Fluid–structure interaction involving dynamic wetting: 2D modeling and simulations
In this paper, we propose a hybrid model to compute the capillary force acting on moving solid objects, and combine it with the diffuse-interface immersed-boundary method in Liu and Ding (2015) [18] to simulate fluid–structure interaction (FSI) involving dynamic wetting. Dynamic wetting is very impo...
Gespeichert in:
| Veröffentlicht in: | Journal of computational physics Jg. 348; S. 45 - 65 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge
Elsevier Inc
01.11.2017
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0021-9991, 1090-2716 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | In this paper, we propose a hybrid model to compute the capillary force acting on moving solid objects, and combine it with the diffuse-interface immersed-boundary method in Liu and Ding (2015) [18] to simulate fluid–structure interaction (FSI) involving dynamic wetting. Dynamic wetting is very important in the dynamic interaction between fluid–fluid interfaces and small moving objects. Numerical simulations of these flow problems require accurate computation of the capillary force acting on the structure, which depends on the instantaneous position of and the effective surface tension at the moving contact line. In order to achieve this, we use the diffuse-interface immersed-boundary method to simulate the dynamic wetting on moving objects, and propose a hybrid model to compute the effective surface tension at the contact line. Specifically, a diffuse interface model is used for the interface profile out of equilibrium, e.g. at the onset of formation or detachment of contact lines, and a sharp interface model is used for the interface profile at equilibrium. The performance of the method is examined by a variety of numerical experiments. We simulate the sinking of a circular cylinder due to gravity, and study the capillarity-dominated impact dynamics of a solid sphere on a water pool. In both cases the numerical results are quantitatively compared against the experimental data, and good agreements have been achieved. The momentum conservation of the system is carefully checked by studying head-on collision between a drop and a solid sphere. Finally, we apply the method to the self-assembly process of multiple floating cylinders on water surface. |
|---|---|
| AbstractList | In this paper, we propose a hybrid model to compute the capillary force acting on moving solid objects, and combine it with the diffuse-interface immersed-boundary method in Liu and Ding (2015) [18] to simulate fluid–structure interaction (FSI) involving dynamic wetting. Dynamic wetting is very important in the dynamic interaction between fluid–fluid interfaces and small moving objects. Numerical simulations of these flow problems require accurate computation of the capillary force acting on the structure, which depends on the instantaneous position of and the effective surface tension at the moving contact line. In order to achieve this, we use the diffuse-interface immersed-boundary method to simulate the dynamic wetting on moving objects, and propose a hybrid model to compute the effective surface tension at the contact line. Specifically, a diffuse interface model is used for the interface profile out of equilibrium, e.g. at the onset of formation or detachment of contact lines, and a sharp interface model is used for the interface profile at equilibrium. The performance of the method is examined by a variety of numerical experiments. We simulate the sinking of a circular cylinder due to gravity, and study the capillarity-dominated impact dynamics of a solid sphere on a water pool. In both cases the numerical results are quantitatively compared against the experimental data, and good agreements have been achieved. The momentum conservation of the system is carefully checked by studying head-on collision between a drop and a solid sphere. Finally, we apply the method to the self-assembly process of multiple floating cylinders on water surface. |
| Author | Liu, Hao-Ran Ding, Hang Gao, Peng |
| Author_xml | – sequence: 1 givenname: Hao-Ran surname: Liu fullname: Liu, Hao-Ran – sequence: 2 givenname: Peng surname: Gao fullname: Gao, Peng – sequence: 3 givenname: Hang surname: Ding fullname: Ding, Hang email: hding@ustc.edu.cn |
