoring integers with elliptic curves publication-title: Ann. Math. – volume: 78 start-page: 1 year: 1976/77 end-page: 8 ident: bib14 article-title: Einige resultate uber berechnungskomplexitat publication-title: Jber. Deutsch. Math.-Verein – volume: 109 start-page: 221 year: 1992 end-page: 229 ident: bib7 article-title: Torsion points on elliptic curves and publication-title: Invent. Math. – reference: A. Lenstra, H.W. Lenstra Jr., Handbook of Theoretical Computer Science A, Algorithms in Number Theory, Elsevier and MIT Press, Amsterdam, 1990, pp. 673–715. – year: 2002 ident: bib6 article-title: Some remarks on the publication-title: Proc. 13th Annu. Internat. Symp. on Algorithms and Computation (ISAAC), Lecture Notes in Computer Science, Vol. 2518 – volume: 21 year: 1989 ident: bib2 article-title: On a theory of computation and complexity over the real numbers publication-title: Bull. Amer. Math. Soc. – volume: 1 start-page: 28 year: 1979 end-page: 31 ident: bib11 article-title: Factoring numbers in publication-title: Inform. Process. Lett. – reference: P. Burgisser, The complexity of factors of multivariate polynomials, in: Proc. 42th IEEE Symp. on Foundations of Computer Science, 2001, pp. 1–46. – year: 1997 ident: bib1 article-title: Complexity and Real Computation – volume: 81 start-page: 47 year: 1995 end-page: 54 ident: bib12 article-title: On the intractability of Hilbert's nullstellensatz and an algebraic version of “P=NP?” publication-title: Duke Math. J. – year: 1997 ident: 10.1016/j.tcs.2004.06.020_bib1 – volume: 126 start-page: 649 year: 1987 ident: 10.1016/j.tcs.2004.06.020_bib10 article-title: Factoring integers with elliptic curves publication-title: Ann. Math. doi: 10.2307/1971363 – volume: 78 start-page: 1 issue: 1 year: 1976 ident: 10.1016/j.tcs.2004.06.020_bib14 article-title: Einige resultate uber berechnungskomplexitat publication-title: Jber. Deutsch. Math.-Verein – volume: 1 start-page: 28 year: 1979 ident: 10.1016/j.tcs.2004.06.020_bib11 article-title: Factoring numbers in O(logn) arithmetic steps publication-title: Inform. Process. Lett. doi: 10.1016/0020-0190(79)90087-5 – ident: 10.1016/j.tcs.2004.06.020_bib3 doi: 10.1109/SFCS.2001.959912 – year: 1986 ident: 10.1016/j.tcs.2004.06.020_bib13 – year: 2002 ident: 10.1016/j.tcs.2004.06.020_bib6 article-title: Some remarks on the L-conjecture – volume: 21 issue: 1 year: 1989 ident: 10.1016/j.tcs.2004.06.020_bib2 article-title: On a theory of computation and complexity over the real numbers publication-title: Bull. Amer. Math. Soc. doi: 10.1090/S0273-0979-1989-15750-9 – start-page: 1 year: 1983 ident: 10.1016/j.tcs.2004.06.020_bib5 article-title: On a problem of Oppenheim concerning “Factorisatio Numerorum” publication-title: J. Number Theory doi: 10.1016/0022-314X(83)90002-1 – ident: 10.1016/j.tcs.2004.06.020_bib9 doi: 10.1016/B978-0-444-88071-0.50017-5 – year: 1997 ident: 10.1016/j.tcs.2004.06.020_bib4 – volume: 109 start-page: 125 year: 1988 ident: 10.1016/j.tcs.2004.06.020_bib8 article-title: Torsion points on elliptic curves defined over quadratic fields publication-title: Nagoya Math. J. doi: 10.1017/S0027763000002816 – volume: 81 start-page: 47 year: 1995 ident: 10.1016/j.tcs.2004.06.020_bib12 article-title: On the intractability of Hilbert's nullstellensatz and an algebraic version of “P=NP?” publication-title: Duke Math. J. doi: 10.1215/S0012-7094-95-08105-8 – volume: 109 start-page: 221 year: 1992 ident: 10.1016/j.tcs.2004.06.020_bib7 article-title: Torsion points on elliptic curves and q-coefficients of modular forms publication-title: Invent. Math. doi: 10.1007/BF01232025 |
| SSID | ssj0000576 |
| Score | 1.7656535 |
| Snippet | It has long been observed that certain factorization algorithms provide a way to write the product of many different integers succinctly. In this paper, we... |
| SourceID | pascalfrancis crossref elsevier |
| SourceType | Index Database Enrichment Source Publisher |
| StartPage | 419 |
| SubjectTerms | Algebra Algorithmics. Computability. Computer arithmetics Applied sciences Computational and structural complexity Computer science; control theory; systems Exact sciences and technology Mathematics Number theory Sciences and techniques of general use Theoretical computing |
| Title | On the ultimate complexity of factorials |
| URI | https://dx.doi.org/10.1016/j.tcs.2004.06.020 |
| Volume | 326 |
| WOSCitedRecordID | wos000224601400022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2294 dateEnd: 20180131 omitProxy: false ssIdentifier: ssj0000576 issn: 0304-3975 databaseCode: AIEXJ dateStart: 19950109 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWqtgcQaksBUVqqHDggUFBiO7F9rFARrdSPw1baW2THsUSF0lWzoP35jONxkraiwIFLtGslG8vP-2bGHs8j5J3Ja8O50KkGgFMOFiXVJWNpbpSVsq5Lk5lebEKcn8v5XF2inmPXywmItpWrlVr8V6ihDcD2R2f_Ae7hR6EBPgPocAXY4fpXwF-ExEWfKAjeaBOSxpsVpl4EfR3fi6lbOpscZ6xR5-EjGsdhafTE10_A-lNxnYB7gqXZuHiFlnbCL8xviqggXBLJkIXz6xH1lE3IjSO5BTvJw0rFAwoOqwHXn5Z1Xw2d9-VRsSN3yl3fM0NDcqCPuMBrAbu6QUWhgKo2jk6O56ejgS1E2ILG_sfN6j5t795rf-duPFvoDsbUBfWSiUsx2yFbGAskRwHD52StaXfJNsYFCbJuB01ReiO27ZKnZ0O53e4FeX_RJvA1iZgnI-bJjUtGzF-Sqy_Hs89fU5TASGtGi2VqS6esMaXTQKylUUY0lGrKjWY-MnSSO8aBDMrcUiBQwxQvuJbCMltKKUv2iqy3N23zmiSuyIWA4FQ7m3GXUSNFo_wmXE5tbqzbI1kcqarG-vBepuR7FRMBrysYXK9byiufDEmzPfJheGQRiqM8djOPw1_hBA5eWwUz57HHDu9ANb4Ip8mbP92wT56M_4cDsr68_dG8JZv1z-W37vYQJ9cvD-l05w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+ultimate+complexity+of+factorials&rft.jtitle=Theoretical+computer+science&rft.au=QI+CHENG&rft.date=2004-10-20&rft.pub=Elsevier&rft.issn=0304-3975&rft.volume=326&rft.issue=1-3&rft.spage=419&rft.epage=429&rft_id=info:doi/10.1016%2Fj.tcs.2004.06.020&rft.externalDBID=n%2Fa&rft.externalDocID=16172222 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3975&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3975&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3975&client=summon |