How do users interact with algorithm recommender systems? The interaction of users, algorithms, and performance

Although algorithms have been widely used to deliver useful applications and services, it is unclear how users actually experience and interact with algorithm-driven services. This ambiguity is even more troubling in news recommendation algorithms, where thorny issues are complicated. This study inv...

Full description

Saved in:
Bibliographic Details
Published in:Computers in human behavior Vol. 109; p. 106344
Main Author: Shin, Donghee
Format: Journal Article
Language:English
Published: Elmsford Elsevier Ltd 01.08.2020
Elsevier Science Ltd
Subjects:
ISSN:0747-5632, 1873-7692
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Although algorithms have been widely used to deliver useful applications and services, it is unclear how users actually experience and interact with algorithm-driven services. This ambiguity is even more troubling in news recommendation algorithms, where thorny issues are complicated. This study investigates the user experience and usability of algorithms by focusing on users' cognitive process to understand how qualities/features are received and transformed into experiences and interaction. This work examines how users perceive and feel about issues in news recommendations and how they interact and engage with algorithm-recommended news. It proposes an algorithm experience model of news recommendation integrating the heuristic process of cognitive, affective, and behavioral factors. The underlying algorithm can affect in different ways the user's perception and trust of the system. The heuristic affect occurs when users' subjective feelings about transparency and accuracy act as a mental shortcut: users considered transparent and accurate systems convenient and useful. The mediating role of trust suggests that establishing algorithmic trust between users and NRS could enhance algorithm performance. The model illustrates the users' cognitive processes of perceptual judgment as well as the motivation behind user behaviors. The results highlight a link between news recommendation systems and user interaction, providing a clearer conceptualization of user-centered development and the evaluation of algorithm-based services. •The usability of algorithms by focusing on users' cognitive process.•How qualities/features are received and transformed into experiences.•An algorithm experience model of news recommendation.
AbstractList Although algorithms have been widely used to deliver useful applications and services, it is unclear how users actually experience and interact with algorithm-driven services. This ambiguity is even more troubling in news recommendation algorithms, where thorny issues are complicated. This study investigates the user experience and usability of algorithms by focusing on users' cognitive process to understand how qualities/features are received and transformed into experiences and interaction. This work examines how users perceive and feel about issues in news recommendations and how they interact and engage with algorithm-recommended news. It proposes an algorithm experience model of news recommendation integrating the heuristic process of cognitive, affective, and behavioral factors. The underlying algorithm can affect in different ways the user's perception and trust of the system. The heuristic affect occurs when users' subjective feelings about transparency and accuracy act as a mental shortcut: users considered transparent and accurate systems convenient and useful. The mediating role of trust suggests that establishing algorithmic trust between users and NRS could enhance algorithm performance. The model illustrates the users' cognitive processes of perceptual judgment as well as the motivation behind user behaviors. The results highlight a link between news recommendation systems and user interaction, providing a clearer conceptualization of user-centered development and the evaluation of algorithm-based services.
Although algorithms have been widely used to deliver useful applications and services, it is unclear how users actually experience and interact with algorithm-driven services. This ambiguity is even more troubling in news recommendation algorithms, where thorny issues are complicated. This study investigates the user experience and usability of algorithms by focusing on users' cognitive process to understand how qualities/features are received and transformed into experiences and interaction. This work examines how users perceive and feel about issues in news recommendations and how they interact and engage with algorithm-recommended news. It proposes an algorithm experience model of news recommendation integrating the heuristic process of cognitive, affective, and behavioral factors. The underlying algorithm can affect in different ways the user's perception and trust of the system. The heuristic affect occurs when users' subjective feelings about transparency and accuracy act as a mental shortcut: users considered transparent and accurate systems convenient and useful. The mediating role of trust suggests that establishing algorithmic trust between users and NRS could enhance algorithm performance. The model illustrates the users' cognitive processes of perceptual judgment as well as the motivation behind user behaviors. The results highlight a link between news recommendation systems and user interaction, providing a clearer conceptualization of user-centered development and the evaluation of algorithm-based services. •The usability of algorithms by focusing on users' cognitive process.•How qualities/features are received and transformed into experiences.•An algorithm experience model of news recommendation.