| BookMark | eNp9kM9OwzAMxiM0JLbBA3CrxLnFSf-khRMaDJAmcRnnKEtSlKpNR5IO7cY78IY8CSnjxGGSJduyf7a-b4YmpjcKoUsMCQZcXDdJI7YJAUwTCIHpCZpiqCAmFBcTNAUgOK6qCp-hmXMNAJR5Vk7RetkOWn5_fjlvB-EHqyJtvLJceN2bUO_6dqfNWyT3hndaRB_K-9DfROQ-6nqp2nHIjYyc7oaWj5Q7R6c1b526-Mtz9Lp8WC-e4tXL4_PibhWLlOQ-FqKu6CbPuQLJC1qrNKMi41DXdVnKgssixVzKTZkBpZyk2SareA1pRaVQlMp0jq4Od7e2fx-U86zpB2vCS0agqHIgGaVhCx-2hO2ds6pmW6s7bvcMAxvNYw0L5rHRPAYh8MjQf4zQ_lect1y3R8nbA6mC8J1WljmhlRFKaquEZ7LXR-gfd5uOeQ |
| CitedBy_id | crossref_primary_10_3934_dcdsb_2023163 crossref_primary_10_1016_j_jcp_2020_109709 crossref_primary_10_1016_j_compfluid_2025_106724 crossref_primary_10_1002_fld_4965 crossref_primary_10_1137_23M1546592 crossref_primary_10_1007_s10404_019_2268_0 crossref_primary_10_1002_fld_4826 crossref_primary_10_1016_j_cpc_2022_108558 crossref_primary_10_1016_j_jcp_2021_110659 crossref_primary_10_1016_j_camwa_2023_05_002 crossref_primary_10_1016_j_jcp_2022_111444 crossref_primary_10_1017_jfm_2018_134 crossref_primary_10_1016_j_jcp_2023_112216 crossref_primary_10_1016_j_ijmecsci_2022_107489 crossref_primary_10_1063_5_0220227 crossref_primary_10_3390_met9090944 crossref_primary_10_1016_j_cma_2024_116747 crossref_primary_10_1016_S1001_6058_16_60788_6 crossref_primary_10_1016_j_cnsns_2021_105923 crossref_primary_10_1016_j_powtec_2022_117920 crossref_primary_10_1016_j_powtec_2022_117942 crossref_primary_10_1088_1873_7005_ab6aac crossref_primary_10_1016_j_isci_2023_106389 crossref_primary_10_1016_j_cma_2022_115291 crossref_primary_10_2351_1_5096130 crossref_primary_10_1017_jfm_2019_964 crossref_primary_10_1017_jfm_2021_14 crossref_primary_10_3390_e26020172 crossref_primary_10_1017_jfm_2023_822 crossref_primary_10_1016_j_euromechflu_2021_06_001 crossref_primary_10_1016_j_applthermaleng_2025_127970 crossref_primary_10_1016_j_jcp_2019_109089 crossref_primary_10_1016_j_jcp_2023_112345 crossref_primary_10_1016_j_compfluid_2021_105094 crossref_primary_10_1016_j_jcp_2024_113699 crossref_primary_10_1017_jfm_2023_340 |
| Cites_doi | 10.1126/science.1070821 10.1103/RevModPhys.57.827 10.1016/j.cma.2007.06.016 10.1016/j.jcp.2014.10.058 10.1017/S0022112099006874 10.1016/j.jcp.2005.03.017 10.1140/epje/i2013-13026-y 10.1146/annurev.fl.11.010179.002103 10.1016/j.compfluid.2011.12.006 10.1017/S0022112008005521 10.1016/j.jcp.2015.04.052 10.1016/j.jcp.2015.03.059 10.1146/annurev.fl.28.010196.002401 10.1016/j.jcp.2011.01.004 10.1016/j.jcp.2007.06.028 10.1021/la702437c 10.1063/1.4865819 10.1016/j.jcp.2008.10.038 10.1073/pnas.1205446109 10.1006/jcph.2000.6483 10.1119/1.1898523 10.1016/j.jcp.2012.04.012 10.1016/j.jcp.2014.11.044 10.1017/S0962492902000077 10.1146/annurev-fluid-010814-014627 10.1063/1.3073968 10.1017/S0022112007004910 10.1016/S0021-9991(03)00214-6 10.1016/j.apm.2012.07.006 10.1016/j.jcp.2008.01.028 10.1016/j.jcp.2016.01.024 10.1016/j.jcp.2005.12.016 10.1016/0301-9322(93)90090-H 10.1063/1.3541806 10.1146/annurev-fluid-010313-141338 10.1146/annurev.fluid.37.061903.175743 10.1017/jfm.2015.574 10.1016/j.jfluidstructs.2007.08.002 10.1006/jcph.2000.6542 10.1017/S0022112009992679 10.1146/annurev.fluid.38.050304.092157 10.1006/jcis.1993.1184 10.1016/j.jcp.2009.04.027 10.1002/fld.2603 10.1021/la0533260 10.1017/S0022112010004763 10.1016/j.jcp.2012.08.040 10.1016/S0764-4442(97)89104-5 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier Inc. Copyright Elsevier Science Ltd. Nov 1, 2017 |
| Copyright_xml | – notice: 2017 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Nov 1, 2017 |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.jcp.2017.07.017 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| EndPage | 65 |
| ExternalDocumentID | 10_1016_j_jcp_2017_07_017 S0021999117305193 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c325t-ccf97b55ae0da67fe347c4a0fff88d6ad631addb84077a234b49af0397dce77d3 |
| ISICitedReferencesCount | 53 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000410899200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Sun Nov 30 04:18:08 EST 2025 Sat Nov 29 03:10:18 EST 2025 Tue Nov 18 22:12:01 EST 2025 Fri Feb 23 02:17:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Diffuse interface model Wettability Complex geometry Fluid structure interaction Immersed boundary method Moving contact lines |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-ccf97b55ae0da67fe347c4a0fff88d6ad631addb84077a234b49af0397dce77d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2069502477 |
| PQPubID | 2047462 |
| PageCount | 21 |
| ParticipantIDs | proquest_journals_2069502477 crossref_primary_10_1016_j_jcp_2017_07_017 crossref_citationtrail_10_1016_j_jcp_2017_07_017 elsevier_sciencedirect_doi_10_1016_j_jcp_2017_07_017 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-11-01 2017-11-00 20171101 |
