Fluid–structure interaction involving dynamic wetting: 2D modeling and simulations

In this paper, we propose a hybrid model to compute the capillary force acting on moving solid objects, and combine it with the diffuse-interface immersed-boundary method in Liu and Ding (2015) [18] to simulate fluid–structure interaction (FSI) involving dynamic wetting. Dynamic wetting is very impo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics Jg. 348; S. 45 - 65
Hauptverfasser: Liu, Hao-Ran, Gao, Peng, Ding, Hang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Elsevier Inc 01.11.2017
Elsevier Science Ltd
Schlagworte:
ISSN:0021-9991, 1090-2716
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In this paper, we propose a hybrid model to compute the capillary force acting on moving solid objects, and combine it with the diffuse-interface immersed-boundary method in Liu and Ding (2015) [18] to simulate fluid–structure interaction (FSI) involving dynamic wetting. Dynamic wetting is very important in the dynamic interaction between fluid–fluid interfaces and small moving objects. Numerical simulations of these flow problems require accurate computation of the capillary force acting on the structure, which depends on the instantaneous position of and the effective surface tension at the moving contact line. In order to achieve this, we use the diffuse-interface immersed-boundary method to simulate the dynamic wetting on moving objects, and propose a hybrid model to compute the effective surface tension at the contact line. Specifically, a diffuse interface model is used for the interface profile out of equilibrium, e.g. at the onset of formation or detachment of contact lines, and a sharp interface model is used for the interface profile at equilibrium. The performance of the method is examined by a variety of numerical experiments. We simulate the sinking of a circular cylinder due to gravity, and study the capillarity-dominated impact dynamics of a solid sphere on a water pool. In both cases the numerical results are quantitatively compared against the experimental data, and good agreements have been achieved. The momentum conservation of the system is carefully checked by studying head-on collision between a drop and a solid sphere. Finally, we apply the method to the self-assembly process of multiple floating cylinders on water surface.
AbstractList In this paper, we propose a hybrid model to compute the capillary force acting on moving solid objects, and combine it with the diffuse-interface immersed-boundary method in Liu and Ding (2015) [18] to simulate fluid–structure interaction (FSI) involving dynamic wetting. Dynamic wetting is very important in the dynamic interaction between fluid–fluid interfaces and small moving objects. Numerical simulations of these flow problems require accurate computation of the capillary force acting on the structure, which depends on the instantaneous position of and the effective surface tension at the moving contact line. In order to achieve this, we use the diffuse-interface immersed-boundary method to simulate the dynamic wetting on moving objects, and propose a hybrid model to compute the effective surface tension at the contact line. Specifically, a diffuse interface model is used for the interface profile out of equilibrium, e.g. at the onset of formation or detachment of contact lines, and a sharp interface model is used for the interface profile at equilibrium. The performance of the method is examined by a variety of numerical experiments. We simulate the sinking of a circular cylinder due to gravity, and study the capillarity-dominated impact dynamics of a solid sphere on a water pool. In both cases the numerical results are quantitatively compared against the experimental data, and good agreements have been achieved. The momentum conservation of the system is carefully checked by studying head-on collision between a drop and a solid sphere. Finally, we apply the method to the self-assembly process of multiple floating cylinders on water surface.
Author Liu, Hao-Ran
Ding, Hang
Gao, Peng
Author_xml – sequence: 1
  givenname: Hao-Ran
  surname: Liu
  fullname: Liu, Hao-Ran
– sequence: 2
  givenname: Peng
  surname: Gao
  fullname: Gao, Peng
– sequence: 3
  givenname: Hang
  surname: Ding
  fullname: Ding, Hang
  email: hding@ustc.edu.cn
