Solving Mixed Integer Bilinear Problems Using MILP Formulations

In this paper, we examine a mixed integer linear programming reformulation for mixed integer bilinear problems where each bilinearterm involves the product of a nonnegative integer variable and a nonnegative continuous variable. This reformulation is obtained by first replacing a general integer var...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:SIAM journal on optimization Ročník 23; číslo 2; s. 721 - 744
Hlavní autoři: Gupte, Akshay, Ahmed, Shabbir, Cheon, Myun Seok, Dey, Santanu
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia Society for Industrial and Applied Mathematics 01.01.2013
Témata:
ISSN:1052-6234, 1095-7189
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we examine a mixed integer linear programming reformulation for mixed integer bilinear problems where each bilinearterm involves the product of a nonnegative integer variable and a nonnegative continuous variable. This reformulation is obtained by first replacing a general integer variable with its binary expansion and then using McCormick envelopes to linearize the resulting product of continuous and binary variables. We present the convex hull of the underlying mixed integer linear set. The effectiveness of this reformulation and associated facet-defining inequalities are computationally evaluated on five classes of instances. [PUBLICATION ABSTRACT]
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:1052-6234
1095-7189
DOI:10.1137/110836183