| PublicationDateYYYYMMDD | 2017-11-01 |
| PublicationDate_xml | – month: 11 year: 2017 text: 2017-11-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2017 |
| Publisher | Elsevier Inc Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
| References | Afkhami, Zaleski, Bussmann (br0120) 2009; 228 Xia, Connington, Rapaka, Yue, Feng, Chen (br0410) 2009; 625 Wiens, Stockie (br0370) 2015; 281 Lai, Peskin (br0420) 2000; 160 Bush, Hu (br0030) 2006; 38 Yang, Preidikman, Balaras (br0300) 2008; 24 Lee, Kim, Choi, Yang (br0310) 2011; 230 Maury (br0390) 1997; 325 Do-Quang, Amberg (br0200) 2010; 49 Dickerson, Shankles, Madhavan, Hu (br0010) 2012; 109 Dussan (br0060) 1979; 11 Yuan, Zhong, Zhang (br0320) 2015; 296 Williamson (br0440) 1996; 28 Kim (br0330) 2007; 196 Mittal, Dong, Bozkurttas, Najjar, Vargas, von Loebbecke (br0270) 2008; 227 Sibley, Nold, Savva, Kalliadasis (br0160) 2013; 36 Yang, Stern (br0280) 2012; 231 Gao, Feng (br0210) 2011; 668 Degennes (br0080) 1985; 57 Mittal, Iaccarino (br0230) 2005; 37 Jacqmin (br0100) 2000; 402 Ding, Chen, Liu, Zhang, Gao, Lu (br0250) 2015; 783 Bashforth, Adams (br0470) 1883 Sui, Ding, Spelt (br0170) 2014; 46 Vella, Mahadevan (br0500) 2005; 73 Ren, Shu, Wu, Yang (br0360) 2012; 57 Yue, Zhou, Feng (br0140) 2010; 645 Lai, Peskin (br0340) 2000; 160 Liu, Ding (br0180) 2015; 294 Fan, Bussmann (br0220) 2013; 37 Wang, Fan, Cen (br0430) 2009; 228 Peskin (br0350) 2002; 11 Dickerson, Shankles, Hu (br0020) 2014; 26 Shikhmurzaev (br0090) 1993; 19 Ding, Spelt (br0110) 2007; 576 Vella (br0040) 2015; 47 Uhlmann (br0260) 2005; 209 Shao, Shu, Chew (br0240) 2013; 234 Lee, Kim (br0490) 2008; 24 Sprittles, Shikhmurzaev (br0070) 2012; 68 Connington, Lee, Morris (br0290) 2015; 283 Whitesides, Grzybowski (br0050) 2002; 295 Luo, Hu, Adams (br0130) 2016; 310 Xu, Wang (br0460) 2006; 216 Ding, Spelt, Shu (br0380) 2007; 226 Do-Quang, Amberg (br0190) 2009; 21 Vella, Lee, Kim (br0480) 2006; 22 Glowinski, Pan, Hesla, Joseph, Periaux (br0400) 2001; 169 Lima, Silva, Silveira-Neto, Damasceno (br0450) 2003; 189 Yue, Feng (br0150) 2011; 23 Allain, Cloitre (br0510) 1993; 157 Yue (10.1016/j.jcp.2017.07.017_br0150) 2011; 23 Ding (10.1016/j.jcp.2017.07.017_br0250) 2015; 783 Maury (10.1016/j.jcp.2017.07.017_br0390) 1997; 325 Xia (10.1016/j.jcp.2017.07.017_br0410) 2009; 625 Dickerson (10.1016/j.jcp.2017.07.017_br0010) 2012; 109 Uhlmann (10.1016/j.jcp.2017.07.017_br0260) 2005; 209 Fan (10.1016/j.jcp.2017.07.017_br0220) 2013; 37 Xu (10.1016/j.jcp.2017.07.017_br0460) 2006; 216 Whitesides (10.1016/j.jcp.2017.07.017_br0050) 2002; 295 Afkhami (10.1016/j.jcp.2017.07.017_br0120) 2009; 228 Wang (10.1016/j.jcp.2017.07.017_br0430) 2009; 228 Allain (10.1016/j.jcp.2017.07.017_br0510) 1993; 157 Ren (10.1016/j.jcp.2017.07.017_br0360) 2012; 57 Shao (10.1016/j.jcp.2017.07.017_br0240) 2013; 234 Lima (10.1016/j.jcp.2017.07.017_br0450) 2003; 189 Yue (10.1016/j.jcp.2017.07.017_br0140) 2010; 645 Sibley (10.1016/j.jcp.2017.07.017_br0160) 2013; 36 Mittal (10.1016/j.jcp.2017.07.017_br0230) 2005; 37 Bush (10.1016/j.jcp.2017.07.017_br0030) 2006; 38 Vella (10.1016/j.jcp.2017.07.017_br0480) 2006; 22 Mittal (10.1016/j.jcp.2017.07.017_br0270) 2008; 227 Kim (10.1016/j.jcp.2017.07.017_br0330) 2007; 196 Vella (10.1016/j.jcp.2017.07.017_br0500) 2005; 73 Dickerson (10.1016/j.jcp.2017.07.017_br0020) 2014; 26 Do-Quang (10.1016/j.jcp.2017.07.017_br0190) 2009; 21 Yang (10.1016/j.jcp.2017.07.017_br0280) 2012; 231 Do-Quang (10.1016/j.jcp.2017.07.017_br0200) 2010; 49 Yuan (10.1016/j.jcp.2017.07.017_br0320) 2015; 296 Luo (10.1016/j.jcp.2017.07.017_br0130) 2016; 310 Glowinski (10.1016/j.jcp.2017.07.017_br0400) 2001; 169 Jacqmin (10.1016/j.jcp.2017.07.017_br0100) 2000; 402 Connington (10.1016/j.jcp.2017.07.017_br0290) 2015; 283 Ding (10.1016/j.jcp.2017.07.017_br0380) 2007; 226 Yang (10.1016/j.jcp.2017.07.017_br0300) 2008; 24 Dussan (10.1016/j.jcp.2017.07.017_br0060) 1979; 11 Lai (10.1016/j.jcp.2017.07.017_br0340) 2000; 160 Ding (10.1016/j.jcp.2017.07.017_br0110) 2007; 576 Wiens (10.1016/j.jcp.2017.07.017_br0370) 2015; 281 Williamson (10.1016/j.jcp.2017.07.017_br0440) 1996; 28 Sui (10.1016/j.jcp.2017.07.017_br0170) 2014; 46 Gao (10.1016/j.jcp.2017.07.017_br0210) 2011; 668 Vella (10.1016/j.jcp.2017.07.017_br0040) 2015; 47 Shikhmurzaev (10.1016/j.jcp.2017.07.017_br0090) 1993; 19 Lee (10.1016/j.jcp.2017.07.017_br0490) 2008; 24 Bashforth (10.1016/j.jcp.2017.07.017_br0470) 1883 Peskin (10.1016/j.jcp.2017.07.017_br0350) 2002; 11 Lee (10.1016/j.jcp.2017.07.017_br0310) 2011; 230 Sprittles (10.1016/j.jcp.2017.07.017_br0070) 2012; 68 Degennes (10.1016/j.jcp.2017.07.017_br0080) 1985; 57 Liu (10.1016/j.jcp.2017.07.017_br0180) 2015; 294 Lai (10.1016/j.jcp.2017.07.017_br0420) 2000; 160 |