ArticleNumber 106344
Author Shin, Donghee
Author_xml – sequence: 1
  givenname: Donghee
  surname: Shin
  fullname: Shin, Donghee
  email: donghee.shin@zu.ac.ae
  organization: College of Communication and Media Sciences, Zayed University, P.O. Box 144534, Abu Dhabi, United Arab Emirates
BookMark eNp9kE1LAzEQhoMo2Ko_wFvAq1vzsdls8SAiaoWCl3oOaTJrU7qbmqRK_71ZVhQ89DQz8D4zzDNGx53vAKFLSiaU0OpmPTGr5YQR1s8VL8sjNKK15IWspuwYjYgsZSEqzk7ROMY1IUQIUo2Qn_kvbD3eRQgRuy5B0CbhL5dWWG_efchNiwMY37bQWQg47mOCNt7hxQp-Aec77Jthy_Uf2PedxVsIjQ-t7gyco5NGbyJc_NQz9Pb0uHiYFfPX55eH-3lhOBOpsExbAqYUhAGTDV1aaYzgwk7LmlldE24lqWsNnAOzxtZAxJJONW2IrQTn_AxdDXu3wX_sICa19rvQ5ZOKlSXJzmopc0oOKRN8jAEaZVzS_TcpaLdRlKjerlqrbFf1dtVgN5P0H7kNrtVhf5C5HRjIj386CCoaB1mKdVlwUta7A_Q3SHSVkA
CitedBy_id crossref_primary_10_1016_j_procs_2022_08_063
crossref_primary_10_1016_j_chb_2022_107481
crossref_primary_10_1007_s00146_025_02378_8
crossref_primary_10_1108_IJCHM_02_2024_0288
crossref_primary_10_1016_j_chb_2024_108495
crossref_primary_10_1080_17512786_2020_1841018
crossref_primary_10_1007_s11257_024_09405_1
crossref_primary_10_1007_s12525_025_00795_7
crossref_primary_10_1080_10447318_2024_2344146
crossref_primary_10_1145_3458919
crossref_primary_10_1108_EJM_01_2023_0009
crossref_primary_10_1109_MC_2023_3241071
crossref_primary_10_1016_j_ipm_2020_102408
crossref_primary_10_1016_j_knosys_2020_106706
crossref_primary_10_4018_IJSWIS_353905
crossref_primary_10_1080_23808985_2022_2142149
crossref_primary_10_1109_MC_2023_3240730
crossref_primary_10_1016_j_chb_2023_107714
crossref_primary_10_1080_12460125_2024_2428166
crossref_primary_10_1080_00913367_2025_2460985
crossref_primary_10_1080_0144929X_2023_2196598
crossref_primary_10_1080_10447318_2022_2082021
crossref_primary_10_1108_MD_07_2024_1635
crossref_primary_10_1007_s12144_024_07175_y
crossref_primary_10_1016_j_jbusres_2023_114070
crossref_primary_10_1016_j_tele_2024_102135
crossref_primary_10_1007_s10639_025_13427_6
crossref_primary_10_1080_1369118X_2025_2518260
crossref_primary_10_1108_JRIM_03_2025_0161
crossref_primary_10_1177_20563051221144322
crossref_primary_10_1080_15568318_2020_1821416
crossref_primary_10_1007_s42452_025_07170_3
crossref_primary_10_1007_s00146_025_02237_6
crossref_primary_10_54097_h17d4010
crossref_primary_10_1145_3654805
crossref_primary_10_1080_1461670X_2024_2364628
crossref_primary_10_3389_fpsyg_2022_859597
crossref_primary_10_1016_j_jbusres_2024_114737
crossref_primary_10_1007_s42452_024_06117_4
crossref_primary_10_1057_s41599_025_05391_w
crossref_primary_10_1080_10447318_2022_2050543
crossref_primary_10_17645_mac_v11i4_7169
crossref_primary_10_1177_1461444821993801
crossref_primary_10_1007_s10606_022_09459_y
crossref_primary_10_1145_3652891
crossref_primary_10_1177_21582440251345896
crossref_primary_10_1016_j_giq_2024_101940
crossref_primary_10_1016_j_caeai_2025_100406
crossref_primary_10_1002_mde_4524
crossref_primary_10_3389_fpsyg_2022_990663
crossref_primary_10_1109_ACCESS_2023_3241968
crossref_primary_10_1007_s11257_023_09385_8
crossref_primary_10_3389_fpsyg_2021_728495
crossref_primary_10_1007_s12525_022_00593_5
crossref_primary_10_1080_0965254X_2021_1967428
crossref_primary_10_1080_10447318_2024_2436736
crossref_primary_10_1002_cpe_6834
crossref_primary_10_1016_j_actpsy_2024_104168
crossref_primary_10_1007_s41347_025_00485_3
crossref_primary_10_1016_j_ipm_2025_104323
crossref_primary_10_1016_j_tele_2025_102291
crossref_primary_10_1093_jamia_ocaf115
crossref_primary_10_1111_padm_12901
crossref_primary_10_1177_11356405241290420