BookMark eNp9kM9OwzAMxiM0JLbBA3CrxLnFSf-khRMaDJAmcRnnKEtSlKpNR5IO7cY78IY8CSnjxGGSJduyf7a-b4YmpjcKoUsMCQZcXDdJI7YJAUwTCIHpCZpiqCAmFBcTNAUgOK6qCp-hmXMNAJR5Vk7RetkOWn5_fjlvB-EHqyJtvLJceN2bUO_6dqfNWyT3hndaRB_K-9DfROQ-6nqp2nHIjYyc7oaWj5Q7R6c1b526-Mtz9Lp8WC-e4tXL4_PibhWLlOQ-FqKu6CbPuQLJC1qrNKMi41DXdVnKgssixVzKTZkBpZyk2SareA1pRaVQlMp0jq4Od7e2fx-U86zpB2vCS0agqHIgGaVhCx-2hO2ds6pmW6s7bvcMAxvNYw0L5rHRPAYh8MjQf4zQ_lect1y3R8nbA6mC8J1WljmhlRFKaquEZ7LXR-gfd5uOeQ
CitedBy_id crossref_primary_10_3934_dcdsb_2023163
crossref_primary_10_1016_j_jcp_2020_109709
crossref_primary_10_1016_j_compfluid_2025_106724
crossref_primary_10_1002_fld_4965
crossref_primary_10_1137_23M1546592
crossref_primary_10_1007_s10404_019_2268_0
crossref_primary_10_1002_fld_4826
crossref_primary_10_1016_j_cpc_2022_108558
crossref_primary_10_1016_j_jcp_2021_110659
crossref_primary_10_1016_j_camwa_2023_05_002
crossref_primary_10_1016_j_jcp_2022_111444
crossref_primary_10_1017_jfm_2018_134
crossref_primary_10_1016_j_jcp_2023_112216
crossref_primary_10_1016_j_ijmecsci_2022_107489
crossref_primary_10_1063_5_0220227
crossref_primary_10_3390_met9090944
crossref_primary_10_1016_j_cma_2024_116747
crossref_primary_10_1016_S1001_6058_16_60788_6
crossref_primary_10_1016_j_cnsns_2021_105923
crossref_primary_10_1016_j_powtec_2022_117920
crossref_primary_10_1016_j_powtec_2022_117942
crossref_primary_10_1088_1873_7005_ab6aac
crossref_primary_10_1016_j_isci_2023_106389
crossref_primary_10_1016_j_cma_2022_115291
crossref_primary_10_2351_1_5096130
crossref_primary_10_1017_jfm_2019_964
crossref_primary_10_1017_jfm_2021_14
crossref_primary_10_3390_e26020172
crossref_primary_10_1017_jfm_2023_822
crossref_primary_10_1016_j_euromechflu_2021_06_001
crossref_primary_10_1016_j_applthermaleng_2025_127970
crossref_primary_10_1016_j_jcp_2019_109089
crossref_primary_10_1016_j_jcp_2023_112345
crossref_primary_10_1016_j_compfluid_2021_105094
crossref_primary_10_1016_j_jcp_2024_113699
crossref_primary_10_1017_jfm_2023_340
Cites_doi 10.1126/science.1070821
10.1103/RevModPhys.57.827
10.1016/j.cma.2007.06.016
10.1016/j.jcp.2014.10.058
10.1017/S0022112099006874
10.1016/j.jcp.2005.03.017
10.1140/epje/i2013-13026-y
10.1146/annurev.fl.11.010179.002103
10.1016/j.compfluid.2011.12.006
10.1017/S0022112008005521
10.1016/j.jcp.2015.04.052
10.1016/j.jcp.2015.03.059
10.1146/annurev.fl.28.010196.002401
10.1016/j.jcp.2011.01.004
10.1016/j.jcp.2007.06.028
10.1021/la702437c
10.1063/1.4865819
10.1016/j.jcp.2008.10.038
10.1073/pnas.1205446109
10.1006/jcph.2000.6483
10.1119/1.1898523
10.1016/j.jcp.2012.04.012
10.1016/j.jcp.2014.11.044
10.1017/S0962492902000077
10.1146/annurev-fluid-010814-014627
10.1063/1.3073968
10.1017/S0022112007004910
10.1016/S0021-9991(03)00214-6
10.1016/j.apm.2012.07.006
10.1016/j.jcp.2008.01.028
10.1016/j.jcp.2016.01.024
10.1016/j.jcp.2005.12.016
10.1016/0301-9322(93)90090-H
10.1063/1.3541806
10.1146/annurev-fluid-010313-141338
10.1146/annurev.fluid.37.061903.175743
10.1017/jfm.2015.574
10.1016/j.jfluidstructs.2007.08.002
10.1006/jcph.2000.6542
10.1017/S0022112009992679
10.1146/annurev.fluid.38.050304.092157
10.1006/jcis.1993.1184
10.1016/j.jcp.2009.04.027
10.1002/fld.2603
10.1021/la0533260
10.1017/S0022112010004763
10.1016/j.jcp.2012.08.040
10.1016/S0764-4442(97)89104-5
ContentType Journal Article
Copyright 2017 Elsevier Inc.
Copyright Elsevier Science Ltd. Nov 1, 2017
Copyright_xml – notice: 2017 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Nov 1, 2017
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2017.07.017
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 65
ExternalDocumentID 10_1016_j_jcp_2017_07_017
S0021999117305193
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-ccf97b55ae0da67fe347c4a0fff88d6ad631addb84077a234b49af0397dce77d3
ISICitedReferencesCount 53
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000410899200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Sun Nov 30 04:18:08 EST 2025
Sat Nov 29 03:10:18 EST 2025
Tue Nov 18 22:12:01 EST 2025
Fri Feb 23 02:17:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Diffuse interface model
Wettability
Complex geometry
Fluid structure interaction
Immersed boundary method
Moving contact lines
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-ccf97b55ae0da67fe347c4a0fff88d6ad631addb84077a234b49af0397dce77d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2069502477
PQPubID 2047462
PageCount 21
ParticipantIDs proquest_journals_2069502477
crossref_primary_10_1016_j_jcp_2017_07_017
crossref_citationtrail_10_1016_j_jcp_2017_07_017
elsevier_sciencedirect_doi_10_1016_j_jcp_2017_07_017
PublicationCentury 2000
PublicationDate 2017-11-01
2017-11-00
20171101
PublicationDateYYYYMMDD 2017-11-01
PublicationDate_xml – month: 11
  year: 2017
  text: 2017-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2017
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Afkhami, Zaleski, Bussmann (br0120) 2009; 228
Xia, Connington, Rapaka, Yue, Feng, Chen (br0410) 2009; 625
Wiens, Stockie (br0370) 2015; 281
Lai, Peskin (br0420) 2000; 160
Bush, Hu (br0030) 2006; 38
Yang, Preidikman, Balaras (br0300) 2008; 24
Lee, Kim, Choi, Yang (br0310) 2011; 230
Maury (br0390) 1997; 325
Do-Quang, Amberg (br0200) 2010; 49
Dickerson, Shankles, Madhavan, Hu (br0010) 2012; 109
Dussan (br0060) 1979; 11
Yuan, Zhong, Zhang (br0320) 2015; 296
Williamson (br0440) 1996; 28
Kim (br0330) 2007; 196
Mittal, Dong, Bozkurttas, Najjar, Vargas, von Loebbecke (br0270) 2008; 227
Sibley, Nold, Savva, Kalliadasis (br0160) 2013; 36
Yang, Stern (br0280) 2012; 231
Gao, Feng (br0210) 2011; 668
Degennes (br0080) 1985; 57
Mittal, Iaccarino (br0230) 2005; 37
Jacqmin (br0100) 2000; 402
Ding, Chen, Liu, Zhang, Gao, Lu (br0250) 2015; 783
Bashforth, Adams (br0470) 1883
Sui, Ding, Spelt (br0170) 2014; 46
Vella, Mahadevan (br0500) 2005; 73
Ren, Shu, Wu, Yang (br0360) 2012; 57
Yue, Zhou, Feng (br0140) 2010; 645
Lai, Peskin (br0340) 2000; 160
Liu, Ding (br0180) 2015; 294
Fan, Bussmann (br0220) 2013; 37
Wang, Fan, Cen (br0430) 2009; 228
Peskin (br0350) 2002; 11
Dickerson, Shankles, Hu (br0020) 2014; 26
Shikhmurzaev (br0090) 1993; 19
Ding, Spelt (br0110) 2007; 576
Vella (br0040) 2015; 47
Uhlmann (br0260) 2005; 209
Shao, Shu, Chew (br0240) 2013; 234
Lee, Kim (br0490) 2008; 24
Sprittles, Shikhmurzaev (br0070) 2012; 68
Connington, Lee, Morris (br0290) 2015; 283
Whitesides, Grzybowski (br0050) 2002; 295
Luo, Hu, Adams (br0130) 2016; 310
Xu, Wang (br0460) 2006; 216
Ding, Spelt, Shu (br0380) 2007; 226
Do-Quang, Amberg (br0190) 2009; 21
Vella, Lee, Kim (br0480) 2006; 22
Glowinski, Pan, Hesla, Joseph, Periaux (br0400) 2001; 169
Lima, Silva, Silveira-Neto, Damasceno (br0450) 2003; 189
Yue, Feng (br0150) 2011; 23
Allain, Cloitre (br0510) 1993; 157
Yue (10.1016/j.jcp.2017.07.017_br0150) 2011; 23
Ding (10.1016/j.jcp.2017.07.017_br0250) 2015; 783
Maury (10.1016/j.jcp.2017.07.017_br0390) 1997; 325
Xia (10.1016/j.jcp.2017.07.017_br0410) 2009; 625
Dickerson (10.1016/j.jcp.2017.07.017_br0010) 2012; 109
Uhlmann (10.1016/j.jcp.2017.07.017_br0260) 2005; 209
Fan (10.1016/j.jcp.2017.07.017_br0220) 2013; 37
Xu (10.1016/j.jcp.2017.07.017_br0460) 2006; 216
Whitesides (10.1016/j.jcp.2017.07.017_br0050) 2002; 295
Afkhami (10.1016/j.jcp.2017.07.017_br0120) 2009; 228
Wang (10.1016/j.jcp.2017.07.017_br0430) 2009; 228
Allain (10.1016/j.jcp.2017.07.017_br0510) 1993; 157
Ren (10.1016/j.jcp.2017.07.017_br0360) 2012; 57
Shao (10.1016/j.jcp.2017.07.017_br0240) 2013; 234
Lima (10.1016/j.jcp.2017.07.017_br0450) 2003; 189
Yue (10.1016/j.jcp.2017.07.017_br0140) 2010; 645
Sibley (10.1016/j.jcp.2017.07.017_br0160) 2013; 36
Mittal (10.1016/j.jcp.2017.07.017_br0230) 2005; 37
Bush (10.1016/j.jcp.2017.07.017_br0030) 2006; 38
Vella (10.1016/j.jcp.2017.07.017_br0480) 2006; 22
Mittal (10.1016/j.jcp.2017.07.017_br0270) 2008; 227
Kim (10.1016/j.jcp.2017.07.017_br0330) 2007; 196
Vella (10.1016/j.jcp.2017.07.017_br0500) 2005; 73
Dickerson (10.1016/j.jcp.2017.07.017_br0020) 2014; 26
Do-Quang (10.1016/j.jcp.2017.07.017_br0190) 2009; 21
Yang (10.1016/j.jcp.2017.07.017_br0280) 2012; 231
Do-Quang (10.1016/j.jcp.2017.07.017_br0200) 2010; 49
Yuan (10.1016/j.jcp.2017.07.017_br0320) 2015; 296
Luo (10.1016/j.jcp.2017.07.017_br0130) 2016; 310
Glowinski (10.1016/j.jcp.2017.07.017_br0400) 2001; 169
Jacqmin (10.1016/j.jcp.2017.07.017_br0100) 2000; 402
Connington (10.1016/j.jcp.2017.07.017_br0290) 2015; 283
Ding (10.1016/j.jcp.2017.07.017_br0380) 2007; 226
Yang (10.1016/j.jcp.2017.07.017_br0300) 2008; 24
Dussan (10.1016/j.jcp.2017.07.017_br0060) 1979; 11
Lai (10.1016/j.jcp.2017.07.017_br0340) 2000; 160
Ding (10.1016/j.jcp.2017.07.017_br0110) 2007; 576
Wiens (10.1016/j.jcp.2017.07.017_br0370) 2015; 281
Williamson (10.1016/j.jcp.2017.07.017_br0440) 1996; 28
Sui (10.1016/j.jcp.2017.07.017_br0170) 2014; 46
Gao (10.1016/j.jcp.2017.07.017_br0210) 2011; 668
Vella (10.1016/j.jcp.2017.07.017_br0040) 2015; 47
Shikhmurzaev (10.1016/j.jcp.2017.07.017_br0090) 1993; 19
Lee (10.1016/j.jcp.2017.07.017_br0490) 2008; 24
Bashforth (10.1016/j.jcp.2017.07.017_br0470) 1883
Peskin (10.1016/j.jcp.2017.07.017_br0350) 2002; 11
Lee (10.1016/j.jcp.2017.07.017_br0310) 2011; 230
Sprittles (10.1016/j.jcp.2017.07.017_br0070) 2012; 68
Degennes (10.1016/j.jcp.2017.07.017_br0080) 1985; 57
Liu (10.1016/j.jcp.2017.07.017_br0180) 2015; 294
Lai (10.1016/j.jcp.2017.07.017_br0420) 2000; 160
References_xml – year: 1883
  ident: br0470
  article-title: An Attempt to Test the Theories of Capillary Action by Comparing the Theoretical and Measured Forms of Drops of Fluid
– volume: 668
  start-page: 363
  year: 2011
  end-page: 383
  ident: br0210
  article-title: A numerical investigation of the propulsion of water walkers
  publication-title: J. Fluid Mech.
– volume: 57
  start-page: 827
  year: 1985
  end-page: 863
  ident: br0080
  article-title: Wetting: statics and dynamics
  publication-title: Rev. Mod. Phys.
– volume: 21
  year: 2009
  ident: br0190
  article-title: The splash of a solid sphere impacting on a liquid surface: numerical simulation of the influence wetting
  publication-title: Phys. Fluids
– volume: 283
  start-page: 453
  year: 2015
  end-page: 477
  ident: br0290
  article-title: Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid–gas-particle systems
  publication-title: J. Comput. Phys.
– volume: 310
  start-page: 329
  year: 2016
  end-page: 341
  ident: br0130
  article-title: Curvature boundary condition for a moving contact line
  publication-title: J. Comput. Phys.
– volume: 196
  start-page: 4779
  year: 2007
  end-page: 4788
  ident: br0330
  article-title: Phase field computations for ternary fluid flows
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 46
  start-page: 97
  year: 2014
  end-page: 119
  ident: br0170
  article-title: Numerical simulations of flows with moving contact lines
  publication-title: Annu. Rev. Fluid Mech.
– volume: 22
  start-page: 2972
  year: 2006
  end-page: 2974
  ident: br0480
  article-title: Sinking of a horizontal cylinder
  publication-title: Langmuir
– volume: 295
  start-page: 2418
  year: 2002
  end-page: 2421
  ident: br0050
  article-title: Self-assembly at all scales
  publication-title: Science
– volume: 73
  start-page: 817
  year: 2005
  ident: br0500
  article-title: The “cheerios effect”
  publication-title: Am. J. Phys.
– volume: 19
  start-page: 589
  year: 1993
  end-page: 610
  ident: br0090
  article-title: The moving contact line on a smooth solid-surface
  publication-title: Int. J. Multiph. Flow
– volume: 47
  start-page: 115
  year: 2015
  end-page: 135
  ident: br0040
  article-title: Floating versus sinking
  publication-title: Annu. Rev. Fluid Mech.
– volume: 231
  start-page: 5029
  year: 2012
  end-page: 5061
  ident: br0280
  article-title: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions
  publication-title: J. Comput. Phys.
– volume: 228
  start-page: 5370
  year: 2009
  end-page: 5389
  ident: br0120
  article-title: A mesh-dependent model for applying dynamic contact angles to VOF simulations
  publication-title: J. Comput. Phys.
– volume: 37
  start-page: 239
  year: 2005
  end-page: 261
  ident: br0230
  article-title: Immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
– volume: 160
  start-page: 705
  year: 2000
  end-page: 719
  ident: br0340
  article-title: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity
  publication-title: J. Comput. Phys.
– volume: 783
  start-page: 504
  year: 2015
  end-page: 525
  ident: br0250
  article-title: On the contact-line pinning in cavity formation during solid–liquid impact
  publication-title: J. Fluid Mech.
– volume: 402
  start-page: 57
  year: 2000
  end-page: 88
  ident: br0100
  article-title: Contact-line dynamics of a diffuse fluid interface
  publication-title: J. Fluid Mech.
– volume: 227
  start-page: 4825
  year: 2008
  end-page: 4852
  ident: br0270
  article-title: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
  publication-title: J. Comput. Phys.
– volume: 189
  start-page: 351
  year: 2003
  end-page: 370
  ident: br0450
  article-title: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method
  publication-title: J. Comput. Phys.
– volume: 49
  start-page: 149
  year: 2010
  end-page: 165
  ident: br0200
  article-title: Numerical simulation of the coupling problems of a solid sphere impacting on a liquid free surface
  publication-title: Math. Comput. Simul.
– volume: 228
  start-page: 1504
  year: 2009
  end-page: 1520
  ident: br0430
  article-title: Immersed boundary method for the simulation of 2d viscous flow based on vorticity–velocity formulations
  publication-title: J. Comput. Phys.
– volume: 38
  start-page: 339
  year: 2006
  end-page: 369
  ident: br0030
  article-title: Walking on water: biolocomotion at the interface
  publication-title: Annu. Rev. Fluid Mech.
– volume: 625
  start-page: 249
  year: 2009
  end-page: 272
  ident: br0410
  article-title: Flow patterns in the sedimentation of an elliptical particle
  publication-title: J. Fluid Mech.
– volume: 11
  start-page: 371
  year: 1979
  end-page: 400
  ident: br0060
  article-title: On the spreading of liquids on solid surfaces: static and dynamic contact lines
  publication-title: Annu. Rev. Fluid Mech.
– volume: 294
  start-page: 484
  year: 2015
  end-page: 502
  ident: br0180
  article-title: A diffuse-interface immersed-boundary method for two-dimensional simulation of flows with moving contact lines on curved substrates
  publication-title: J. Comput. Phys.
– volume: 281
  start-page: 917
  year: 2015
  end-page: 941
  ident: br0370
  article-title: An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver
  publication-title: J. Comput. Phys.
– volume: 325
  start-page: 1053
  year: 1997
  end-page: 1058
  ident: br0390
  article-title: A many-body lubrication model
  publication-title: C. R. Acad. Sci.
– volume: 160
  start-page: 705
  year: 2000
  end-page: 719
  ident: br0420
  article-title: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity
  publication-title: J. Comput. Phys.
– volume: 23
  year: 2011
  ident: br0150
  article-title: Wall energy relaxation in the Cahn–Hilliard model for moving contact lines
  publication-title: Phys. Fluids
– volume: 37
  start-page: 3077
  year: 2013
  end-page: 3092
  ident: br0220
  article-title: Piecewise linear volume tracking in spherical coordinates
  publication-title: Appl. Math. Model.
– volume: 57
  start-page: 40
  year: 2012
  end-page: 51
  ident: br0360
  article-title: Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications
  publication-title: Comput. Fluids
– volume: 216
  start-page: 454
  year: 2006
  end-page: 493
  ident: br0460
  article-title: An immersed interface method for simulating the interaction of a fluid with moving boundaries
  publication-title: J. Comput. Phys.
– volume: 576
  start-page: 287
  year: 2007
  end-page: 296
  ident: br0110
  article-title: Inertial effects in droplet spreading: a comparison between diffuse-interface and level-set simulations
  publication-title: J. Fluid Mech.
– volume: 109
  start-page: 9822
  year: 2012
  end-page: 9827
  ident: br0010
  article-title: Mosquitoes survive raindrop collisions by virtue of their low mass
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 157
  start-page: 261
  year: 1993
  end-page: 268
  ident: br0510
  article-title: Interaction between particles trapped at fluid interfaces 1. Exact and asymptotic solutions for the force between two horizontal cylinders
  publication-title: J. Colloid Interface Sci.
– volume: 234
  start-page: 8
  year: 2013
  end-page: 32
  ident: br0240
  article-title: Development of an immersed boundary-phase field-lattice Boltzmann method for Neumann boundary condition to study contact line dynamics
  publication-title: J. Comput. Phys.
– volume: 296
  start-page: 184
  year: 2015
  end-page: 208
  ident: br0320
  article-title: An immersed-boundary method based on the gas kinetic BGK scheme for incompressible viscous flow
  publication-title: J. Comput. Phys.
– volume: 26
  year: 2014
  ident: br0020
  article-title: Raindrops push and splash flying insects
  publication-title: Phys. Fluids
– volume: 24
  start-page: 142
  year: 2008
  end-page: 145
  ident: br0490
  article-title: Impact of a superhydrophobic sphere onto water
  publication-title: Langmuir
– volume: 230
  start-page: 2677
  year: 2011
  end-page: 2695
  ident: br0310
  article-title: Sources of spurious force oscillations from an immersed boundary method for moving-body problems
  publication-title: J. Comput. Phys.
– volume: 11
  start-page: 479
  year: 2002
  end-page: 517
  ident: br0350
  article-title: The immersed boundary method
  publication-title: Acta Numer.
– volume: 645
  start-page: 279
  year: 2010
  end-page: 294
  ident: br0140
  article-title: Sharp-interface limit of the Cahn–Hilliard model for moving contact lines
  publication-title: J. Fluid Mech.
– volume: 68
  start-page: 1257
  year: 2012
  end-page: 1298
  ident: br0070
  article-title: Finite element framework for describing dynamic wetting phenomena
  publication-title: Int. J. Numer. Methods Fluids
– volume: 36
  start-page: 1
  year: 2013
  end-page: 7
  ident: br0160
  article-title: On the moving contact line singularity: asymptotics of a diffuse-interface model
  publication-title: Eur. Phys. J. E
– volume: 226
  start-page: 2078
  year: 2007
  end-page: 2095
  ident: br0380
  article-title: Diffuse interface model for incompressible two-phase flows with large density ratios
  publication-title: J. Comput. Phys.