| References_xml | – year: 1883 ident: br0470 article-title: An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid – volume: 668 start-page: 363 year: 2011 end-page: 383 ident: br0210 article-title: A numerical investigation of the propulsion of water walkers publication-title: J. Fluid Mech. – volume: 57 start-page: 827 year: 1985 end-page: 863 ident: br0080 article-title: Wetting: statics and dynamics publication-title: Rev. Mod. Phys. – volume: 21 year: 2009 ident: br0190 article-title: The splash of a solid sphere impacting on a liquid surface: numerical simulation of the influence wetting publication-title: Phys. Fluids – volume: 283 start-page: 453 year: 2015 end-page: 477 ident: br0290 article-title: Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid–gas-particle systems publication-title: J. Comput. Phys. – volume: 310 start-page: 329 year: 2016 end-page: 341 ident: br0130 article-title: Curvature boundary condition for a moving contact line publication-title: J. Comput. Phys. – volume: 196 start-page: 4779 year: 2007 end-page: 4788 ident: br0330 article-title: Phase field computations for ternary fluid flows publication-title: Comput. Methods Appl. Mech. Eng. – volume: 46 start-page: 97 year: 2014 end-page: 119 ident: br0170 article-title: Numerical simulations of flows with moving contact lines publication-title: Annu. Rev. Fluid Mech. – volume: 22 start-page: 2972 year: 2006 end-page: 2974 ident: br0480 article-title: Sinking of a horizontal cylinder publication-title: Langmuir – volume: 295 start-page: 2418 year: 2002 end-page: 2421 ident: br0050 article-title: Self-assembly at all scales publication-title: Science – volume: 73 start-page: 817 year: 2005 ident: br0500 article-title: The “cheerios effect” publication-title: Am. J. Phys. – volume: 19 start-page: 589 year: 1993 end-page: 610 ident: br0090 article-title: The moving contact line on a smooth solid-surface publication-title: Int. J. Multiph. Flow – volume: 47 start-page: 115 year: 2015 end-page: 135 ident: br0040 article-title: Floating versus sinking publication-title: Annu. Rev. Fluid Mech. – volume: 231 start-page: 5029 year: 2012 end-page: 5061 ident: br0280 article-title: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions publication-title: J. Comput. Phys. – volume: 228 start-page: 5370 year: 2009 end-page: 5389 ident: br0120 article-title: A mesh-dependent model for applying dynamic contact angles to VOF simulations publication-title: J. Comput. Phys. – volume: 37 start-page: 239 year: 2005 end-page: 261 ident: br0230 article-title: Immersed boundary methods publication-title: Annu. Rev. Fluid Mech. – volume: 160 start-page: 705 year: 2000 end-page: 719 ident: br0340 article-title: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity publication-title: J. Comput. Phys. – volume: 783 start-page: 504 year: 2015 end-page: 525 ident: br0250 article-title: On the contact-line pinning in cavity formation during solid–liquid impact publication-title: J. Fluid Mech. – volume: 402 start-page: 57 year: 2000 end-page: 88 ident: br0100 article-title: Contact-line dynamics of a diffuse fluid interface publication-title: J. Fluid Mech. – volume: 227 start-page: 4825 year: 2008 end-page: 4852 ident: br0270 article-title: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries publication-title: J. Comput. Phys. – volume: 189 start-page: 351 year: 2003 end-page: 370 ident: br0450 article-title: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method publication-title: J. Comput. Phys. – volume: 49 start-page: 149 year: 2010 end-page: 165 ident: br0200 article-title: Numerical simulation of the coupling problems of a solid sphere impacting on a liquid free surface publication-title: Math. Comput. Simul. – volume: 228 start-page: 1504 year: 2009 end-page: 1520 ident: br0430 article-title: Immersed boundary method for the simulation of 2d viscous flow based on vorticity–velocity formulations publication-title: J. Comput. Phys. – volume: 38 start-page: 339 year: 2006 end-page: 369 ident: br0030 article-title: Walking on water: biolocomotion at the interface publication-title: Annu. Rev. Fluid Mech. – volume: 625 start-page: 249 year: 2009 end-page: 272 ident: br0410 article-title: Flow patterns in the sedimentation of an elliptical particle publication-title: J. Fluid Mech. – volume: 