crossref_primary_10_1016_j_ijhcs_2025_103511
crossref_primary_10_3390_bs15030337
crossref_primary_10_1007_s12144_023_04989_0
crossref_primary_10_1016_j_jretconser_2024_103842
crossref_primary_10_3390_app10124333
crossref_primary_10_1080_10447318_2025_2542902
crossref_primary_10_1109_TCSS_2024_3404039
crossref_primary_10_1016_j_artmed_2023_102506
crossref_primary_10_2478_picbe_2023_0099
crossref_primary_10_1080_10447318_2024_2352937
crossref_primary_10_1108_INTR_02_2024_0166
crossref_primary_10_3389_fpsyg_2025_1647976
crossref_primary_10_1007_s10660_021_09526_4
crossref_primary_10_1016_j_giq_2020_101548
crossref_primary_10_1108_CCSM_06_2020_0125
crossref_primary_10_1080_00036846_2021_1898535
crossref_primary_10_1016_j_ijhcs_2020_102551
crossref_primary_10_1016_j_ijhcs_2021_102696
crossref_primary_10_1016_j_ipm_2020_102434
crossref_primary_10_1002_asi_24969
crossref_primary_10_1016_j_chb_2022_107468
crossref_primary_10_1093_joc_jqac025
crossref_primary_10_1016_j_chb_2021_107007
Cites_doi 10.1080/0144929X.2012.692167
10.1007/s11257-011-9118-4
10.1007/s11257-011-9112-x
10.1016/j.chb.2019.04.019
10.1177/1077699013514411
10.1080/21670811.2016.1208053
10.1080/1369118X.2016.1154087
10.1177/1464884916641269
10.1080/1369118X.2016.1271900
10.1142/8450
10.1145/3173574.3173860
10.1016/j.ipm.2018.04.008
10.2307/3250921
10.1177/1461444816676645
10.1007/s11257-008-9051-3
10.1007/s11257-011-9115-7
10.1016/j.ins.2014.04.012
10.1016/j.intcom.2010.05.001
10.1016/j.chb.2017.02.022
10.1016/j.chb.2018.07.026
10.1037/0022-3514.51.6.1173
10.1089/cyber.2014.0675
10.1080/1369118X.2018.1444076
10.1177/1461444817733133
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Aug 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Aug 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.chb.2020.106344
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Computer Science
EISSN 1873-7692
ExternalDocumentID 10_1016_j_chb_2020_106344
S0747563220300984
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
186
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
9JN
9JO
AABNK
AACTN
AADFP
AAEDT
AAEDW
AAFJI
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMMH
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACNNM
ACRLP
ACXNI
ACZNC
ADBBV
ADEZE
ADHUB
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AFFNX
AFKWA
AFTJW
AFYLN
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FA8
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HF~
HLZ
HMW
HVGLF
HZ~
H~9
IHE
J1W
KOM
LG9
LPU
M3V
M41
MO0
N9A
NHB
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPS
SSB
SSO
SSV
SSY
SSZ
T5K
TAE
UMD
UNMZH
WUQ
XPP
XSW
ZCA
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
8FD
AGCQF
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-d2ad0ec4502e27f1bd7cc535d9482da803d7088ae33e2dcd8e05b19a1f0d65333
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000530025500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0747-5632
IngestDate Wed Aug 13 04:42:50 EDT 2025
Sat Nov 29 07:12:05 EST 2025
Tue Nov 18 22:17:39 EST 2025
Fri Feb 23 02:48:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords User-centered algorithm
Algorithm user experience
Algorithm
Algorithm heuristic
News recommendation system
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-d2ad0ec4502e27f1bd7cc535d9482da803d7088ae33e2dcd8e05b19a1f0d65333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2440101877
PQPubID 2038346
ParticipantIDs proquest_journals_2440101877
crossref_citationtrail_10_1016_j_chb_2020_106344
crossref_primary_10_1016_j_chb_2020_106344