– volume: 169
  start-page: 363
  year: 2001
  end-page: 426
  ident: br0400
  article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow
  publication-title: J. Comput. Phys.
– volume: 24
  start-page: 167
  year: 2008
  end-page: 182
  ident: br0300
  article-title: A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies
  publication-title: J. Fluids Struct.
– volume: 28
  start-page: 477
  year: 1996
  end-page: 539
  ident: br0440
  article-title: Vortex dynamics in the cylinder wake
  publication-title: Annu. Rev. Fluid Mech.
– volume: 209
  start-page: 448
  year: 2005
  end-page: 476
  ident: br0260
  article-title: An immersed boundary method with direct forcing for the simulation of particulate flows
  publication-title: J. Comput. Phys.
– volume: 295
  start-page: 2418
  year: 2002
  ident: 10.1016/j.jcp.2017.07.017_br0050
  article-title: Self-assembly at all scales
  publication-title: Science
  doi: 10.1126/science.1070821
– volume: 57
  start-page: 827
  year: 1985
  ident: 10.1016/j.jcp.2017.07.017_br0080
  article-title: Wetting: statics and dynamics
  publication-title: Rev. Mod. Phys.
  doi: 10.1103/RevModPhys.57.827
– volume: 196
  start-page: 4779
  year: 2007
  ident: 10.1016/j.jcp.2017.07.017_br0330
  article-title: Phase field computations for ternary fluid flows
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.06.016
– volume: 281
  start-page: 917
  year: 2015
  ident: 10.1016/j.jcp.2017.07.017_br0370
  article-title: An efficient parallel immersed boundary algorithm using a pseudo-compressible fluid solver
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.10.058
– volume: 402
  start-page: 57
  year: 2000
  ident: 10.1016/j.jcp.2017.07.017_br0100
  article-title: Contact-line dynamics of a diffuse fluid interface
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112099006874
– volume: 209
  start-page: 448
  year: 2005
  ident: 10.1016/j.jcp.2017.07.017_br0260
  article-title: An immersed boundary method with direct forcing for the simulation of particulate flows
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.03.017
– volume: 36
  start-page: 1
  year: 2013
  ident: 10.1016/j.jcp.2017.07.017_br0160
  article-title: On the moving contact line singularity: asymptotics of a diffuse-interface model
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/i2013-13026-y
– volume: 11
  start-page: 371
  year: 1979
  ident: 10.1016/j.jcp.2017.07.017_br0060
  article-title: On the spreading of liquids on solid surfaces: static and dynamic contact lines
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.11.010179.002103
– volume: 57
  start-page: 40
  year: 2012
  ident: 10.1016/j.jcp.2017.07.017_br0360
  article-title: Boundary condition-enforced immersed boundary method for thermal flow problems with Dirichlet temperature condition and its applications
  publication-title: Comput. Fluids
  doi: 10.1016/j.compfluid.2011.12.006
– volume: 625
  start-page: 249
  year: 2009
  ident: 10.1016/j.jcp.2017.07.017_br0410
  article-title: Flow patterns in the sedimentation of an elliptical particle
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112008005521
– volume: 296
  start-page: 184
  year: 2015
  ident: 10.1016/j.jcp.2017.07.017_br0320
  article-title: An immersed-boundary method based on the gas kinetic BGK scheme for incompressible viscous flow
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.04.052
– volume: 294
  start-page: 484
  year: 2015
  ident: 10.1016/j.jcp.2017.07.017_br0180
  article-title: A diffuse-interface immersed-boundary method for two-dimensional simulation of flows with moving contact lines on curved substrates
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.03.059
– volume: 28
  start-page: 477
  year: 1996
  ident: 10.1016/j.jcp.2017.07.017_br0440
  article-title: Vortex dynamics in the cylinder wake
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.28.010196.002401
– volume: 230
  start-page: 2677
  year: 2011
  ident: 10.1016/j.jcp.2017.07.017_br0310
  article-title: Sources of spurious force oscillations from an immersed boundary method for moving-body problems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.01.004
– volume: 226
  start-page: 2078
  year: 2007
  ident: 10.1016/j.jcp.2017.07.017_br0380
  article-title: Diffuse interface model for incompressible two-phase flows with large density ratios
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.06.028
– volume: 24
  start-page: 142
  year: 2008
  ident: 10.1016/j.jcp.2017.07.017_br0490
  article-title: Impact of a superhydrophobic sphere onto water
  publication-title: Langmuir
  doi: 10.1021/la702437c
– volume: 26
  year: 2014
  ident: 10.1016/j.jcp.2017.07.017_br0020
  article-title: Raindrops push and splash flying insects
  publication-title: Phys. Fluids
  doi: 10.1063/1.4865819
– volume: 228
  start-page: 1504
  year: 2009
  ident: 10.1016/j.jcp.2017.07.017_br0430
  article-title: Immersed boundary method for the simulation of 2d viscous flow based on vorticity–velocity formulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.10.038
– volume: 109
  start-page: 9822
  year: 2012
  ident: 10.1016/j.jcp.2017.07.017_br0010
  article-title: Mosquitoes survive raindrop collisions by virtue of their low mass
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1205446109
– volume: 160
  start-page: 705
  year: 2000
  ident: 10.1016/j.jcp.2017.07.017_br0340
  article-title: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6483
– volume: 73
  start-page: 817
  year: 2005
  ident: 10.1016/j.jcp.2017.07.017_br0500
  article-title: The “cheerios effect”
  publication-title: Am. J. Phys.