11 start-page: 371 year: 1979 end-page: 400 ident: br0060 article-title: On the spreading of liquids on solid surfaces: static and dynamic contact lines publication-title: Annu. Rev. Fluid Mech. – volume: 294 start-page: 484 year: 2015 end-page: 502 ident: br0180 article-title: A diffuse-interface immersed-boundary method for two-dimensional simulation of flows with moving contact lines on curved substrates publication-title: J. Comput. Phys. – volume: 281 start-page: 917 year: 2015 end-page: 941 ident: br0370 article-title: An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver publication-title: J. Comput. Phys. – volume: 325 start-page: 1053 year: 1997 end-page: 1058 ident: br0390 article-title: A many-body lubrication model publication-title: C. R. Acad. Sci. – volume: 160 start-page: 705 year: 2000 end-page: 719 ident: br0420 article-title: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity publication-title: J. Comput. Phys. – volume: 23 year: 2011 ident: br0150 article-title: Wall energy relaxation in the Cahn–Hilliard model for moving contact lines publication-title: Phys. Fluids – volume: 37 start-page: 3077 year: 2013 end-page: 3092 ident: br0220 article-title: Piecewise linear volume tracking in spherical coordinates publication-title: Appl. Math. Model. – volume: 57 start-page: 40 year: 2012 end-page: 51 ident: br0360 article-title: Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications publication-title: Comput. Fluids – volume: 216 start-page: 454 year: 2006 end-page: 493 ident: br0460 article-title: An immersed interface method for simulating the interaction of a fluid with moving boundaries publication-title: J. Comput. Phys. – volume: 576 start-page: 287 year: 2007 end-page: 296 ident: br0110 article-title: Inertial effects in droplet spreading: a comparison between diffuse-interface and level-set simulations publication-title: J. Fluid Mech. – volume: 109 start-page: 9822 year: 2012 end-page: 9827 ident: br0010 article-title: Mosquitoes survive raindrop collisions by virtue of their low mass publication-title: Proc. Natl. Acad. Sci. USA – volume: 157 start-page: 261 year: 1993 end-page: 268 ident: br0510 article-title: Interaction between particles trapped at fluid interfaces 1. Exact and asymptotic solutions for the force between two horizontal cylinders publication-title: J. Colloid Interface Sci. – volume: 234 start-page: 8 year: 2013 end-page: 32 ident: br0240 article-title: Development of an immersed boundary-phase field-lattice Boltzmann method for Neumann boundary condition to study contact line dynamics publication-title: J. Comput. Phys. – volume: 296 start-page: 184 year: 2015 end-page: 208 ident: br0320 article-title: An immersed-boundary method based on the gas kinetic BGK scheme for incompressible viscous flow publication-title: J. Comput. Phys. – volume: 26 year: 2014 ident: br0020 article-title: Raindrops push and splash flying insects publication-title: Phys. Fluids – volume: 24 start-page: 142 year: 2008 end-page: 145 ident: br0490 article-title: Impact of a superhydrophobic sphere onto water publication-title: Langmuir – volume: 230 start-page: 2677 year: 2011 end-page: 2695 ident: br0310 article-title: Sources of spurious force oscillations from an immersed boundary method for moving-body problems publication-title: J. Comput. Phys. – volume: 11 start-page: 479 year: 2002 end-page: 517 ident: br0350 article-title: The immersed boundary method publication-title: Acta Numer. – volume: 645 start-page: 279 year: 2010 end-page: 294 ident: br0140 article-title: Sharp-interface limit of the Cahn–Hilliard model for moving contact lines publication-title: J. Fluid Mech. – volume: 68 start-page: 1257 year: 2012 end-page: 1298 ident: br0070 article-title: Finite element framework for describing dynamic wetting phenomena publication-title: Int. J. Numer. Methods Fluids – volume: 36 start-page: 1 year: 2013 end-page: 7 ident: br0160 article-title: On the moving contact line singularity: asymptotics of a diffuse-interface model publication-title: Eur. Phys. J. E – volume: 226 start-page: 2078 year: 2007 end-page: 2095 ident: br0380 article-title: Diffuse interface model for incompressible two-phase flows with large density ratios publication-title: J. Comput. Phys. – volume: 169 start-page: 363 year: 2001 end-page: 426 ident: br0400 article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow publication-title: J. Comput. Phys. – volume: 24 start-page: 167 year: 2008 end-page: 182 ident: br0300 article-title: A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies publication-title: J. Fluids Struct. – volume: 28 start-page: 477 year: 1996 end-page: 539 ident: br0440 article-title: Vortex dynamics in the cylinder wake publication-title: Annu. Rev. Fluid Mech. – volume: 209 start-page: 448 year: 2005 end-page: 476 ident: br0260 article-title: An immersed boundary method with direct forcing for the simulation of particulate flows publication-title: J. Comput. Phys. – volume: 295 start-page: 2418 year: 2002 ident: 10.1016/j.jcp.2017.07.017_br0050 article-title: Self-assembly at all scales publication-title: Science doi: 10.1126/science.1070821 – volume: 57 start-page: 827 year: 1985 ident: 10.1016/j.jcp.2017.07.017_br0080 article-title: Wetting: statics and dynamics publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.57.827 – volume: 196 start-page: 4779 year: 2007 ident: 10.1016/j.jcp.2017.07.017_br0330 article-title: Phase field computations for ternary fluid flows publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2007.06.016 – volume: 281 start-page: 917 year: 2015 ident: 10.1016/j.jcp.2017.07.017_br0370 article-title: An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.10.058 – volume: 402 start-page: 57 year: 2000 ident: 10.1016/j.jcp.2017.07.017_br0100 article-title: Contact-line dynamics of a diffuse fluid interface publication-title: J. Fluid Mech. doi: 10.1017/S0022112099006874 – volume: 209 start-page: 448 year: 2005 ident: 10.1016/j.jcp.2017.07.017_br0260 article-title: An immersed boundary method with direct forcing for the simulation of particulate flows publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.03.017 – volume: 36 start-page: 1 year: 2013 ident: 10.1016/j.jcp.2017.07.017_br0160 article-title: On the moving contact line singularity: asymptotics of a diffuse-interface model publication-title: Eur. Phys. J. E doi: 10.1140/epje/i2013-13026-y – volume: 11 start-page: 371 year: 1979 ident: 10.1016/j.jcp.2017.07.017_br0060 article-title: On the spreading of liquids on solid surfaces: static and dynamic contact lines publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.11.010179.002103 – volume: 57 start-page: 40 year: 2012 ident: 10.1016/j.jcp.2017.07.017_br0360 article-title: Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2011.12.006 – volume: 625 start-page: 249 year: 2009 ident: 10.1016/j.jcp.2017.07.017_br0410 article-title: Flow patterns in the sedimentation of an elliptical particle publication-title: J. Fluid Mech. doi: 10.1017/S0022112008005521 – volume: 296 start-page: 184 year: 2015 ident: 10.1016/j.jcp.2017.07.017_br0320 article-title: An immersed-boundary method based on the gas kinetic BGK scheme for incompressible viscous flow publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.04.052 – volume: 294 start-page: 484 year: 2015 ident: 10.1016/j.jcp.2017.07.017_br0180 article-title: A diffuse-interface immersed-boundary method for two-dimensional simulation of flows with moving contact lines on curved substrates publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.03.059 – volume: 28 start-page: 477 year: 1996 ident: 10.1016/j.jcp.2017.07.017_br0440 article-title: Vortex dynamics in the cylinder wake publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.28.010196.002401 – volume: 230 start-page: 2677 year: 2011 ident: 10.1016/j.jcp.2017.07.017_br0310 article-title: Sources of spurious force oscillations from an immersed boundary method for moving-body problems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.01.004 – volume: 226 start-page: 2078 year: 2007 ident: 10.1016/j.jcp.2017.07.017_br0380 article-title: Diffuse interface model for incompressible two-phase flows with large density ratios publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.06.028 – volume: 24 start-page: 142 year: 2008 ident: 10.1016/j.jcp.2017.07.017_br0490 article-title: Impact of a superhydrophobic sphere onto water publication-title: Langmuir doi: 10.1021/la702437c – volume: 26 year: 2014 ident: 10.1016/j.jcp.2017.07.017_br0020 article-title: Raindrops push and splash flying insects publication-title: Phys. Fluids doi: 10.1063/1.4865819 – volume: 228 start-page: 1504 year: 2009 ident: 10.1016/j.jcp.2017.07.017_br0430 article-title: Immersed boundary method for the simulation of 2d viscous flow based on vorticity–velocity formulations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.10.038 – volume: 109 start-page: 9822 year: 2012 ident: 10.1016/j.jcp.2017.07.017_br0010 article-title: Mosquitoes