elsevier_sciencedirect_doi_10_1016_j_chb_2020_106344
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
20200801
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationPlace Elmsford
PublicationPlace_xml – name: Elmsford
PublicationTitle Computers in human behavior
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Bhattacherjee (bib7) 2001; 25
Parizi, Kazemifard, Asghari (bib22) 2016; 14
Shin (bib26) 2013; 32
Sinha, Swearingen (bib31) 2002
Cohen (bib8) 1988
Cramer, Evers, Ramlal, van Someren, Rutledge, Stash (bib9) 2008; 18
Moller, Trilling, Helberger, van Es (bib20) 2018; 21
Robin (bib24) 2007
Shin, D., Zhong, B., & Biocca, F. (in-press). Beyond user experience: What constitutes algorithmic experiences? International Journal of Information Management. doi.org/10.1016/j.ijinfomgt.2019.102061.
Shin, Park (bib29) 2019; 98
Helberger, Karppinen, D'Acunto (bib12) 2018; 21
Pu, Chen, Hu (bib23) 2012; 22
Zhang, Wang, Jin (bib33) 2014
Kitchin (bib16) 2017; 20
Ananny, Crawford (bib3) 2018; 20
Konstan, Riedl (bib19) 2012; 22
Jung, Song, Kim, Oh (bib13) 2017; 71
Knijnenburg, Willemsen, Gantner, Soncu, Newell (bib18) 2012; 22
Wang, Townsend, Luse, Mennecke (bib32) 2012
Diakopoulos, Koliska (bib10) 2016; 5
Zheng, Yang, Li (bib34) 2014; 47
Beam, Kosicki (bib5) 2014; 91
Shin (bib25) 2010; 22
Alvarado, Waern (bib2) 2018; 286
Bedi, Vashisth (bib6) 2014; 279
Karimi, Jannach, Jugovac (bib14) 2018; 54
Kim, Shin, Park (bib15) 2015; 18
Baron, Kenny (bib4) 1986; 51
Shin, Biocca (bib28) 2018; 20
Graefe, Haim, Haarmann, Brosius (bib11) 2018; 19
Alexander, Blinder, Zak (bib1) 2018; 89
Bhattacherjee (10.1016/j.chb.2020.106344_bib7) 2001; 25
Shin (10.1016/j.chb.2020.106344_bib25) 2010; 22
Konstan (10.1016/j.chb.2020.106344_bib19) 2012; 22
10.1016/j.chb.2020.106344_bib30
Beam (10.1016/j.chb.2020.106344_bib5) 2014; 91
Zhang (10.1016/j.chb.2020.106344_bib33) 2014
Cohen (10.1016/j.chb.2020.106344_bib8) 1988
Shin (10.1016/j.chb.2020.106344_bib26) 2013; 32
Alexander (10.1016/j.chb.2020.106344_bib1) 2018; 89
Kitchin (10.1016/j.chb.2020.106344_bib16) 2017; 20
Helberger (10.1016/j.chb.2020.106344_bib12) 2018; 21
Shin (10.1016/j.chb.2020.106344_bib29) 2019; 98
Wang (10.1016/j.chb.2020.106344_bib32) 2012
Bedi (10.1016/j.chb.2020.106344_bib6) 2014; 279
Zheng (10.1016/j.chb.2020.106344_bib34) 2014; 47
Baron (10.1016/j.chb.2020.106344_bib4) 1986; 51
Cramer (10.1016/j.chb.2020.106344_bib9) 2008; 18
Karimi (10.1016/j.chb.2020.106344_bib14) 2018; 54
Moller (10.1016/j.chb.2020.106344_bib20) 2018; 21
Parizi (10.1016/j.chb.2020.106344_bib22) 2016; 14
Pu (10.1016/j.chb.2020.106344_bib23) 2012; 22
Shin (10.1016/j.chb.2020.106344_bib28) 2018; 20
Knijnenburg (10.1016/j.chb.2020.106344_bib18) 2012; 22
Diakopoulos (10.1016/j.chb.2020.106344_bib10) 2016; 5
Graefe (10.1016/j.chb.2020.106344_bib11) 2018; 19
Kim (10.1016/j.chb.2020.106344_bib15) 2015; 18
Robin (10.1016/j.chb.2020.106344_bib24) 2007
Ananny (10.1016/j.chb.2020.106344_bib3) 2018; 20
Sinha (10.1016/j.chb.2020.106344_bib31) 2002
Jung (10.1016/j.chb.2020.106344_bib13) 2017; 71
Alvarado (10.1016/j.chb.2020.106344_bib2) 2018; 286
References_xml – volume: 5
  start-page: 809
  year: 2016
  end-page: 828
  ident: bib10
  article-title: Algorithmic transparency in the news media
  publication-title: Digital Journalism
– volume: 279
  start-page: 569
  year: 2014
  end-page: 586
  ident: bib6
  article-title: Empowering recommender systems using trust and argumentation
  publication-title: Information Sciences
– volume: 20
  start-page: 2800
  year: 2018
  end-page: 2823
  ident: bib28
  article-title: Exploring immersive experience in journalism what makes people empathize with and embody immersive journalism?
  publication-title: New Media & Society
– volume: 71
  start-page: 291
  year: 2017
  end-page: 298
  ident: bib13
  article-title: Intrusion of software robots into journalism
  publication-title: Computers in Human Behavior
– volume: 22
  start-page: 317
  year: 2012
  end-page: 355
  ident: bib23
  article-title: Evaluating recommender systems from the users perspective
  publication-title: User Modeling and User-Adapted Interaction
– year: 1988
  ident: bib8
  article-title: Statistical power analysis for
– year: 2002
  ident: bib31
  article-title: The role of transparency in recommender systems. CHI '02 extended abstracts on human factors in computing systems
– volume: 14
  start-page: 392
  year: 2016
  end-page: 402
  ident: bib22
  article-title: EmoNews
  publication-title: Journal of Digital Information Management
– volume: 18
  start-page: 455
  year: 2008
  end-page: 496
  ident: bib9
  article-title: The effects of transparency on trust in and acceptance of a content-based art recommender
  publication-title: User Modeling and User-Adapted Interaction
– volume: 18
  start-page: 528
  year: 2015
  end-page: 533
  ident: bib15
  article-title: Can coolness predict technology adoption?
  publication-title: Cyberpsychology, Behavior, and Social Networking
– volume: 47
  start-page: 3168
  year: 2014
  end-page: 3177
  ident: bib34
  article-title: Modeling and broadening temporal user interest in personalized news recommendation
  publication-title: Expert Systems with Applications
– volume: 20
  start-page: 973
  year: 2018
  end-page: 989
  ident: bib3
  article-title: Seeing without knowing: Limitations of the transparency ideal and its application
  publication-title: New Media & Society
– volume: 51
  start-page: 1173
  year: 1986
  end-page: 1182
  ident: bib4
  article-title: The moderator-mediator variable distinction in social psychological research
  publication-title: Journal of Personality and Social Psychology
– volume: 19
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib11
  article-title: Perception of automated computer-generated news
  publication-title: Journalism
– volume: 54
  start-page: 1203
  year: 2018
  end-page: 1227
  ident: bib14
  article-title: News recommender systems
  publication-title: Information Processing & Management
– volume: 22
  start-page: 428
  year: 2010
  end-page: 438
  ident: bib25
  article-title: The effects of trust, security and privacy in social networking
  publication-title: Interacting with Computers
– year: 2012
  ident: bib32
  article-title: Eterminants of acceptance of recommender systems
  publication-title: AMCIS 2012 Proceedings
– volume: 89
  start-page: 279
  year: 2018
  end-page: 288
  ident: bib1
  article-title: Why trust an algorithm?
  publication-title: Computers in Human Behavior
– volume: 91
  start-page: 59
  year: 2014
  end-page: 77
  ident: bib5
  article-title: Personalized news portals
  publication-title: Journalism & Mass Communication Quarterly
– volume: 25
  start-page: 351
  year: 2001
  end-page: 370
  ident: bib7
  article-title: Understanding information systems continuance
  publication-title: MIS Quarterly
– reference: Shin, D., Zhong, B., & Biocca, F. (in-press). Beyond user experience: What constitutes algorithmic experiences? International Journal of Information Management. doi.org/10.1016/j.ijinfomgt.2019.102061.
