An integrated multi-product, multi-buyer supply chain under penalty, green, and quality control polices and a vendor managed inventory with consignment stock agreement: The outer approximation with equality relaxation and augmented penalty algorithm

It is of great importance to develop an optimal supply chain (SC) batch-sizing policy that collectively embodies green policies and a vendor-managed inventory (VMI) with consignment stock (CS) agreement. This article provides a mathematical model that includes the buyers' total cost (TC) and th...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied Mathematical Modelling Ročník 69; s. 223
Hlavní autori: Gharaei, Abolfazl, Karimi, Mostafa, Shekarabi, Seyed Ashkan Hoseini
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Elsevier BV 01.05.2019
Predmet:
ISSN:1088-8691, 0307-904X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract It is of great importance to develop an optimal supply chain (SC) batch-sizing policy that collectively embodies green policies and a vendor-managed inventory (VMI) with consignment stock (CS) agreement. This article provides a mathematical model that includes the buyers' total cost (TC) and the vendor's TC in an SC under penalty, green, and quality control (QC) policies and a VMI-CS agreement. The proposed model is a multiproduct, multi-buyer model and has real stochastic constraints. Moreover, the model differentiates between the holding costs for financial and nonfinancial components, in which the first includes the investment in the space and the second includes the cost due to physical storage, movement, and insurance of the products. Financial components are carried by the vendor on implementation of the VMI-CS agreement, while holding costs for stocking items in the buyers' warehouses are carried by the buyers as nonfinancial components. The objective is to determine the optimal batch-sizing policy with the minimum TC in the integrated SC that finds both the number of the vendor's batches for each of the transported products and the volume of the batches transported to the buyers so as to minimize the TC of the integrated SC while the stochastic constraints are satisfied. Because of the complexity of the optimization model and mathematical formulations, an outer approximation with equality relaxation and augmented penalty algorithm is presented to determine the optimal batch-sizing policy. With application of this technique, the large-scale and hard-to-solve mixed-integer nonlinear programming problem is minimized. The optimality criteria results obtained in numerical examples and sensitivity analysis demonstrate the excellent performance of the method used. Finally, managerial insights, analytical results, and future research directions are provided.
AbstractList It is of great importance to develop an optimal supply chain (SC) batch-sizing policy that collectively embodies green policies and a vendor-managed inventory (VMI) with consignment stock (CS) agreement. This article provides a mathematical model that includes the buyers' total cost (TC) and the vendor's TC in an SC under penalty, green, and quality control (QC) policies and a VMI-CS agreement. The proposed model is a multiproduct, multi-buyer model and has real stochastic constraints. Moreover, the model differentiates between the holding costs for financial and nonfinancial components, in which the first includes the investment in the space and the second includes the cost due to physical storage, movement, and insurance of the products. Financial components are carried by the vendor on implementation of the VMI-CS agreement, while holding costs for stocking items in the buyers' warehouses are carried by the buyers as nonfinancial components. The objective is to determine the optimal batch-sizing policy with the minimum TC in the integrated SC that finds both the number of the vendor's batches for each of the transported products and the volume of the batches transported to the buyers so as to minimize the TC of the integrated SC while the stochastic constraints are satisfied. Because of the complexity of the optimization model and mathematical formulations, an outer approximation with equality relaxation and augmented penalty algorithm is presented to determine the optimal batch-sizing policy. With application of this technique, the large-scale and hard-to-solve mixed-integer nonlinear programming problem is minimized. The optimality criteria results obtained in numerical examples and sensitivity analysis demonstrate the excellent performance of the method used. Finally, managerial insights, analytical results, and future research directions are provided.
Author Gharaei, Abolfazl
Karimi, Mostafa
Shekarabi, Seyed Ashkan Hoseini
Author_xml – sequence: 1
  givenname: Abolfazl
  surname: Gharaei
  fullname: Gharaei, Abolfazl
– sequence: 2
  givenname: Mostafa
  surname: Karimi
  fullname: Karimi, Mostafa
– sequence: 3
  givenname: Seyed
  surname: Shekarabi
  middlename: Ashkan Hoseini
  fullname: Shekarabi, Seyed Ashkan Hoseini
BookMark eNo1kUlv2zAQhYkiBeqk_QG9DdCrpXCRZbG3IOgSIEAuCdCbQZGUTJciFS5N_NN7C73kNJg38-Z7wFyiC-edRugrwTXBpL3e1WKeaopJVxNSY7b6gBaY4XXFcfPnAi0I7rqqazn5hC5j3GFMaNfiBfp_48C4pMcgklYwZZtMNQevskzLc9vnvQ4Q8zzbPcitMA6yU0WatRM27ZcwBq3dEoRT8JyFNanseZeCtzB7a6SOx5mAf9opH2ASTowFZ1wRkg97eDFpe_BEM7qpaBCTl39BHC4f-u_wuNXgcypYMZeAr2YSyXh3cup3bNBWvJ4GR2IeD-6COmcFYUcfimX6jD4Owkb95Vyv0NPPH4-3v6v7h193tzf3lWR0lSpFetZ0TK97umZMtYMkjaIDH2SLlcC8kV3PGeecqabhK76SQ8tp35JBUK4wY1fo2-luCf2cdUybnc-hhIkbSstb1oQ1lL0B4qmUig
CitedBy_id crossref_primary_10_1016_j_knosys_2019_04_019
crossref_primary_10_1016_j_jclepro_2020_123307
crossref_primary_10_1016_j_matpr_2021_06_282
crossref_primary_10_1080_23311916_2021_1930493
crossref_primary_10_1016_j_cie_2019_06_047
crossref_primary_10_1016_j_knosys_2020_105982
crossref_primary_10_1016_j_jclepro_2020_122572
crossref_primary_10_1080_00207543_2020_1727040
crossref_primary_10_1016_j_asoc_2019_02_039
crossref_primary_10_1080_23311975_2020_1826718
crossref_primary_10_1016_j_jclepro_2019_117894
crossref_primary_10_1016_j_jclepro_2020_121809
crossref_primary_10_1016_j_cie_2019_106200
crossref_primary_10_1016_j_jretconser_2020_102137
crossref_primary_10_3390_su12239919
crossref_primary_10_1016_j_conbuildmat_2022_127272
crossref_primary_10_1080_23311916_2021_2018929
crossref_primary_10_1007_s41660_024_00457_9
crossref_primary_10_1080_23302674_2021_1941394
crossref_primary_10_1016_j_ejor_2020_08_015
crossref_primary_10_1080_23302674_2021_1962428
crossref_primary_10_1155_2023_9293749
crossref_primary_10_1108_JBIM_07_2020_0321
crossref_primary_10_1007_s10479_021_04118_9
crossref_primary_10_1016_j_jclepro_2020_120376
crossref_primary_10_1016_j_jclepro_2020_122554
crossref_primary_10_1016_j_foodcont_2024_111003
crossref_primary_10_1016_j_knosys_2020_105522
crossref_primary_10_1016_j_knosys_2020_106177
crossref_primary_10_1016_j_cie_2019_06_023
crossref_primary_10_1007_s10479_022_05119_y
crossref_primary_10_1080_23302674_2021_1958023
crossref_primary_10_1016_j_cie_2019_106103
crossref_primary_10_1016_j_eswa_2024_124162
crossref_primary_10_1007_s10479_022_04549_y
crossref_primary_10_1007_s12351_025_00933_1
crossref_primary_10_1016_j_jclepro_2020_123411
crossref_primary_10_1016_j_jclepro_2020_120025
crossref_primary_10_1016_j_cie_2019_106206
crossref_primary_10_1016_j_cie_2019_106207
crossref_primary_10_1016_j_cie_2019_06_038
crossref_primary_10_1016_j_knosys_2020_105630
crossref_primary_10_1080_23322039_2021_1922179
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_1016_j_jclepro_2020_121231
crossref_primary_10_1007_s10878_023_01002_z
crossref_primary_10_1016_j_knosys_2020_105746
crossref_primary_10_1080_23311975_2020_1760477
crossref_primary_10_1080_23302674_2025_2452365
crossref_primary_10_1016_j_jclepro_2019_06_156
crossref_primary_10_1016_j_jclepro_2019_118279
crossref_primary_10_1080_23311916_2020_1865598
crossref_primary_10_1016_j_jclepro_2019_04_167
crossref_primary_10_1016_j_knosys_2020_106352
crossref_primary_10_1016_j_jclepro_2020_120510
crossref_primary_10_1016_j_asoc_2020_106811
crossref_primary_10_1016_j_jclepro_2019_06_329
crossref_primary_10_1108_JM2_09_2019_0230
crossref_primary_10_1016_j_jclepro_2020_120641
crossref_primary_10_1016_j_jclepro_2020_122268
crossref_primary_10_1016_j_eswa_2020_114549
crossref_primary_10_1007_s10479_021_03990_9
crossref_primary_10_1016_j_jclepro_2020_122382
crossref_primary_10_1016_j_jclepro_2019_01_231
crossref_primary_10_1016_j_jclepro_2020_124441
crossref_primary_10_1016_j_asoc_2022_108670
crossref_primary_10_1080_01605682_2024_2407467
crossref_primary_10_1016_j_knosys_2019_105094
crossref_primary_10_1016_j_jii_2023_100440
crossref_primary_10_1016_j_knosys_2021_107607
crossref_primary_10_1016_j_jclepro_2019_04_096
crossref_primary_10_1016_j_jclepro_2020_122235
crossref_primary_10_1080_21681015_2022_2107097
crossref_primary_10_1016_j_cie_2019_05_025
crossref_primary_10_1007_s40815_021_01209_4
crossref_primary_10_1079_foodsciencecases_2024_0003
crossref_primary_10_1080_0305215X_2021_2012658
crossref_primary_10_1016_j_cie_2019_04_005
crossref_primary_10_1016_j_knosys_2020_106484
crossref_primary_10_1016_j_cie_2019_04_008
crossref_primary_10_1016_j_jclepro_2020_122360
crossref_primary_10_1016_j_cie_2021_107558
crossref_primary_10_1016_j_jclepro_2020_123454
crossref_primary_10_1155_2020_8815983
crossref_primary_10_1016_j_compchemeng_2024_108725
crossref_primary_10_1016_j_jclepro_2020_120627
crossref_primary_10_1016_j_cie_2019_05_032
crossref_primary_10_1007_s10479_023_05812_6
crossref_primary_10_1016_j_cie_2020_106293
crossref_primary_10_1016_j_sftr_2025_101175
crossref_primary_10_1016_j_knosys_2019_06_021
crossref_primary_10_1080_23302674_2022_2083254
crossref_primary_10_1007_s41660_021_00159_6
crossref_primary_10_1016_j_apenergy_2023_122380
crossref_primary_10_1016_j_knosys_2020_106676
crossref_primary_10_1016_j_eswa_2021_114576
crossref_primary_10_1016_j_knosys_2020_106556
crossref_primary_10_1016_j_jclepro_2019_01_141
crossref_primary_10_1016_j_knosys_2021_107486
crossref_primary_10_1016_j_cie_2019_106040
crossref_primary_10_1016_j_jclepro_2021_127230
crossref_primary_10_1080_23270012_2022_2030255
crossref_primary_10_1080_23302674_2022_2070296
crossref_primary_10_1080_23311975_2022_2155003
crossref_primary_10_1016_j_knosys_2020_106427
crossref_primary_10_1016_j_jclepro_2020_121529
crossref_primary_10_1080_23311975_2022_2143008
crossref_primary_10_1007_s41660_023_00338_7
crossref_primary_10_1016_j_cie_2020_106286
crossref_primary_10_1016_j_cie_2023_109056
crossref_primary_10_3390_su12104108
crossref_primary_10_1016_j_knosys_2020_106546
crossref_primary_10_2478_fcds_2022_0023
crossref_primary_10_11144_Javeriana_cao34_gscmf
crossref_primary_10_1016_j_eswa_2021_115650
crossref_primary_10_1016_j_apm_2022_02_003
crossref_primary_10_3934_GF_2020005
crossref_primary_10_1080_02286203_2025_2479003
crossref_primary_10_1088_1757_899X_1116_1_012094
crossref_primary_10_1007_s10479_020_03876_2
crossref_primary_10_1016_j_jclepro_2020_122627
crossref_primary_10_1061_JCEMD4_COENG_15109
crossref_primary_10_1016_j_cie_2020_106274
crossref_primary_10_1016_j_cie_2019_106033
crossref_primary_10_1080_2331205X_2021_2012888
crossref_primary_10_1016_j_cie_2019_07_002
crossref_primary_10_1016_j_jclepro_2020_120774
crossref_primary_10_1080_23311975_2020_1870807
crossref_primary_10_1016_j_jclepro_2020_121744
crossref_primary_10_1016_j_sca_2023_100029
crossref_primary_10_1016_j_knosys_2021_107262
crossref_primary_10_1080_23302674_2021_1914767
crossref_primary_10_1016_j_knosys_2020_105486
crossref_primary_10_1016_j_jclepro_2020_122156
crossref_primary_10_1007_s10479_021_04345_0
crossref_primary_10_1080_23311975_2021_1930500
crossref_primary_10_1016_j_cie_2019_106062
crossref_primary_10_1016_j_cie_2019_106180
crossref_primary_10_1016_j_jclepro_2020_121747
crossref_primary_10_1016_j_jclepro_2019_04_215
crossref_primary_10_1007_s10489_021_02670_2
crossref_primary_10_1016_j_knosys_2020_106560
crossref_primary_10_1080_23311975_2021_1935185
crossref_primary_10_1016_j_jclepro_2020_120784
crossref_primary_10_1016_j_jclepro_2019_118674
crossref_primary_10_1155_2021_5584754
crossref_primary_10_1016_j_resconrec_2021_105445
crossref_primary_10_1016_j_cie_2019_106055
crossref_primary_10_3390_math11010042
crossref_primary_10_3390_su13137004
crossref_primary_10_1016_j_jclepro_2020_122654
crossref_primary_10_1080_23302674_2021_1921878
crossref_primary_10_1007_s10479_021_04361_0
crossref_primary_10_1016_j_apm_2022_09_033
crossref_primary_10_1016_j_jclepro_2020_122770
crossref_primary_10_1007_s10479_020_03720_7
crossref_primary_10_1080_23302674_2019_1701727
crossref_primary_10_1016_j_cie_2019_106000
crossref_primary_10_1016_j_esr_2022_100815
crossref_primary_10_1016_j_cie_2019_06_010
crossref_primary_10_1016_j_jclepro_2020_123752
crossref_primary_10_1016_j_knosys_2019_104966
crossref_primary_10_1007_s10845_019_01521_9
crossref_primary_10_1016_j_cie_2019_106229
crossref_primary_10_1016_j_cie_2019_06_019
crossref_primary_10_1016_j_jclepro_2020_123073
crossref_primary_10_1016_j_knosys_2020_105530
crossref_primary_10_3390_math9050495
crossref_primary_10_3846_tede_2022_17913
crossref_primary_10_1080_23302674_2019_1656296
crossref_primary_10_3390_logistics5020037
crossref_primary_10_1016_j_cie_2019_106237
crossref_primary_10_1016_j_jclepro_2022_135175
crossref_primary_10_1080_23302674_2021_1919336
crossref_primary_10_1016_j_knosys_2021_107467
crossref_primary_10_1016_j_jclepro_2020_120333
crossref_primary_10_1155_2020_3083761
crossref_primary_10_1016_j_jclepro_2020_120578
crossref_primary_10_1016_j_jclepro_2020_122757
crossref_primary_10_1016_j_knosys_2021_106811
crossref_primary_10_1007_s00500_023_09060_5
crossref_primary_10_1007_s10660_024_09878_7
crossref_primary_10_1016_j_knosys_2020_106651
crossref_primary_10_1007_s10479_023_05793_6
crossref_primary_10_1016_j_cie_2019_106141
crossref_primary_10_1016_j_cie_2019_07_038
crossref_primary_10_1016_j_jclepro_2019_04_257
crossref_primary_10_1016_j_cie_2019_106027
crossref_primary_10_1016_j_jclepro_2022_134098
crossref_primary_10_1016_j_cie_2019_07_033
crossref_primary_10_3390_en13215744
crossref_primary_10_1016_j_jretconser_2024_103887
crossref_primary_10_1080_00207543_2019_1696491
crossref_primary_10_1016_j_jclepro_2019_118193
crossref_primary_10_1016_j_jclepro_2020_123293
crossref_primary_10_1016_j_jclepro_2019_03_214
crossref_primary_10_1016_j_rineng_2023_101609
crossref_primary_10_1016_j_jclepro_2019_05_049
crossref_primary_10_1007_s40747_022_00642_8
crossref_primary_10_1080_23302674_2019_1646835
crossref_primary_10_1016_j_cie_2020_106335
crossref_primary_10_1016_j_jclepro_2019_05_280
crossref_primary_10_1016_j_cie_2019_106014
crossref_primary_10_1080_23311975_2021_1906052
crossref_primary_10_1016_j_cie_2019_03_042
crossref_primary_10_1080_23302674_2021_2015007
ContentType Journal Article
Copyright Copyright Elsevier BV May 2019
Copyright_xml – notice: Copyright Elsevier BV May 2019
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2018.11.035
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Mathematics
EISSN 0307-904X
GroupedDBID -W8
-~X
.7I
.GO
.QK
0BK
0R~
23M
2DF
4.4
53G
5GY
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
EAP
EBR
EBS
EBU
EDJ
EJD
EMK
EPL
EPS
EST
ESX
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
HZ~
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
O9-
P2P
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-d1b3483e7b2733d6fc14d2f9fc60da094c8b939993d449595cf692b61fa29d033
ISICitedReferencesCount 230
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461728500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1088-8691
IngestDate Mon Jul 14 07:47:57 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-d1b3483e7b2733d6fc14d2f9fc60da094c8b939993d449595cf692b61fa29d033
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2210871342
PQPubID 2045280
ParticipantIDs proquest_journals_2210871342
PublicationCentury 2000
PublicationDate 20190501
PublicationDateYYYYMMDD 2019-05-01
PublicationDate_xml – month: 05
  year: 2019
  text: 20190501
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2019
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
SSID ssj0012860
ssj0005904
Score 2.6264594
Snippet It is of great importance to develop an optimal supply chain (SC) batch-sizing policy that collectively embodies green policies and a vendor-managed inventory...