survive raindrop collisions by virtue of their low mass publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1205446109 – volume: 160 start-page: 705 year: 2000 ident: 10.1016/j.jcp.2017.07.017_br0340 article-title: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6483 – volume: 73 start-page: 817 year: 2005 ident: 10.1016/j.jcp.2017.07.017_br0500 article-title: The “cheerios effect” publication-title: Am. J. Phys. doi: 10.1119/1.1898523 – volume: 231 start-page: 5029 year: 2012 ident: 10.1016/j.jcp.2017.07.017_br0280 article-title: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.04.012 – volume: 283 start-page: 453 year: 2015 ident: 10.1016/j.jcp.2017.07.017_br0290 article-title: Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid–gas-particle systems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.11.044 – volume: 11 start-page: 479 year: 2002 ident: 10.1016/j.jcp.2017.07.017_br0350 article-title: The immersed boundary method publication-title: Acta Numer. doi: 10.1017/S0962492902000077 – volume: 47 start-page: 115 year: 2015 ident: 10.1016/j.jcp.2017.07.017_br0040 article-title: Floating versus sinking publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010814-014627 – volume: 21 year: 2009 ident: 10.1016/j.jcp.2017.07.017_br0190 article-title: The splash of a solid sphere impacting on a liquid surface: numerical simulation of the influence wetting publication-title: Phys. Fluids doi: 10.1063/1.3073968 – volume: 576 start-page: 287 year: 2007 ident: 10.1016/j.jcp.2017.07.017_br0110 article-title: Inertial effects in droplet spreading: a comparison between diffuse-interface and level-set simulations publication-title: J. Fluid Mech. doi: 10.1017/S0022112007004910 – volume: 189 start-page: 351 year: 2003 ident: 10.1016/j.jcp.2017.07.017_br0450 article-title: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method publication-title: J. Comput. Phys. doi: 10.1016/S0021-9991(03)00214-6 – volume: 37 start-page: 3077 year: 2013 ident: 10.1016/j.jcp.2017.07.017_br0220 article-title: Piecewise linear volume tracking in spherical coordinates publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2012.07.006 – volume: 227 start-page: 4825 year: 2008 ident: 10.1016/j.jcp.2017.07.017_br0270 article-title: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2008.01.028 – volume: 310 start-page: 329 year: 2016 ident: 10.1016/j.jcp.2017.07.017_br0130 article-title: Curvature boundary condition for a moving contact line publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2016.01.024 – volume: 216 start-page: 454 year: 2006 ident: 10.1016/j.jcp.2017.07.017_br0460 article-title: An immersed interface method for simulating the interaction of a fluid with moving boundaries publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.12.016 – volume: 19 start-page: 589 year: 1993 ident: 10.1016/j.jcp.2017.07.017_br0090 article-title: The moving contact line on a smooth solid-surface publication-title: Int. J. Multiph. Flow doi: 10.1016/0301-9322(93)90090-H – volume: 160 start-page: 705 year: 2000 ident: 10.1016/j.jcp.2017.07.017_br0420 article-title: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6483 – volume: 23 year: 2011 ident: 10.1016/j.jcp.2017.07.017_br0150 article-title: Wall energy relaxation in the Cahn–Hilliard model for moving contact lines publication-title: Phys. Fluids doi: 10.1063/1.3541806 – volume: 46 start-page: 97 year: 2014 ident: 10.1016/j.jcp.2017.07.017_br0170 article-title: Numerical simulations of flows with moving contact lines publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010313-141338 – volume: 37 start-page: 239 year: 2005 ident: 10.1016/j.jcp.2017.07.017_br0230 article-title: Immersed boundary methods publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.37.061903.175743 – volume: 783 start-page: 504 year: 2015 ident: 10.1016/j.jcp.2017.07.017_br0250 article-title: On the contact-line pinning in cavity formation during solid–liquid impact publication-title: J. Fluid Mech. doi: 10.1017/jfm.2015.574 – volume: 24 start-page: 167 year: 2008 ident: 10.1016/j.jcp.2017.07.017_br0300 article-title: A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2007.08.002 – volume: 169 start-page: 363 year: 2001 ident: 10.1016/j.jcp.2017.07.017_br0400 article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow publication-title: J. Comput. Phys. doi: 10.1006/jcph.2000.6542 – volume: 49 start-page: 149 year: 2010 ident: 10.1016/j.jcp.2017.07.017_br0200 article-title: Numerical simulation of the coupling