Approximations to fixed points of contraction semigroups in hilbert spaces

Sequences (or curves) are constructed to approximate common fixed points of a pair of nonex-pansive mappings (or contraction semigroups) in Hilbert spaces. The obtained results extend the previously known results from a single mapping to a family of mappings.

Uloženo v:
Podrobná bibliografie
Vydáno v:Numerical functional analysis and optimization Ročník 19; číslo 1-2; s. 157 - 163
Hlavní autor: Xu, Hong-Kun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Philadelphia, PA Marcel Dekker, Inc 01.01.1998
Taylor & Francis
Témata:
ISSN:0163-0563, 1532-2467
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Sequences (or curves) are constructed to approximate common fixed points of a pair of nonex-pansive mappings (or contraction semigroups) in Hilbert spaces. The obtained results extend the previously known results from a single mapping to a family of mappings.
AbstractList Sequences (or curves) are constructed to approximate common fixed points of a pair of nonex-pansive mappings (or contraction semigroups) in Hilbert spaces. The obtained results extend the previously known results from a single mapping to a family of mappings.
Author Xu, Hong-Kun
Author_xml – sequence: 1
  givenname: Hong-Kun
  surname: Xu
  fullname: Xu, Hong-Kun
  organization: Department of Mathematics , University of Durban
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=2333121$$DView record in Pascal Francis
BookMark eNp9kM1OwzAQhC1UJNrCA3DzgWvAG5PEkbhUFb-qxAXOkWOvwSi1I9uI9u1JKHAAwWmlmflWuzMjE-cdEnIM7BSYYGcMSs6KshZMCChFDntkCgXPs_y8rCZkOvrZEOAHZBbjC2OM57WYkrtF3we_sWuZrHeRJk-N3aCmvbcuReoNVd6lINXo04hr-xT8ax-pdfTZdi2GRGMvFcZDsm9kF_Hoc87J49Xlw_ImW91f3y4Xq0zxvEiZYroGU6FRdVsqoaBtWwmIuhW10lipAnGQhakGEQC4xlpggbqqDGrT8jk52e3tZVSyM0E6ZWPTh-GJsG1yzjnkMMRgF1PBxxjQfCeANWNnza_OBqb6wSibPpoZGrDdv-TFjrTO-LCWbz50ukly2_nwdSH_G38HHAyHmg
CODEN NFAODL
CitedBy_id crossref_primary_10_1017_S000497270003519X
crossref_primary_10_1007_s11784_018_0483_z
crossref_primary_10_1016_j_na_2009_04_033
crossref_primary_10_1016_j_jmaa_2007_05_021
crossref_primary_10_1155_2011_643740
crossref_primary_10_1016_j_mcm_2011_05_016
crossref_primary_10_5402_2011_484061
crossref_primary_10_1007_s10114_010_7446_7
crossref_primary_10_1007_s10898_011_9835_6
crossref_primary_10_1016_j_aml_2006_09_003
ContentType Journal Article
Copyright Copyright Taylor & Francis Group, LLC 1998
1998 INIST-CNRS
Copyright_xml – notice: Copyright Taylor & Francis Group, LLC 1998
– notice: 1998 INIST-CNRS
DBID AAYXX
CITATION
IQODW
DOI 10.1080/01630569808816821
DatabaseName CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1532-2467
EndPage 163
ExternalDocumentID 2333121
10_1080_01630569808816821
8816821
GroupedDBID -~X
.7F
.QJ
0BK
0R~
123
1TA
30N
4.4
5VS
AAENE
AAGDL
AAHIA
AAJMT
AALDU
AAMIU
AAPUL
AAQRR
ABCCY
ABEFU
ABFIM
ABHAV
ABJNI
ABLIJ
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ACAGQ
ACGEJ
ACGFS
ACIWK
ACTIO
ADCVX
ADGTB
ADXPE
AEISY
AENEX
AEOZL
AEPSL
AEYOC
AFKVX
AFRVT
AGDLA
AGMYJ
AGROQ
AHDZW
AHMOU
AIJEM
AIYEW
AJWEG
AKBVH
AKOOK
ALCKM
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AMEWO
AMVHM
AQRUH
AQTUD
AVBZW
AWYRJ
BLEHA
CAG
CCCUG
CE4
COF
CRFIH
CS3
DGEBU
DKSSO
DMQIW
DU5
EBS
EJD
ESX
E~A
E~B
GTTXZ
H13
HZ~
H~P
IPNFZ
J.P
KYCEM
M4Z
NA5
NHB
NUSFT
NY~
O9-
P2P
PQQKQ
QCRFL
RIG
RNANH
ROSJB
RTWRZ
S-T
SNACF
TASJS
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TOXWX
TTHFI
TUROJ
TWF
UT5
UU3
YNT
YQT
ZGOLN
~S~
.4S
.DC
07G
29N
AAIKQ
AAKBW
AAYXX
ABDBF
ACGEE
ACTCW
ACUHS
AEUMN
AGCQS
AGLEN
AMXXU
ARCSS
BCCOT
BPLKW
C06
CITATION
DWIFK
EAP
EDO
EMK
EPL
EST
HF~
I-F
IVXBP
LJTGL
TAQ
TFMCV
TUS
UB9
UU8
V3K
V4Q
ADYSH
IQODW
ID FETCH-LOGICAL-c325t-c0d91f7efc9b6c8c1bbba1eedb89cde7c5eec8c8f71ee1113de98e5ed77fedfb3
IEDL.DBID TFW
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000072390400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0163-0563
IngestDate Mon Jul 21 09:14:41 EDT 2025
Tue Nov 18 22:27:40 EST 2025
Sat Nov 29 01:37:27 EST 2025
Mon Oct 20 23:35:32 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords Hilbert space
Semigroup
Approximation theory
Fix point
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-c0d91f7efc9b6c8c1bbba1eedb89cde7c5eec8c8f71ee1113de98e5ed77fedfb3
PageCount 7
ParticipantIDs pascalfrancis_primary_2333121
informaworld_taylorfrancis_310_1080_01630569808816821
crossref_primary_10_1080_01630569808816821
crossref_citationtrail_10_1080_01630569808816821
PublicationCentury 1900
PublicationDate 1/1/1998
1998-01-00
1998
PublicationDateYYYYMMDD 1998-01-01
PublicationDate_xml – month: 01
  year: 1998
  text: 1/1/1998
  day: 01
PublicationDecade 1990
PublicationPlace Philadelphia, PA
PublicationPlace_xml – name: Philadelphia, PA
PublicationTitle Numerical functional analysis and optimization
PublicationYear 1998
Publisher Marcel Dekker, Inc
Taylor & Francis
Publisher_xml – name: Marcel Dekker, Inc
– name: Taylor & Francis
References Browder F.E. (CIT0003) 1967; 24
Opial Z. (CIT0010) 1967; 73
CIT0001
Halpern B (CIT0006) 1967; 73
Baillon J.B. (CIT0002) 1976; 2
Watson B. (CIT0013) 1992; 58
Xu H.K. (CIT0015) 1997; 324
Xu H.K. (CIT0014) 1995; 24
Marino G. (CIT0008) 1992; 34
Morales C.H. (CIT0009) 1990; 16
Shimizu T. (CIT0012) 1997; 211
Reich S. (CIT0011) 1980; 75
CIT0005
CIT0004
CIT0007
References_xml – volume: 34
  start-page: 91
  year: 1992
  ident: CIT0008
  publication-title: On approximating fixed points for nonexpansive maps
– volume: 73
  start-page: 957
  year: 1967
  ident: CIT0006
  publication-title: Fixed points of nonexpanding maps
– volume: 73
  start-page: 595
  year: 1967
  ident: CIT0010
  publication-title: Weak convergence of the sequence of successive approximations for nonexpansive mappings
– volume: 24
  start-page: 223
  year: 1995
  ident: CIT0014
  publication-title: Strong convergence theorems for nonexpansive nonself-mappings
– volume: 75
  start-page: 287
  year: 1980
  ident: CIT0011
  publication-title: Strong cconvergence theorems for resolvents of accretive operators in Banach spaces
– volume: 324
  volume-title: Approximating curves of nonexpansive nonself-mappings in Banach spaces
  year: 1997
  ident: CIT0015
– volume: 211
  start-page: 71
  year: 1997
  ident: CIT0012
  publication-title: Strong convergence to common fixed points of families of nonexpansive mappings
– volume: 24
  start-page: 82
  year: 1967
  ident: CIT0003
  publication-title: Convergence of approximations to fixed points of nonexpansive nonlinear mappings in Banach spaces
– volume: 16
  start-page: 549
  year: 1990
  ident: CIT0009
  publication-title: Strong convergence theorems for pseudo-contractive mappings in Banach space
– volume: 2
  start-page: 5
  year: 1976
  ident: CIT0002
  publication-title: Une remarque sur le comportement asymptotique des semigroupes non linéaires
– ident: CIT0001
– ident: CIT0007
– ident: CIT0004
– ident: CIT0005
– volume: 58
  start-page: 486
  year: 1992
  ident: CIT0013
  publication-title: Approximation of fixed points of nonexpansive mappings
SSID ssj0003298
Score 1.5057484
Snippet Sequences (or curves) are constructed to approximate common fixed points of a pair of nonex-pansive mappings (or contraction semigroups) in Hilbert spaces. The...
SourceID pascalfrancis
crossref
informaworld
SourceType Index Database
Enrichment Source
Publisher
StartPage 157
SubjectTerms 1991 Mathematics Subject Classification Primary 47H20
1991 mathematics subject classification primary Secondary 47H10
1991 Mathematics Subject Classification. Primary 47H09
contraction semigroup
Exact sciences and technology
Fixed point
Hilbert space
Mathematics
Numerical analysis
Numerical analysis in abstract spaces
Numerical analysis. Scientific computation
Sciences and techniques of general use
strong convergence
Title Approximations to fixed points of contraction semigroups in hilbert spaces
URI https://www.tandfonline.com/doi/abs/10.1080/01630569808816821
Volume 19
WOSCitedRecordID wos000072390400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals
  customDbUrl:
  eissn: 1532-2467
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003298
  issn: 0163-0563
  databaseCode: TFW
  dateStart: 19790101
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFA8yPOjBb3HqJAdPQrFp1jU5DnGI4PAwcbeSpAkWtBtLlf35vqQfbCI76DUkr21e8t5L-t7vh9B1BDGQlHEUDDLiSnJCHfAkDMEYMsGE1LEg0pNNJOMxm075c52bY-u0SneGNhVQhLfVbnMLaZuMuFuIUlzgy0GeY43wZeTg9t22nIxeWztMI8-E63oH0J02_zR_k7DmldYwS12ypLAwX6YiuljxPqP9f773Adqrw048rNbJIdrSxRHafWoxW-0xehw6ePFlXtUyWlzOsMmXOsPzWV6UFs8M9nntVSUEtvoj9yUhFucFfssdVlaJwT6B4TlBL6P7yd1DUDMtBIpGcRmoMOPEJNooLgeKKSKlFATcp2RcZTpRsdbQzEwCjY6cPtOc6VhnSWJ0ZiQ9RZ1iVugzhIXqQ4g1IEZI06cKVA4HrFhmnEn4ckK7KGxmOlU1DLljw3hPSYNW-nOauuimHTKvMDg2dY5X1ZeW_uKjVl5KN4zrrem5fVJEKSUROf-j3Au0U5UxulubS9QpF5-6h7bVV5nbxZVfsd91xOoG
linkProvider Taylor & Francis
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5SBfXgW6xazcGTsLjZNN3kWMTioy0eKva2bF64oNvSrNKfb7IvWpEe9BqS7G4mOzOZzHwfAFeB9YE4J4HXkciV5PjKY6HvW2VIYxpzRWLEc7KJcDik4zF7LgNupkyrdGdoXQBF5Lra_dwuGF2lxN1YN8V5vsxO6GgjXB35OrF21mHnj3qvtSbGQc6F67p7tj-ubjV_m2LJLi2hlrp0ydjYFdMF1cWC_ent_vfN98BO6XnCbrFV9sGaSg_A9qCGbTWH4LHrEMbnSVHOaGA2gTqZKwmnkyTNDJxomKe2F8UQ0KiPJK8KMTBJ4Vvi4LIyaFWU1T1H4KV3N7q990qyBU_ggGSe8CVDOlRaMN4RVCDOeYysBeWUCalCQZSyzVSHttHx00vFqCJKhqFWUnN8DBrpJFUnAMaibb2sDtIx120srNTtGYtwySi3X45wE_jVUkeiRCJ3hBjvEaoAS38uUxNc10OmBQzHqs5kUX5Rlsc-SulFeMW41pKg6ycFGGMUoNM_znsJNu9Hg37Ufxg-nYGtoqrRBXHOQSObfaoW2BBfWWJmF_n2_QZFZe4w
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwELZQQQgG3ogCBQ9MSBFx3CT2WAEVz6pDEd2i-CUiQVLVAfXnY-elFqEOsFpnJ_Fdzmf77vsAuPBMDMSY7zmBQLYkx5UODV3XOEMSk5hJP0asIJsIBwMyHtNhlZujq7RKu4dWJVBE4avtzz0Rqs6IuzJRig18qRnPskbYMvJVEzYH1sBH_dfGEWOvoMK14o6Rx_Wl5m9DLCxLC6ClNlsy1mbCVMl0Mbf89Lf_-eI7YKuKO2GvNJRdsCLTPbD53IC26n3w0LP44rOkLGbUMM-gSmZSwEmWpLmGmYJFYntZCgG1_EiKmhANkxS-JRYsK4fGQRnPcwBe-rej6zunolpwOPb83OGuoEiFUnHKAk44YozFyKyfjFAuZMh9KU0zUaFptOz0QlIifSnCUEmhGD4ErTRL5RGAMe-aGCtAKmaqi7nRudlh-UxQwsyXI9wGbj3TEa9wyC0dxnuEarjSn9PUBpdNl0kJwrFM2J9XX5QXJx-V8iK8pF9nQc_NkzyMMfLQ8R_HPQfrw5t-9HQ_eDwBG2VJoz3BOQWtfPopO2CNf-WJnp4VxvsNirns4g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximations+to+fixed+points+of+contraction+semigroups+in+Hilbert+spaces&rft.jtitle=Numerical+functional+analysis+and+optimization&rft.au=XU%2C+H.-K&rft.date=1998&rft.pub=Taylor+%26+Francis&rft.issn=0163-0563&rft.volume=19&rft.issue=1-2&rft.spage=157&rft.epage=163&rft_id=info:doi/10.1080%2F01630569808816821&rft.externalDBID=n%2Fa&rft.externalDocID=2333121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0163-0563&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0163-0563&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0163-0563&client=summon