SourceID proquest
SourceType Aggregation Database
StartPage 223
SubjectTerms Agreements
Algorithms
Approximation
Constraint modelling
Costs
Inventory management
Mathematical analysis
Nonlinear programming
Optimality criteria
Optimization
Policies
Quality control
Sensitivity analysis
Sizing
Supply chains
Warehouses
Title An integrated multi-product, multi-buyer supply chain under penalty, green, and quality control polices and a vendor managed inventory with consignment stock agreement: The outer approximation with equality relaxation and augmented penalty algorithm
URI https://www.proquest.com/docview/2210871342
Volume 69
WOSCitedRecordID wos000461728500014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 1088-8691
  databaseCode: TFW
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3Lb9NAEIdXbeFQDggKiEdBc0BcEkd-28stQo0qUQJSU8gt8mOdhgQ75FEl_OfcmNmHnVAJwYGLFXm1XjvzeV_-zQxjr-OYO6lXhJaIgsjyQyezuMD30StyhydhnNm-SjYR9fvxcMg_HRz6xhfmZhaVZbzZ8Pl_NTWeQ2OT6-w_mLu-KJ7A32h0PKLZ8fhXhu-WTQyIXAkGrbmK60r_pzqRrrcUxplSem7J-XdSyoS4i9ZcYAMqUcB4oZPW0966cr7c1tJ2Su5AYi4Z67WFPWZeLbQUlqI5kYqSvt4bZTvJRKTsAOea2bSV0LXNviSRWlFmCRXgfDNR3pSqrjANk9PNRhXINtdjGU40N3fcSmbjaoFVvu3Ot80k-0MdnZZ8kSn7z8yM2SQ-oqjVQuoaumk1K5Ifte7kfUJ5z-S2cYUT6aIexS6vxRRrpbLsUmyxke7yeord5Xm1FJNysrufQi5cwe5-SuPo83lnWMC-2IpDlVesI7S_mR1Z3Fb6UjOWqLQzZjBQntS3Bim1X_K1k8wpFIITdyiMrArash8QvP9x1Lu6uBgNzoaDN_PvFuVKI02BThxzyO64UcCpLx_0vjTCJk4rbP0hzY2Vo7x5APNhX0ocf7uBW9MROccaPGD39eIIugrqh-xAlCfsXmO75Qk7rkfs7SP2s1tCwzrssd6GHdJBkQ6SdJCkg-amDZLzNiBVoGEDTTloymVZAopy0JRDTTkQqbBDOUjKoab8LSDjIBmHPcZVTcM4NIyrFg3j5l6hZvwxu-qdDd6dWzqXiZV5brCycuwR_dgTUYrrBS8Pi8zxc7fgRRbaeWJzP4tTjosF7uW-zwMeZEXI3TR0isTlue15T9hRWZXiKYOAxACZb3t5GvhFnGMl3-auk4SFG_hR8YydGjOOdL-0HLkuIkB-4-7zPxe_YMfNW3HKjlaLtXjJ7mY3q8ly8UqS9gtJPu3Y
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+integrated+multi-product%2C+multi-buyer+supply+chain+under+penalty%2C+green%2C+and+quality+control+polices+and+a+vendor+managed+inventory+with+consignment+stock+agreement%3A+The+outer+approximation+with+equality+relaxation+and+augmented+penalty+algorithm&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Gharaei%2C+Abolfazl&rft.au=Karimi%2C+Mostafa&rft.au=Shekarabi%2C+Seyed+Ashkan+Hoseini&rft.date=2019-05-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=69&rft.spage=223&rft_id=info:doi/10.1016%2Fj.apm.2018.11.035&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-8691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-8691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-8691&client=summon