problems of a solid sphere impacting on a liquid free surface publication-title: Math. Comput. Simul. – volume: 645 start-page: 279 year: 2010 ident: 10.1016/j.jcp.2017.07.017_br0140 article-title: Sharp-interface limit of the Cahn–Hilliard model for moving contact lines publication-title: J. Fluid Mech. doi: 10.1017/S0022112009992679 – year: 1883 ident: 10.1016/j.jcp.2017.07.017_br0470 – volume: 38 start-page: 339 year: 2006 ident: 10.1016/j.jcp.2017.07.017_br0030 article-title: Walking on water: biolocomotion at the interface publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fluid.38.050304.092157 – volume: 157 start-page: 261 year: 1993 ident: 10.1016/j.jcp.2017.07.017_br0510 article-title: Interaction between particles trapped at fluid interfaces 1. Exact and asymptotic solutions for the force between two horizontal cylinders publication-title: J. Colloid Interface Sci. doi: 10.1006/jcis.1993.1184 – volume: 228 start-page: 5370 year: 2009 ident: 10.1016/j.jcp.2017.07.017_br0120 article-title: A mesh-dependent model for applying dynamic contact angles to VOF simulations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2009.04.027 – volume: 68 start-page: 1257 year: 2012 ident: 10.1016/j.jcp.2017.07.017_br0070 article-title: Finite element framework for describing dynamic wetting phenomena publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.2603 – volume: 22 start-page: 2972 year: 2006 ident: 10.1016/j.jcp.2017.07.017_br0480 article-title: Sinking of a horizontal cylinder publication-title: Langmuir doi: 10.1021/la0533260 – volume: 668 start-page: 363 year: 2011 ident: 10.1016/j.jcp.2017.07.017_br0210 article-title: A numerical investigation of the propulsion of water walkers publication-title: J. Fluid Mech. doi: 10.1017/S0022112010004763 – volume: 234 start-page: 8 year: 2013 ident: 10.1016/j.jcp.2017.07.017_br0240 article-title: Development of an immersed boundary-phase field-lattice Boltzmann method for Neumann boundary condition to study contact line dynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.08.040 – volume: 325 start-page: 1053 year: 1997 ident: 10.1016/j.jcp.2017.07.017_br0390 article-title: A many-body lubrication model publication-title: C. R. Acad. Sci. doi: 10.1016/S0764-4442(97)89104-5 |
| SSID | ssj0008548 |
| Score | 2.460022 |
| Snippet | In this paper, we propose a hybrid model to compute the capillary force acting on moving solid objects, and combine it with the diffuse-interface... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 45 |
| SubjectTerms | Boundary conditions Capillarity Circular cylinders Collision dynamics Complex geometry Computational physics Computer simulation Cylinder heads Diffuse interface model Diffusion Floating structures Fluid dynamics Fluid structure interaction Immersed boundary method Mathematical models Moving contact lines Numerical analysis Object motion Self-assembly Studies Surface tension Two dimensional models Wettability Wetting |
| Title | Fluid–structure interaction involving dynamic wetting: 2D modeling and simulations |
| URI | https://dx.doi.org/10.1016/j.jcp.2017.07.017 https://www.proquest.com/docview/2069502477 |
| Volume | 348 |
| WOSCitedRecordID | wos000410899200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZgy4EL_4hCQT5wAqVKYnsdc6toS0FVhdCC9hY5_pF21WarZgs98g68IU_COB6n7aJWgIS0ilbejRN5vsxMxjPzEfKy8GBHrbGZG3OXceFdFihtM8GENdIrpftQ9pd9eXBQTafqI24XdD2dgGzb6uxMHf9XUcMYCDuUzv6FuIdJYQC-g9DhCGKH4x8JfvfwFK6JOQws9ocNuwShMcQJMoPPWtBKfSjBRkb619_cMtU-l9uRHyeVL3azI-T46q5wZU1PDZHCijFYMvjq-7PT3r7pRfbpHIrv9CKmB6PlDL400qvsaRzDYAQYuOJSMGKokrmUxBnTQFRk5dp0UdHmKs9KGesskyZmsekm6tLYZhKtciSU-E3fx9DDfHNuQu_RQvaNWGMx6Eob7bArHVouFAXotOC23iRrpRSqGpG1rfc70w-D_a4Ej_Yb7zrthfdZgSsXusqbWbHrvbMyuUfuoGjoVkTHfXLDtQ_IXXzjoKjPu4dk0oPl5_cfA0zoBZjQASYUYUIRJm9ouU0TSCiAhF4AySPyeXdn8nYvQ56NzLBSLDNjvJKNENrlVo-ld4xLw3Xuva8qO9Z2zAowg00FL_9Sl4w3XGmfgydrjZPSssdk1C5a94TQRoD_Z710BWPcG1811uQ5zC2NaRqu10me1qs22IQ-cKEc1inbcF7DEtdhiescPoVcJ6-GU45jB5br_syTEGp0IaNrWANirjttIwmsxke5g9_HSoALK-XTf5v1Gbl9_oxskBFI0j0nt8zX5aw7eYGw-wWuIKHD |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid%E2%80%93structure+interaction+involving+dynamic+wetting%3A+2D+modeling+and+simulations&rft.jtitle=Journal+of+computational+physics&rft.au=Liu%2C+Hao-Ran&rft.au=Gao%2C+Peng&rft.au=Ding%2C+Hang&rft.date=2017-11-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=348&rft.spage=45&rft.epage=65&rft_id=info:doi/10.1016%2Fj.jcp.2017.07.017&rft.externalDocID=S0021999117305193 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |