Stieltjes continued fraction and QD algorithm: scalar, vector, and matrix cases

The definition, in previous studies, of vector Stieltjes continued fractions in connection with spectral properties of band operators with intermediate zero diagonals, left unsolved the question of a direct definition of their coefficients in terms of the original data, a vector of Stieltjes series....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 384; s. 21 - 42
Hlavní autor: Van Iseghem, Jeannette
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.06.2004
Elsevier Science
Témata:
ISSN:0024-3795, 1873-1856
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The definition, in previous studies, of vector Stieltjes continued fractions in connection with spectral properties of band operators with intermediate zero diagonals, left unsolved the question of a direct definition of their coefficients in terms of the original data, a vector of Stieltjes series. The subject was more undefined in the matrix case. A new version of the QD algorithm for matrix problem, allows to extend to the vector and matrix cases the result of Stieltjes, expansion of a (scalar) function in terms of a Stieltjes continued fraction. Beside this connection, it solves the inverse Miura transform and gives interesting identities between general band matrix and sparse band matrix. Finally, as a consequence, we extend to some dynamical systems a method known for Toda lattices.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2003.12.032