  doi: 10.1119/1.1898523
– volume: 231
  start-page: 5029
  year: 2012
  ident: 10.1016/j.jcp.2017.07.017_br0280
  article-title: A simple and efficient direct forcing immersed boundary framework for fluid–structure interactions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.04.012
– volume: 283
  start-page: 453
  year: 2015
  ident: 10.1016/j.jcp.2017.07.017_br0290
  article-title: Interaction of fluid interfaces with immersed solid particles using the lattice Boltzmann method for liquid–gas-particle systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.11.044
– volume: 11
  start-page: 479
  year: 2002
  ident: 10.1016/j.jcp.2017.07.017_br0350
  article-title: The immersed boundary method
  publication-title: Acta Numer.
  doi: 10.1017/S0962492902000077
– volume: 47
  start-page: 115
  year: 2015
  ident: 10.1016/j.jcp.2017.07.017_br0040
  article-title: Floating versus sinking
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010814-014627
– volume: 21
  year: 2009
  ident: 10.1016/j.jcp.2017.07.017_br0190
  article-title: The splash of a solid sphere impacting on a liquid surface: numerical simulation of the influence wetting
  publication-title: Phys. Fluids
  doi: 10.1063/1.3073968
– volume: 576
  start-page: 287
  year: 2007
  ident: 10.1016/j.jcp.2017.07.017_br0110
  article-title: Inertial effects in droplet spreading: a comparison between diffuse-interface and level-set simulations
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007004910
– volume: 189
  start-page: 351
  year: 2003
  ident: 10.1016/j.jcp.2017.07.017_br0450
  article-title: Numerical simulation of two-dimensional flows over a circular cylinder using the immersed boundary method
  publication-title: J. Comput. Phys.
  doi: 10.1016/S0021-9991(03)00214-6
– volume: 37
  start-page: 3077
  year: 2013
  ident: 10.1016/j.jcp.2017.07.017_br0220
  article-title: Piecewise linear volume tracking in spherical coordinates
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2012.07.006
– volume: 227
  start-page: 4825
  year: 2008
  ident: 10.1016/j.jcp.2017.07.017_br0270
  article-title: A versatile sharp interface immersed boundary method for incompressible flows with complex boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2008.01.028
– volume: 310
  start-page: 329
  year: 2016
  ident: 10.1016/j.jcp.2017.07.017_br0130
  article-title: Curvature boundary condition for a moving contact line
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2016.01.024
– volume: 216
  start-page: 454
  year: 2006
  ident: 10.1016/j.jcp.2017.07.017_br0460
  article-title: An immersed interface method for simulating the interaction of a fluid with moving boundaries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.12.016
– volume: 19
  start-page: 589
  year: 1993
  ident: 10.1016/j.jcp.2017.07.017_br0090
  article-title: The moving contact line on a smooth solid-surface
  publication-title: Int. J. Multiph. Flow
  doi: 10.1016/0301-9322(93)90090-H
– volume: 160
  start-page: 705
  year: 2000
  ident: 10.1016/j.jcp.2017.07.017_br0420
  article-title: An immersed boundary method with formal second-order accuracy and reduced numerical viscosity
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6483
– volume: 23
  year: 2011
  ident: 10.1016/j.jcp.2017.07.017_br0150
  article-title: Wall energy relaxation in the Cahn–Hilliard model for moving contact lines
  publication-title: Phys. Fluids
  doi: 10.1063/1.3541806
– volume: 46
  start-page: 97
  year: 2014
  ident: 10.1016/j.jcp.2017.07.017_br0170
  article-title: Numerical simulations of flows with moving contact lines
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010313-141338
– volume: 37
  start-page: 239
  year: 2005
  ident: 10.1016/j.jcp.2017.07.017_br0230
  article-title: Immersed boundary methods
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.37.061903.175743
– volume: 783
  start-page: 504
  year: 2015
  ident: 10.1016/j.jcp.2017.07.017_br0250
  article-title: On the contact-line pinning in cavity formation during solid–liquid impact
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2015.574
– volume: 24
  start-page: 167
  year: 2008
  ident: 10.1016/j.jcp.2017.07.017_br0300
  article-title: A strongly coupled, embedded-boundary method for fluid–structure interactions of elastically mounted rigid bodies
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2007.08.002
– volume: 169
  start-page: 363
  year: 2001
  ident: 10.1016/j.jcp.2017.07.017_br0400
  article-title: A fictitious domain approach to the direct numerical simulation of incompressible viscous flow past moving rigid bodies: application to particulate flow
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2000.6542
– volume: 49
  start-page: 149
  year: 2010
  ident: 10.1016/j.jcp.2017.07.017_br0200
  article-title: Numerical simulation of the coupling problems of a solid sphere impacting on a liquid free surface
  publication-title: Math. Comput. Simul.