– volume: 21
  start-page: 959
  year: 2018
  end-page: 977
  ident: bib20
  article-title: Do not blame it on the algorithm
  publication-title: Information, Communication & Society
– volume: 286
  year: 2018
  ident: bib2
  article-title: Towards algorithmic experience
  publication-title: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
– volume: 22
  start-page: 441
  year: 2012
  end-page: 504
  ident: bib18
  article-title: Explaining the user experience of recommender systems
  publication-title: User Modeling and User-Adapted Interaction
– volume: 98
  start-page: 277
  year: 2019
  end-page: 284
  ident: bib29
  article-title: Role of fairness, accountability, and transparency in algorithmic affordance
  publication-title: Computers in Human Behavior
– volume: 32
  start-page: 52
  year: 2013
  end-page: 67
  ident: bib26
  article-title: User experience in social commerce: In friends we trust
  publication-title: Behavior and Information Technology
– year: 2014
  ident: bib33
  article-title: Privacy concerns in online recommender systems
  publication-title: Symposium on Usable Privacy and Security 2014
– year: 2007
  ident: bib24
  article-title: Hybrid web recommender systems. The Adaptive Web LNCS 4321
– volume: 20
  start-page: 14
  year: 2017
  end-page: 29
  ident: bib16
  article-title: Thinking critically about and researching algorithms
  publication-title: Information, Communication & Society
– volume: 22
  start-page: 101
  year: 2012
  end-page: 123
  ident: bib19
  article-title: Recommender systems
  publication-title: User Modeling and User-Adapted Interaction
– volume: 21
  start-page: 191
  year: 2018
  end-page: 207
  ident: bib12
  article-title: Exposure diversity as a design principle for recommender systems
  publication-title: Information, Communication & Society
– volume: 32
  start-page: 52
  issue: 1
  year: 2013
  ident: 10.1016/j.chb.2020.106344_bib26
  article-title: User experience in social commerce: In friends we trust
  publication-title: Behavior and Information Technology
  doi: 10.1080/0144929X.2012.692167
– volume: 22
  start-page: 441
  year: 2012
  ident: 10.1016/j.chb.2020.106344_bib18
  article-title: Explaining the user experience of recommender systems
  publication-title: User Modeling and User-Adapted Interaction
  doi: 10.1007/s11257-011-9118-4
– volume: 22
  start-page: 101
  issue: 2
  year: 2012
  ident: 10.1016/j.chb.2020.106344_bib19
  article-title: Recommender systems
  publication-title: User Modeling and User-Adapted Interaction
  doi: 10.1007/s11257-011-9112-x
– volume: 14
  start-page: 392
  issue: 6
  year: 2016
  ident: 10.1016/j.chb.2020.106344_bib22
  article-title: EmoNews
  publication-title: Journal of Digital Information Management
– volume: 98
  start-page: 277
  year: 2019
  ident: 10.1016/j.chb.2020.106344_bib29
  article-title: Role of fairness, accountability, and transparency in algorithmic affordance
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2019.04.019
– volume: 91
  start-page: 59
  issue: 1
  year: 2014
  ident: 10.1016/j.chb.2020.106344_bib5
  article-title: Personalized news portals
  publication-title: Journalism & Mass Communication Quarterly
  doi: 10.1177/1077699013514411
– volume: 5
  start-page: 809
  issue: 7
  year: 2016
  ident: 10.1016/j.chb.2020.106344_bib10
  article-title: Algorithmic transparency in the news media
  publication-title: Digital Journalism
  doi: 10.1080/21670811.2016.1208053
– volume: 20
  start-page: 14
  issue: 1
  year: 2017
  ident: 10.1016/j.chb.2020.106344_bib16
  article-title: Thinking critically about and researching algorithms
  publication-title: Information, Communication & Society
  doi: 10.1080/1369118X.2016.1154087
– volume: 19
  start-page: 1
  issue: 5
  year: 2018
  ident: 10.1016/j.chb.2020.106344_bib11
  article-title: Perception of automated computer-generated news
  publication-title: Journalism
  doi: 10.1177/1464884916641269
– volume: 21
  start-page: 191
  issue: 2
  year: 2018
  ident: 10.1016/j.chb.2020.106344_bib12
  article-title: Exposure diversity as a design principle for recommender systems
  publication-title: Information, Communication & Society
  doi: 10.1080/1369118X.2016.1271900
– year: 2012
  ident: 10.1016/j.chb.2020.106344_bib32
  article-title: Eterminants of acceptance of recommender systems
  publication-title: AMCIS 2012 Proceedings
  doi: 10.1142/8450
– volume: 286
  year: 2018
  ident: 10.1016/j.chb.2020.106344_bib2
  article-title: Towards algorithmic experience
  publication-title: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
  doi: 10.1145/3173574.3173860
– volume: 54
  start-page: 1203
  year: 2018
  ident: 10.1016/j.chb.2020.106344_bib14
  article-title: News recommender systems
  publication-title: Information Processing & Management
  doi: 10.1016/j.ipm.2018.04.008
– volume: 25
  start-page: 351
  issue: 3
  year: 2001
  ident: 10.1016/j.chb.2020.106344_bib7
  article-title: Understanding information systems continuance
  publication-title: MIS Quarterly
  doi: 10.2307/3250921
– ident: 10.1016/j.chb.2020.106344_bib30
– volume: 20
  start-page: 973
  issue: 3
  year: 2018
  ident: 10.1016/j.chb.2020.106344_bib3
  article-title: Seeing without knowing: Limitations of the transparency ideal and its application
  publication-title: New Media & Society
  doi: 10.1177/1461444816676645
– year: 1988
  ident: 10.1016/j.chb.2020.106344_bib8
– volume: 18
  start-page: 455
  issue: 5
  year: 2008
  ident: 10.1016/j.chb.2020.106344_bib9
  article-title: The effects of transparency on trust in and acceptance of a content-based art recommender
  publication-title: User Modeling and User-Adapted Interaction
  doi: 10.1007/s11257-008-9051-3
– volume: 22
  start-page: 317
  issue: 4
  year: 2012
  ident: 10.1016/j.chb.2020.106344_bib23
  article-title: Evaluating recommender systems from the users perspective
  publication-title: User Modeling and User-Adapted Interaction
  doi: 10.1007/s11257-011-9115-7
– year: 2002
  ident: 10.1016/j.chb.2020.106344_bib31
– volume: 279
  start-page: 569
  year: 2014
  ident: 10.1016/j.chb.2020.106344_bib6
  article-title: Empowering recommender systems using trust and argumentation
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2014.04.012
– volume: 22
  start-page: 428
  issue: 5
  year: 2010
  ident: 10.1016/j.chb.2020.106344_bib25
  article-title: The effects of trust, security and privacy in social networking
  publication-title: Interacting with Computers
  doi: 10.1016/j.intcom.2010.05.001
– volume: 71
  start-page: 291
  year: 2017
  ident: 10.1016/j.chb.2020.106344_bib13
  article-title: Intrusion of software robots into journalism
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2017.02.022
– year: 2007
  ident: 10.1016/j.chb.2020.106344_bib24
– volume: 89
  start-page: 279
  year: 2018
  ident: 10.1016/j.chb.2020.106344_bib1
  article-title: Why trust an algorithm?
  publication-title: Computers in Human Behavior
  doi: 10.1016/j.chb.2018.07.026
– volume: 51
  start-page: 1173
  year: 1986
  ident: 10.1016/j.chb.2020.106344_bib4
  article-title: The moderator-mediator variable distinction in social psychological research
  publication-title: Journal of Personality and Social Psychology
  doi: 10.1037/0022-3514.51.6.1173
– year: 2014
  ident: 10.1016/j.chb.2020.106344_bib33
  article-title: Privacy concerns in online recommender systems
  publication-title: Symposium on Usable Privacy and Security 2014
– volume: 47
  start-page: 3168
  issue: 7
  year: 2014
  ident: 10.1016/j.chb.2020.106344_bib34
  article-title: Modeling and broadening temporal user interest in personalized news recommendation
  publication-title: Expert Systems with Applications
– volume: 18
  start-page: 528
  issue: 9
  year: 2015
  ident: 10.1016/j.chb.2020.106344_bib15
  article-title: Can coolness predict technology adoption?
  publication-title: Cyberpsychology, Behavior, and Social Networking
  doi: 10.1089/cyber.2014.0675
– volume: 21
  start-page: 959
  issue: 7
  year: 2018
  ident: 10.1016/j.chb.2020.106344_bib20
  article-title: Do not blame it on the algorithm
  publication-title: Information, Communication & Society
  doi: 10.1080/1369118X.2018.1444076
– volume: 20
  start-page: 2800
  issue: 8
  year: 2018
  ident: 10.1016/j.chb.2020.106344_bib28
  article-title: Exploring immersive experience in journalism what makes people empathize with and embody immersive journalism?
  publication-title: New Media & Society
  doi: 10.1177/1461444817733133
SSID ssj0005506
Score 2.6264858
Snippet Although algorithms have been widely used to deliver useful applications and services, it is unclear how users actually experience and interact with...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106344
SubjectTerms Algorithm
Algorithm heuristic
Algorithm user experience
Algorithms
News
News recommendation system
Recommender systems
User behavior
User-centered algorithm
Title How do users interact with algorithm recommender systems? The interaction of users, algorithms, and performance
URI https://dx.doi.org/10.1016/j.chb.2020.106344
https://www.proquest.com/docview/2440101877
Volume 109
WOSCitedRecordID wos000530025500009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-7692
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005506
  issn: 0747-5632
  databaseCode: AIEXJ
  dateStart: 19941201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWg5dALlAKi0CIf4EJJ5bXj2DmhirYCDhUSRdqblcROl6qbrDYLKv-e8VcStqICJC6RZa3tKG88Hs_OvEHoZTnJ60IamQhb1QROjCzJTW0SLoipU52nk7xwxSbE2ZmcTvNPoX5n58oJiKaR19f54r9CDX0Atk2d_Qu4-0mhA9oAOjwBdnj-EfC2SJxuD6z3oXNsEDYPKuSwXV20S2jMD-w9eD53ZeQCmXP3ip26-Is4JFiSbh4X4xkHdzHiczEkHYxt3FgowkXa-hqAkQyg9-fMPHXBcdtczIwZux7oEPgW_GExJ2YIQOocA7ZIeBa8lsarVSlYIrL8V73reBFu6nDvTrg8rGbloV0VejLmSSLXqLE_27XsUhRUFcllehdtUsFz0G6bRx9Oph-HYB_uqqz27xb_33aRfmsL_c5CWTurnQFyvo3uh5sDPvKIP0R3TLODHsSPjYOS3kFb_Zn24xFqQRqwbrFDEUdosZUG3AOKR9KAgzS8xSALeCQLuK39LG-GgbbdaDySg8foy-nJ-bv3SaixkVSM8lWiaaGJqVJOqKGinpRaVBVnHHappLqQhGkBB1FhGDNUV1oawmF_F5Oa6AyuCuwJ2mjaxjxFmBWW6RVsQDCMUlqSkhclGOeF1KYsQSHsIhK_q6oCAb2tg3KlYqThpQIolIVCeSh20et-yMKzr9z24zSCpYL56M1CBZJ127C9CKwK27hTYPRa8kUpxLN_m_U52hp2zB7aWC2_mX10r_q--totXwTx_AlyEp80
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=How+do+users+interact+with+algorithm+recommender+systems%3F+The+interaction+of+users%2C+algorithms%2C+and+performance&rft.jtitle=Computers+in+human+behavior&rft.au=Shin%2C+Donghee&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=0747-5632&rft.eissn=1873-7692&rft.volume=109&rft_id=info:doi/10.1016%2Fj.chb.2020.106344&rft.externalDocID=S0747563220300984
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0747-5632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0747-5632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0747-5632&client=summon