Eventually nonnegative matrices are similar to seminonnegative matrices

In this paper, it is shown that the necessary and sufficient conditions on the Jordan form of a seminonnegative matrix, identified by Zaslavsky and McDonald, are in fact necessary and sufficient conditions on the Jordan form of every eventually nonnegative matrix. Thus every eventually nonnegative m...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Linear algebra and its applications Ročník 381; s. 245 - 258
Hlavní autoři: Carnochan Naqvi, Sarah, McDonald, Judith J.
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY Elsevier Inc 01.04.2004
Elsevier Science
Témata:
ISSN:0024-3795, 1873-1856
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, it is shown that the necessary and sufficient conditions on the Jordan form of a seminonnegative matrix, identified by Zaslavsky and McDonald, are in fact necessary and sufficient conditions on the Jordan form of every eventually nonnegative matrix. Thus every eventually nonnegative matrix is similar to a seminonnegative matrix. In [Linear Algebra Appl. 372 (2003) 253], they show that several of the combinatorial properties of reducible nonnegative matrices carry over to reducible seminonnegative matrices. In this paper it is shown that a property on the index of cyclicity of an irreducible nonnegative matrix carries over to the seminonnegative matrices.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2003.11.021