– volume: 645
  start-page: 279
  year: 2010
  ident: 10.1016/j.jcp.2017.07.017_br0140
  article-title: Sharp-interface limit of the Cahn–Hilliard model for moving contact lines
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112009992679
– year: 1883
  ident: 10.1016/j.jcp.2017.07.017_br0470
– volume: 38
  start-page: 339
  year: 2006
  ident: 10.1016/j.jcp.2017.07.017_br0030
  article-title: Walking on water: biolocomotion at the interface
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fluid.38.050304.092157
– volume: 157
  start-page: 261
  year: 1993
  ident: 10.1016/j.jcp.2017.07.017_br0510
  article-title: Interaction between particles trapped at fluid interfaces 1. Exact and asymptotic solutions for the force between two horizontal cylinders
  publication-title: J. Colloid Interface Sci.
  doi: 10.1006/jcis.1993.1184
– volume: 228
  start-page: 5370
  year: 2009
  ident: 10.1016/j.jcp.2017.07.017_br0120
  article-title: A mesh-dependent model for applying dynamic contact angles to VOF simulations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2009.04.027
– volume: 68
  start-page: 1257
  year: 2012
  ident: 10.1016/j.jcp.2017.07.017_br0070
  article-title: Finite element framework for describing dynamic wetting phenomena
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2603
– volume: 22
  start-page: 2972
  year: 2006
  ident: 10.1016/j.jcp.2017.07.017_br0480
  article-title: Sinking of a horizontal cylinder
  publication-title: Langmuir
  doi: 10.1021/la0533260
– volume: 668
  start-page: 363
  year: 2011
  ident: 10.1016/j.jcp.2017.07.017_br0210
  article-title: A numerical investigation of the propulsion of water walkers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112010004763
– volume: 234
  start-page: 8
  year: 2013
  ident: 10.1016/j.jcp.2017.07.017_br0240
  article-title: Development of an immersed boundary-phase field-lattice Boltzmann method for Neumann boundary condition to study contact line dynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.08.040
– volume: 325
  start-page: 1053
  year: 1997
  ident: 10.1016/j.jcp.2017.07.017_br0390
  article-title: A many-body lubrication model
  publication-title: C. R. Acad. Sci.
  doi: 10.1016/S0764-4442(97)89104-5
SSID ssj0008548
Score 2.460022
Snippet In this paper, we propose a hybrid model to compute the capillary force acting on moving solid objects, and combine it with the diffuse-interface...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 45
SubjectTerms Boundary conditions
Capillarity
Circular cylinders
Collision dynamics
Complex geometry
Computational physics
Computer simulation
Cylinder heads
Diffuse interface model
Diffusion
Floating structures
Fluid dynamics
Fluid structure interaction
Immersed boundary method
Mathematical models
Moving contact lines
Numerical analysis
Object motion
Self-assembly
Studies
Surface tension
Two dimensional models
Wettability
Wetting
Title Fluid–structure interaction involving dynamic wetting: 2D modeling and simulations
URI https://dx.doi.org/10.1016/j.jcp.2017.07.017
https://www.proquest.com/docview/2069502477
Volume 348
WOSCitedRecordID wos000410899200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZgy4EL_4hCQT5wAqVKYnsdc6toS0FVhdCC9hY5_pF21WarZgs98g68IU_COB6n7aJWgIS0ilbejRN5vsxMxjPzEfKy8GBHrbGZG3OXceFdFihtM8GENdIrpftQ9pd9eXBQTafqI24XdD2dgGzb6uxMHf9XUcMYCDuUzv6FuIdJYQC-g9DhCGKH4x8JfvfwFK6JOQws9ocNuwShMcQJMoPPWtBKfSjBRkb619_cMtU-l9uRHyeVL3azI-T46q5wZU1PDZHCijFYMvjq-7PT3r7pRfbpHIrv9CKmB6PlDL400qvsaRzDYAQYuOJSMGKokrmUxBnTQFRk5dp0UdHmKs9KGesskyZmsekm6tLYZhKtciSU-E3fx9DDfHNuQu_RQvaNWGMx6Eob7bArHVouFAXotOC23iRrpRSqGpG1rfc70w-D_a4Ej_Yb7zrthfdZgSsXusqbWbHrvbMyuUfuoGjoVkTHfXLDtQ_IXXzjoKjPu4dk0oPl5_cfA0zoBZjQASYUYUIRJm9ouU0TSCiAhF4AySPyeXdn8nYvQ56NzLBSLDNjvJKNENrlVo-ld4xLw3Xuva8qO9Z2zAowg00FL_9Sl4w3XGmfgydrjZPSssdk1C5a94TQRoD_Z710BWPcG1811uQ5zC2NaRqu10me1qs22IQ-cKEc1inbcF7DEtdhiescPoVcJ6-GU45jB5br_syTEGp0IaNrWANirjttIwmsxke5g9_HSoALK-XTf5v1Gbl9_oxskBFI0j0nt8zX5aw7eYGw-wWuIKHD
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fluid%E2%80%93structure+interaction+involving+dynamic+wetting%3A+2D+modeling+and+simulations&rft.jtitle=Journal+of+computational+physics&rft.au=Liu%2C+Hao-Ran&rft.au=Gao%2C+Peng&rft.au=Ding%2C+Hang&rft.date=2017-11-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=348&rft.spage=45&rft.epage=65&rft_id=info:doi/10.1016%2Fj.jcp.2017.07.017&rft.externalDocID=S0021999117305193
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon