On the sharpness of error bounds in connection with finite difference schemes on uniform grids for boundary value problems of ordinary differential equations

For linear two-point boundary value problems of ordinary differential equations, some convergence properties of approximate solutions Y h obtained by standard finite difference schemes on uniform grids are discussed. By means of discrete Green's functions a representation of the error Y h -Y in...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 12; číslo 3-4; s. 285 - 298
Hlavní autoři: Büttgenbach, B., Esser, H., Nessel, R. J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Marcel Dekker, Inc 01.01.1991
Taylor & Francis
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:For linear two-point boundary value problems of ordinary differential equations, some convergence properties of approximate solutions Y h obtained by standard finite difference schemes on uniform grids are discussed. By means of discrete Green's functions a representation of the error Y h -Y in functional dependence on the exact solution Y is employed to prove the sharpness (with regard to the order) of well-known error estimates in terms of moduli of smoothness of derivatives of Y.
ISSN:0163-0563
1532-2467
DOI:10.1080/01630569108816429