A 3D non-orthogonal plastic damage model for concrete
A plastic damage model with the non-orthogonal flow rule is developed, which is consisted of the damage part driven by plastic strain and the plastic part based on effective stress. In the damage characterization, the degeneration law of elastic stiffness is described by the damage variable in the f...
Gespeichert in:
| Veröffentlicht in: | Computer methods in applied mechanics and engineering Jg. 360; S. 112716 |
|---|---|
| Hauptverfasser: | , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.03.2020
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0045-7825 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | A plastic damage model with the non-orthogonal flow rule is developed, which is consisted of the damage part driven by plastic strain and the plastic part based on effective stress. In the damage characterization, the degeneration law of elastic stiffness is described by the damage variable in the form of exponential function. In the plastic characterization, the evolution for plastic strain increment (PSI) is characterized from the magnitude and direction perspective. The direction of PSI is obtained directly by the fractional gradient of yield surface and the need for the construction of plastic potential function is bypassed. The magnitude of PSI is calculated based on the effective hardening function and the yield function, where the effective hardening function corresponding to the undamaged material is derived by both the normal hardening/softening function corresponding to the damaged material and the damage variable. The Next Increment Corrects Error (NICE) algorithm integrating the computational accuracy and efficiency is used for the numerical implementation of model. The ability of model to capture the complex mechanical behavior of concrete is assessed by the monotonous and cyclic test data from the literature.
•Plastic flow direction is determined based on the non-orthogonal flow rule.•Effective hardening function is obtained by normal hardening and damage behavior.•Permanent deformation and stiffness degradation behavior of concrete is captured.•Numerical implement of model integrates computational accuracy and efficiency. |
|---|---|
| AbstractList | A plastic damage model with the non-orthogonal flow rule is developed, which is consisted of the damage part driven by plastic strain and the plastic part based on effective stress. In the damage characterization, the degeneration law of elastic stiffness is described by the damage variable in the form of exponential function. In the plastic characterization, the evolution for plastic strain increment (PSI) is characterized from the magnitude and direction perspective. The direction of PSI is obtained directly by the fractional gradient of yield surface and the need for the construction of plastic potential function is bypassed. The magnitude of PSI is calculated based on the effective hardening function and the yield function, where the effective hardening function corresponding to the undamaged material is derived by both the normal hardening/softening function corresponding to the damaged material and the damage variable. The Next Increment Corrects Error (NICE) algorithm integrating the computational accuracy and efficiency is used for the numerical implementation of model. The ability of model to capture the complex mechanical behavior of concrete is assessed by the monotonous and cyclic test data from the literature. A plastic damage model with the non-orthogonal flow rule is developed, which is consisted of the damage part driven by plastic strain and the plastic part based on effective stress. In the damage characterization, the degeneration law of elastic stiffness is described by the damage variable in the form of exponential function. In the plastic characterization, the evolution for plastic strain increment (PSI) is characterized from the magnitude and direction perspective. The direction of PSI is obtained directly by the fractional gradient of yield surface and the need for the construction of plastic potential function is bypassed. The magnitude of PSI is calculated based on the effective hardening function and the yield function, where the effective hardening function corresponding to the undamaged material is derived by both the normal hardening/softening function corresponding to the damaged material and the damage variable. The Next Increment Corrects Error (NICE) algorithm integrating the computational accuracy and efficiency is used for the numerical implementation of model. The ability of model to capture the complex mechanical behavior of concrete is assessed by the monotonous and cyclic test data from the literature. •Plastic flow direction is determined based on the non-orthogonal flow rule.•Effective hardening function is obtained by normal hardening and damage behavior.•Permanent deformation and stiffness degradation behavior of concrete is captured.•Numerical implement of model integrates computational accuracy and efficiency. |
| ArticleNumber | 112716 |
| Author | Wang, Guosheng Du, Xiuli Zhou, Xin Lu, Dechun Meng, Fanping |
| Author_xml | – sequence: 1 givenname: Xin surname: Zhou fullname: Zhou, Xin email: zhouxin@emails.bjut.edu.cn – sequence: 2 givenname: Dechun surname: Lu fullname: Lu, Dechun email: dechun@bjut.edu.cn – sequence: 3 givenname: Xiuli surname: Du fullname: Du, Xiuli email: duxiuli@bjut.edu.cn – sequence: 4 givenname: Guosheng surname: Wang fullname: Wang, Guosheng email: wangguosheng-12345@163.com – sequence: 5 givenname: Fanping surname: Meng fullname: Meng, Fanping email: mengfanping@emails.bjut.edu.cn |
| BookMark | eNp9kLtOwzAUhj0UibbwAGyRmBN8TyKmqlylSiwwW74WR0lcbBeJtydVmBh6lrP8369zvhVYjGG0ANwgWCGI-F1X6UFWGKK2QgjXiC_AEkLKyrrB7BKsUurgNA3CS8A2BXkopoIyxPwZ9mGUfXHoZcpeF0YOcm-LIRjbFy7EQodRR5vtFbhwsk_2-m-vwcfT4_v2pdy9Pb9uN7tSE8xyqZyinDZcEmNb5ijm0CiIEedIc0c0Z0xJ17ROQdq2TClaI2cxUQ46ZVpF1uB27j3E8HW0KYsuHON0YhKYMMIRpaieUvWc0jGkFK0T2meZfRhzlL4XCIqTF9GJyYs4eRGzl4lE_8hD9IOMP2eZ-5mx0-Pf3kaRtLejtsZHq7MwwZ-hfwHGrn1V |
| CitedBy_id | crossref_primary_10_1016_j_cscm_2025_e04432 crossref_primary_10_1016_j_conbuildmat_2025_141592 crossref_primary_10_1016_j_ijsolstr_2025_113281 crossref_primary_10_1016_j_istruc_2025_108230 crossref_primary_10_1038_s41598_024_69316_4 crossref_primary_10_1007_s10338_021_00240_0 crossref_primary_10_3390_pr12081602 crossref_primary_10_1016_j_istruc_2024_107936 crossref_primary_10_1038_s41598_023_30257_z crossref_primary_10_1061_JMCEE7_MTENG_17503 crossref_primary_10_3390_buildings14092739 crossref_primary_10_1016_j_soildyn_2024_108477 crossref_primary_10_3389_fmats_2025_1542655 crossref_primary_10_1016_j_sandf_2025_101686 crossref_primary_10_1061__ASCE_EM_1943_7889_0002050 crossref_primary_10_1016_j_enggeo_2024_107647 crossref_primary_10_3389_fmats_2024_1481871 crossref_primary_10_3390_ma15217802 crossref_primary_10_1080_15376494_2024_2372699 crossref_primary_10_1007_s11771_025_5901_y crossref_primary_10_1080_15376494_2024_2438906 crossref_primary_10_1007_s11440_023_02051_8 crossref_primary_10_1016_j_conbuildmat_2024_135791 crossref_primary_10_1016_j_cscm_2023_e02568 crossref_primary_10_1080_15376494_2024_2436648 crossref_primary_10_1016_j_conbuildmat_2022_126586 crossref_primary_10_1016_j_conbuildmat_2025_142471 crossref_primary_10_1016_j_engstruct_2024_118233 crossref_primary_10_1016_j_coldregions_2025_104608 crossref_primary_10_1016_j_conbuildmat_2023_132304 crossref_primary_10_3390_buildings14092825 crossref_primary_10_1016_j_istruc_2024_106837 crossref_primary_10_1186_s40537_025_01081_1 crossref_primary_10_1080_15376494_2024_2404994 crossref_primary_10_1016_j_compgeo_2021_104391 crossref_primary_10_1061_IJGNAI_GMENG_10928 crossref_primary_10_3390_buildings15122066 crossref_primary_10_1016_j_mtcomm_2022_103137 crossref_primary_10_1080_15376494_2024_2368669 crossref_primary_10_1016_j_cscm_2024_e03967 crossref_primary_10_3390_buildings15162849 crossref_primary_10_1016_j_ijplas_2022_103279 crossref_primary_10_3390_buildings13092124 crossref_primary_10_1016_j_compgeo_2022_104971 crossref_primary_10_1016_j_compgeo_2025_107224 crossref_primary_10_1016_j_compgeo_2025_107587 crossref_primary_10_1016_j_engfracmech_2022_108714 crossref_primary_10_1016_j_tafmec_2024_104448 crossref_primary_10_1016_j_cscm_2025_e04258 crossref_primary_10_1080_15376494_2024_2439545 crossref_primary_10_1016_j_cscm_2024_e03763 crossref_primary_10_1061_JENMDT_EMENG_8092 crossref_primary_10_3390_buildings15030449 crossref_primary_10_1016_j_fuel_2025_134977 crossref_primary_10_1016_j_ijplas_2024_104040 crossref_primary_10_1680_jmacr_24_00172 crossref_primary_10_1016_j_jobe_2024_108670 crossref_primary_10_1016_j_scp_2024_101763 crossref_primary_10_32604_cmes_2023_030194 crossref_primary_10_1061_JENMDT_EMENG_7206 crossref_primary_10_1080_15376494_2024_2448302 crossref_primary_10_1007_s00419_022_02353_5 crossref_primary_10_1016_j_conbuildmat_2025_139897 crossref_primary_10_1016_j_cscm_2022_e00885 crossref_primary_10_1016_j_tafmec_2025_104912 crossref_primary_10_3390_w17121763 crossref_primary_10_1007_s11440_023_01848_x crossref_primary_10_1080_15376494_2024_2412310 crossref_primary_10_1080_15376494_2024_2361458 crossref_primary_10_3390_buildings14124006 crossref_primary_10_1016_j_engfailanal_2024_108607 crossref_primary_10_3389_fbioe_2024_1511099 crossref_primary_10_1016_j_istruc_2023_105502 crossref_primary_10_1007_s00603_024_04150_8 crossref_primary_10_1016_j_scitotenv_2023_167957 crossref_primary_10_1080_15376494_2024_2447065 crossref_primary_10_1002_nag_3503 crossref_primary_10_1002_nag_3942 crossref_primary_10_1016_j_compgeo_2025_107242 crossref_primary_10_1061_JMCEE7_MTENG_19133 crossref_primary_10_3390_ma16134729 crossref_primary_10_1007_s11837_025_07257_7 crossref_primary_10_1080_1064119X_2025_2516253 |
| Cites_doi | 10.1016/j.ijsolstr.2011.11.020 10.1016/j.jmps.2018.06.019 10.1680/macr.2007.59.1.69 10.1002/nme.2737 10.1016/0020-7683(89)90050-4 10.1016/0020-7683(89)90015-2 10.1016/0045-7825(85)90070-2 10.1016/j.ijsolstr.2006.06.032 10.1016/S0020-7683(03)00109-4 10.1002/nag.2421 10.1016/j.engstruct.2007.05.005 10.1016/0020-7683(87)90083-7 10.1061/JMCEA3.0002482 10.1016/j.ijsolstr.2016.04.038 10.1016/j.ijsolstr.2013.07.013 10.1016/j.engfracmech.2010.04.007 10.1061/(ASCE)0899-1561(2001)13:3(209) 10.1016/j.ijsolstr.2005.05.038 10.1016/j.ijsolstr.2016.12.015 10.1016/j.cma.2017.09.027 10.1016/j.cma.2015.10.010 10.1108/02644400110365842 10.1016/j.cma.2005.04.017 10.1016/j.compgeo.2018.10.004 10.1002/nag.2570 10.1016/j.engstruct.2019.03.086 10.1016/j.ijmecsci.2018.10.042 10.1016/j.ijsolstr.2010.07.016 10.1061/JSDEAG.0002424 10.1016/0045-7825(85)90026-X 10.1016/j.cma.2015.07.014 10.1016/0045-7825(95)00887-X 10.1016/j.cma.2015.09.010 10.1007/BF02480434 10.1360/04ye0199 10.1016/j.matcom.2009.06.030 10.1016/j.ijsolstr.2019.02.004 10.1016/j.cma.2003.11.013 10.1016/0045-7949(85)90135-X 10.1002/nme.1620290304 10.1016/j.ijsolstr.2013.07.008 10.1007/BF01594899 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier B.V. Copyright Elsevier BV Mar 1, 2020 |
| Copyright_xml | – notice: 2019 Elsevier B.V. – notice: Copyright Elsevier BV Mar 1, 2020 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cma.2019.112716 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_cma_2019_112716 S0045782519306048 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c325t-bfb46486a3de95f4260db021661c6f3c655baf89fb04995bb471fe23bf0fbd9b3 |
| ISICitedReferencesCount | 112 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000506874400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Fri Jul 25 03:08:38 EDT 2025 Tue Nov 18 22:51:06 EST 2025 Sat Nov 29 07:28:33 EST 2025 Sun Apr 06 06:54:36 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Constitutive model Concrete Non-orthogonal flow rule Damage Dilatancy Numerical algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-bfb46486a3de95f4260db021661c6f3c655baf89fb04995bb471fe23bf0fbd9b3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2353614417 |
| PQPubID | 2045269 |
| ParticipantIDs | proquest_journals_2353614417 crossref_citationtrail_10_1016_j_cma_2019_112716 crossref_primary_10_1016_j_cma_2019_112716 elsevier_sciencedirect_doi_10_1016_j_cma_2019_112716 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-03-01 2020-03-00 20200301 |
| PublicationDateYYYYMMDD | 2020-03-01 |
| PublicationDate_xml | – month: 03 year: 2020 text: 2020-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Wu, Li, Faria (b10) 2006; 43 Zhang, Li, Ju (b28) 2016; 94-95 Folino, Etse (b3) 2012; 49 Al-Rub, Voyiadjis (b20) 2003; 40 Lemaitre (b34) 1985; 51 Kupfer, Hilsdorf, Rusch (b42) 1969; 66 Kachanov (b29) 1958; 8 Simo, Ju (b5) 1987; 23 Kotsovos (b43) 1980; 13 Mazars, Pijaudier-Cabot (b6) 1989; 115 Paliwal, Hammi, Moser, Horstemeyer (b22) 2017; 108 Xotta, Beizaee, Willam (b17) 2016; 298 M. Sargin, Stress-Strain Relationship for Concrete and the Analysis of Structural Concrete Sections, University of Waterloo, Solid Mechanics Division. Report: S.M. Study No 4 (1971). Grassl, Jirásek (b19) 2006; 43 Simo, Taylor (b49) 1985; 48 Pramono, Willam (b2) 1989; 115 Gao, Zhao, Yao (b41) 2010; 47 Moran, Ortiz, Shih (b50) 1990; 29 Ju (b13) 1989; 25 Lu, Hsu (b45) 2007; 59 Poliotti, Bairán (b24) 2019; 189 Sarikaya, Erkmen (b56) 2019; 150 Rabotnov (b30) 1969 Lubliner, Oliver, Oller, Oñate (b8) 1989; 25 Jason, Huerta, Pijaudier-Cabot, Ghavamian (b16) 2006; 195 Grassl, Xenos, Nyström, Rempling, Gylltoft (b11) 2013; 50 Wang, Lu, Du, Zhou, Cao (b4) 2018; 119 He, Wu, Xu, Fu (b7) 2015; 297 Sima, Roca, Molins (b55) 2008; 30 Gernay, Millard, Franssen (b23) 2013; 50 Candappa, Sanjayan, Setunge (b44) 2001; 13 Lee, Fenves (b9) 1998; 124 Halilovič, Vrh, Štok (b48) 2009; 80 S. Okamoto, S. Shiomi, K. Yamabe, Earthquake resistance of prestressed concrete structures, in: Proceedings of Annual Architectural Institute of Japan (AIJ) Convention, Japan, 1976, pp. 1251-1252. Wu (b18) 2018; 328 Etse, Willam (b40) 1994; 120 Karsan, Jirsa (b53) 1969; 95 Mazars (b32) 1984 Sinha, Gerstle, Tulin (b52) 1964; 61 Al-Rub, Kim (b33) 2010; 77 Salari, Saeb, Willam, Patchet, Carrasco (b15) 2004; 193 Imran (b54) 1994 Y. Tanigawa, Y. Uchida, Hysteretic characteristics of concrete in the domain of high compressive strain, in: Proceedings of Annual Architectural Institute of Japan (AIJ) Convention, Japan, 1979, pp. 449-450. Safaei, Lee, De Waele (b47) 2015; 295 Luccioni, Oller, Danesi (b14) 1996; 129 Yao, Lu, Zhou, Bo (b38) 2004; 47 Bǎzant, Kim (b12) 1979; 105 Lu, Liang, Du, Ma, Gao (b26) 2019; 105 Du, Lu, Gong, Zhao (b39) 2010; 136 Sun, Xiao (b25) 2017; 41 Buyukozturk, Shareef (b1) 1985; 21 Sloan, Abbo, Sheng (b46) 2001; 18 Vrh, Halilovič, Štok (b51) 2010; 81 Lu, Zhou, Du, Wang (b21) 2019; 165 Sumelka, Nowak (b27) 2016; 40 Dougill (b31) 1976; 27 Moran (10.1016/j.cma.2019.112716_b50) 1990; 29 Sarikaya (10.1016/j.cma.2019.112716_b56) 2019; 150 Al-Rub (10.1016/j.cma.2019.112716_b20) 2003; 40 Du (10.1016/j.cma.2019.112716_b39) 2010; 136 Kotsovos (10.1016/j.cma.2019.112716_b43) 1980; 13 Wu (10.1016/j.cma.2019.112716_b18) 2018; 328 10.1016/j.cma.2019.112716_b36 10.1016/j.cma.2019.112716_b35 Vrh (10.1016/j.cma.2019.112716_b51) 2010; 81 10.1016/j.cma.2019.112716_b37 Lubliner (10.1016/j.cma.2019.112716_b8) 1989; 25 Ju (10.1016/j.cma.2019.112716_b13) 1989; 25 Simo (10.1016/j.cma.2019.112716_b49) 1985; 48 Luccioni (10.1016/j.cma.2019.112716_b14) 1996; 129 Yao (10.1016/j.cma.2019.112716_b38) 2004; 47 Salari (10.1016/j.cma.2019.112716_b15) 2004; 193 Folino (10.1016/j.cma.2019.112716_b3) 2012; 49 Lu (10.1016/j.cma.2019.112716_b26) 2019; 105 Bǎzant (10.1016/j.cma.2019.112716_b12) 1979; 105 Karsan (10.1016/j.cma.2019.112716_b53) 1969; 95 Lee (10.1016/j.cma.2019.112716_b9) 1998; 124 Kachanov (10.1016/j.cma.2019.112716_b29) 1958; 8 Safaei (10.1016/j.cma.2019.112716_b47) 2015; 295 Buyukozturk (10.1016/j.cma.2019.112716_b1) 1985; 21 He (10.1016/j.cma.2019.112716_b7) 2015; 297 Rabotnov (10.1016/j.cma.2019.112716_b30) 1969 Wang (10.1016/j.cma.2019.112716_b4) 2018; 119 Halilovič (10.1016/j.cma.2019.112716_b48) 2009; 80 Paliwal (10.1016/j.cma.2019.112716_b22) 2017; 108 Lemaitre (10.1016/j.cma.2019.112716_b34) 1985; 51 Imran (10.1016/j.cma.2019.112716_b54) 1994 Etse (10.1016/j.cma.2019.112716_b40) 1994; 120 Sun (10.1016/j.cma.2019.112716_b25) 2017; 41 Zhang (10.1016/j.cma.2019.112716_b28) 2016; 94-95 Wu (10.1016/j.cma.2019.112716_b10) 2006; 43 Poliotti (10.1016/j.cma.2019.112716_b24) 2019; 189 Lu (10.1016/j.cma.2019.112716_b21) 2019; 165 Gao (10.1016/j.cma.2019.112716_b41) 2010; 47 Xotta (10.1016/j.cma.2019.112716_b17) 2016; 298 Simo (10.1016/j.cma.2019.112716_b5) 1987; 23 Sima (10.1016/j.cma.2019.112716_b55) 2008; 30 Sloan (10.1016/j.cma.2019.112716_b46) 2001; 18 Pramono (10.1016/j.cma.2019.112716_b2) 1989; 115 Mazars (10.1016/j.cma.2019.112716_b32) 1984 Jason (10.1016/j.cma.2019.112716_b16) 2006; 195 Gernay (10.1016/j.cma.2019.112716_b23) 2013; 50 Kupfer (10.1016/j.cma.2019.112716_b42) 1969; 66 Sumelka (10.1016/j.cma.2019.112716_b27) 2016; 40 Sinha (10.1016/j.cma.2019.112716_b52) 1964; 61 Grassl (10.1016/j.cma.2019.112716_b11) 2013; 50 Lu (10.1016/j.cma.2019.112716_b45) 2007; 59 Grassl (10.1016/j.cma.2019.112716_b19) 2006; 43 Al-Rub (10.1016/j.cma.2019.112716_b33) 2010; 77 Mazars (10.1016/j.cma.2019.112716_b6) 1989; 115 Candappa (10.1016/j.cma.2019.112716_b44) 2001; 13 Dougill (10.1016/j.cma.2019.112716_b31) 1976; 27 |
| References_xml | – volume: 81 start-page: 910 year: 2010 end-page: 938 ident: b51 article-title: Improved explicit integration in plasticity publication-title: Internat. J. Numer. Methods Engrg. – volume: 13 start-page: 209 year: 2001 end-page: 215 ident: b44 article-title: Complete triaxial stress–strain curves of high-strength concrete publication-title: J. Mater. Civ. Eng. – volume: 119 start-page: 250 year: 2018 end-page: 273 ident: b4 article-title: A true 3D frictional hardening elastoplastic constitutive model of concrete based on a united hardening/softening function publication-title: J. Mech. Phys. Solids – volume: 66 start-page: 656 year: 1969 end-page: 666 ident: b42 article-title: Behavior of concrete under biaxial stresses publication-title: J. Am. Concr. Inst. – volume: 21 start-page: 581 year: 1985 end-page: 610 ident: b1 article-title: Constitutive modeling of concrete in finite element analysis publication-title: Comput. Struct. – volume: 30 start-page: 695 year: 2008 end-page: 706 ident: b55 article-title: Cyclic constitutive model for concrete publication-title: Eng. Struct. – volume: 27 start-page: 423 year: 1976 end-page: 437 ident: b31 article-title: On stable progressively fracturing solids publication-title: Z. Angew. Math. Phys. ZAMP – volume: 298 start-page: 428 year: 2016 end-page: 452 ident: b17 article-title: Bifurcation investigations of coupled damage-plasticity models for concrete materials publication-title: Comput. Method. Appl. Mech. – volume: 150 start-page: 584 year: 2019 end-page: 593 ident: b56 article-title: A plastic-damage model for concrete under compression publication-title: Int. J. Mech. Sci. – volume: 193 start-page: 2625 year: 2004 end-page: 2643 ident: b15 article-title: A coupled elastoplastic damage model for geomaterials publication-title: Comput. Methods Appl. Mech. – volume: 95 start-page: 2543 year: 1969 end-page: 2563 ident: b53 article-title: Behavior of concrete under compressive loadings publication-title: J. Struct. Div. – volume: 328 start-page: 612 year: 2018 end-page: 637 ident: b18 article-title: A geometrically regularized gradient-damage model with energetic equivalence publication-title: Comput. Method. Appl. Mech. – volume: 115 start-page: 345 year: 1989 end-page: 365 ident: b6 article-title: Continuum damage theory—application to concrete publication-title: J. Eng. Mech. – volume: 40 start-page: 651 year: 2016 end-page: 675 ident: b27 article-title: Non-normality and induced plastic anisotropy under fractional plastic flow rule: a numerical study publication-title: Int. J. Numer. Anal. Methods – volume: 77 start-page: 1577 year: 2010 end-page: 1603 ident: b33 article-title: Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture publication-title: Eng. Fract. Mech. – volume: 47 start-page: 3166 year: 2010 end-page: 3185 ident: b41 article-title: A generalized anisotropic failure criterion for geomaterials publication-title: Int. J. Solids Struct. – volume: 120 start-page: 1983 year: 1994 end-page: 2011 ident: b40 article-title: Fracture energy formulation for inelastic behavior of plain concrete publication-title: J. Eng. Mech. – volume: 25 start-page: 803 year: 1989 end-page: 833 ident: b13 article-title: On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects publication-title: Int. J. Solids Struct. – volume: 136 start-page: 51 year: 2010 end-page: 59 ident: b39 article-title: Nonlinear unified strength criterion for concrete under three-dimensional stress states publication-title: J. Eng. Mech. – volume: 295 start-page: 414 year: 2015 end-page: 445 ident: b47 article-title: Evaluation of stress integration algorithms for elastic–plastic constitutive models based on associated and non-associated flow rules publication-title: Comput. Methods Appl. Mech. – volume: 124 start-page: 892 year: 1998 end-page: 900 ident: b9 article-title: Plastic-damage model for cyclic loading of concrete structures publication-title: J. Eng. Mech. – volume: 297 start-page: 371 year: 2015 end-page: 391 ident: b7 article-title: A thermodynamically consistent nonlocal damage model for concrete materials with unilateral effects publication-title: Comput. Methods Appl. Mech. – volume: 51 start-page: 31 year: 1985 end-page: 49 ident: b34 article-title: Coupled elasto-plasticity and damage constitutive equations publication-title: Comput. Methods Appl. Mech. – volume: 165 start-page: 160 year: 2019 end-page: 175 ident: b21 article-title: A 3D fractional elastoplastic constitutive model for concrete material publication-title: Int. J. Solids Struct. – volume: 41 start-page: 555 year: 2017 end-page: 577 ident: b25 article-title: Fractional order model for granular soils under drained cyclic loading publication-title: Int. J. Numer. Anal. Methods – volume: 195 start-page: 7077 year: 2006 end-page: 7092 ident: b16 article-title: An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model publication-title: Comput. Methods Appl. Mech. – volume: 43 start-page: 7166 year: 2006 end-page: 7196 ident: b19 article-title: Damage-plastic model for concrete failure publication-title: Int. J. Solids Struct. – volume: 59 start-page: 69 year: 2007 end-page: 77 ident: b45 article-title: Tangent Poisson’s ratio of high-strength concrete in triaxial compression publication-title: Mag. Concrete Res. – volume: 18 start-page: 121 year: 2001 end-page: 194 ident: b46 article-title: Refined explicit integration of elastoplastic models with automatic error control publication-title: Eng. Comput. – volume: 25 start-page: 299 year: 1989 end-page: 326 ident: b8 article-title: A plastic-damage model for concrete publication-title: Int. J. Solids Struct. – volume: 13 start-page: 289 year: 1980 ident: b43 article-title: A mathematical model of the deformational behavior of concrete under generalised stress based on fundamental material properties publication-title: Mat. Constr. – volume: 50 start-page: 3805 year: 2013 end-page: 3816 ident: b11 article-title: Cdpm2: A damage-plasticity approach to modelling the failure of concrete publication-title: Int. J. Solids Struct. – volume: 49 start-page: 701 year: 2012 end-page: 719 ident: b3 article-title: Performance dependent model for normal and high strength concretes publication-title: Int. J. Solids Struct. – volume: 115 start-page: 1183 year: 1989 end-page: 1204 ident: b2 article-title: Fracture energy-based plasticity formulation of plain concrete publication-title: J. Eng. Mech. – volume: 40 start-page: 2611 year: 2003 end-page: 2643 ident: b20 article-title: On the coupling of anisotropic damage and plasticity models for ductile materials publication-title: Int. J. Solids Struct. – volume: 47 start-page: 691 year: 2004 end-page: 709 ident: b38 article-title: Generalized non-linear strength theory and transformed stress space publication-title: Sci. China Technol. Sci. – volume: 105 start-page: 277 year: 2019 end-page: 290 ident: b26 article-title: Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule publication-title: Comput. Geotech. – volume: 61 start-page: 195 year: 1964 end-page: 211 ident: b52 article-title: Stress–strain relations for concrete under cyclic loading publication-title: J. Am. Concr. Inst. – volume: 108 start-page: 186 year: 2017 end-page: 202 ident: b22 article-title: A three-invariant cap-plasticity damage model for cementitious materials publication-title: Int. J. Solids Struct. – volume: 129 start-page: 81 year: 1996 end-page: 89 ident: b14 article-title: Coupled plastic-damaged model publication-title: Comput. Methods Appl. Mech. – reference: Y. Tanigawa, Y. Uchida, Hysteretic characteristics of concrete in the domain of high compressive strain, in: Proceedings of Annual Architectural Institute of Japan (AIJ) Convention, Japan, 1979, pp. 449-450. – volume: 50 start-page: 3659 year: 2013 end-page: 3673 ident: b23 article-title: A multiaxial constitutive model for concrete in the fire situation: Theoretical formulation publication-title: Int. J. Solids Struct. – volume: 48 start-page: 101 year: 1985 end-page: 118 ident: b49 article-title: Consistent tangent operators for rate-independent elastoplasticity publication-title: Comput. Methods Appl. Mech. – volume: 43 start-page: 583 year: 2006 end-page: 612 ident: b10 article-title: An energy release rate-based plastic-damage model for concrete publication-title: Int. J. Solids Struct. – volume: 80 start-page: 294 year: 2009 end-page: 313 ident: b48 article-title: NICE—An explicit numerical scheme for efficient integration of nonlinear constitutive equations publication-title: Math. Comput. Simulation – volume: 29 start-page: 483 year: 1990 end-page: 514 ident: b50 article-title: Formulation of implicit finite element methods for multiplicative finite deformation plasticity publication-title: Internat. J. Numer. Methods Engrg. – reference: S. Okamoto, S. Shiomi, K. Yamabe, Earthquake resistance of prestressed concrete structures, in: Proceedings of Annual Architectural Institute of Japan (AIJ) Convention, Japan, 1976, pp. 1251-1252. – volume: 23 start-page: 821 year: 1987 end-page: 840 ident: b5 article-title: Strain-and stress-based continuum damage models—I, formulation publication-title: Int. J. Solids Struct. – volume: 105 start-page: 407 year: 1979 end-page: 428 ident: b12 article-title: Plastic-fracturing theory for concrete publication-title: J. Eng. Mech. Div. – volume: 8 start-page: 26 year: 1958 end-page: 31 ident: b29 article-title: Time of the rupture process under creep conditions publication-title: Izy Akad. Nank SSR Otd Tech Nauk. – year: 1984 ident: b32 article-title: Application de la Mécanique de L’Endommagement Au Comportement Non Linéaire Et à la Rupture Du Béton de Structure – volume: 94-95 start-page: 125 year: 2016 end-page: 137 ident: b28 article-title: 3D Elastoplastic damage model for concrete based on novel decomposition of stress publication-title: Int. J. Solids Struct. – volume: 189 start-page: 541 year: 2019 end-page: 549 ident: b24 article-title: A new concrete plastic-damage model with an evolutive dilatancy parameter publication-title: Eng. Struct. – reference: M. Sargin, Stress-Strain Relationship for Concrete and the Analysis of Structural Concrete Sections, University of Waterloo, Solid Mechanics Division. Report: S.M. Study No 4 (1971). – start-page: 342 year: 1969 end-page: 349 ident: b30 article-title: Creep rupture publication-title: Applied Mechanics – year: 1994 ident: b54 article-title: Applications of Non-Associated Plasticity in Modelling the Mechanical Response of Concrete – volume: 49 start-page: 701 issue: 5 year: 2012 ident: 10.1016/j.cma.2019.112716_b3 article-title: Performance dependent model for normal and high strength concretes publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2011.11.020 – volume: 119 start-page: 250 year: 2018 ident: 10.1016/j.cma.2019.112716_b4 article-title: A true 3D frictional hardening elastoplastic constitutive model of concrete based on a united hardening/softening function publication-title: J. Mech. Phys. Solids doi: 10.1016/j.jmps.2018.06.019 – ident: 10.1016/j.cma.2019.112716_b35 – volume: 59 start-page: 69 issue: 1 year: 2007 ident: 10.1016/j.cma.2019.112716_b45 article-title: Tangent Poisson’s ratio of high-strength concrete in triaxial compression publication-title: Mag. Concrete Res. doi: 10.1680/macr.2007.59.1.69 – volume: 81 start-page: 910 issue: 7 year: 2010 ident: 10.1016/j.cma.2019.112716_b51 article-title: Improved explicit integration in plasticity publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2737 – volume: 25 start-page: 299 issue: 3 year: 1989 ident: 10.1016/j.cma.2019.112716_b8 article-title: A plastic-damage model for concrete publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(89)90050-4 – volume: 25 start-page: 803 issue: 7 year: 1989 ident: 10.1016/j.cma.2019.112716_b13 article-title: On energy-based coupled elastoplastic damage theories: constitutive modeling and computational aspects publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(89)90015-2 – volume: 48 start-page: 101 issue: 1 year: 1985 ident: 10.1016/j.cma.2019.112716_b49 article-title: Consistent tangent operators for rate-independent elastoplasticity publication-title: Comput. Methods Appl. Mech. doi: 10.1016/0045-7825(85)90070-2 – volume: 43 start-page: 7166 issue: 22–23 year: 2006 ident: 10.1016/j.cma.2019.112716_b19 article-title: Damage-plastic model for concrete failure publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2006.06.032 – volume: 40 start-page: 2611 issue: 11 year: 2003 ident: 10.1016/j.cma.2019.112716_b20 article-title: On the coupling of anisotropic damage and plasticity models for ductile materials publication-title: Int. J. Solids Struct. doi: 10.1016/S0020-7683(03)00109-4 – volume: 40 start-page: 651 issue: 5 year: 2016 ident: 10.1016/j.cma.2019.112716_b27 article-title: Non-normality and induced plastic anisotropy under fractional plastic flow rule: a numerical study publication-title: Int. J. Numer. Anal. Methods doi: 10.1002/nag.2421 – volume: 30 start-page: 695 issue: 3 year: 2008 ident: 10.1016/j.cma.2019.112716_b55 article-title: Cyclic constitutive model for concrete publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2007.05.005 – volume: 23 start-page: 821 issue: 7 year: 1987 ident: 10.1016/j.cma.2019.112716_b5 article-title: Strain-and stress-based continuum damage models—I, formulation publication-title: Int. J. Solids Struct. doi: 10.1016/0020-7683(87)90083-7 – volume: 105 start-page: 407 issue: 3 year: 1979 ident: 10.1016/j.cma.2019.112716_b12 article-title: Plastic-fracturing theory for concrete publication-title: J. Eng. Mech. Div. doi: 10.1061/JMCEA3.0002482 – volume: 94-95 start-page: 125 year: 2016 ident: 10.1016/j.cma.2019.112716_b28 article-title: 3D Elastoplastic damage model for concrete based on novel decomposition of stress publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.04.038 – volume: 50 start-page: 3659 issue: 22–23 year: 2013 ident: 10.1016/j.cma.2019.112716_b23 article-title: A multiaxial constitutive model for concrete in the fire situation: Theoretical formulation publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2013.07.013 – volume: 66 start-page: 656 year: 1969 ident: 10.1016/j.cma.2019.112716_b42 article-title: Behavior of concrete under biaxial stresses publication-title: J. Am. Concr. Inst. – volume: 77 start-page: 1577 issue: 10 year: 2010 ident: 10.1016/j.cma.2019.112716_b33 article-title: Computational applications of a coupled plasticity-damage constitutive model for simulating plain concrete fracture publication-title: Eng. Fract. Mech. doi: 10.1016/j.engfracmech.2010.04.007 – volume: 13 start-page: 209 issue: 3 year: 2001 ident: 10.1016/j.cma.2019.112716_b44 article-title: Complete triaxial stress–strain curves of high-strength concrete publication-title: J. Mater. Civ. Eng. doi: 10.1061/(ASCE)0899-1561(2001)13:3(209) – year: 1994 ident: 10.1016/j.cma.2019.112716_b54 – volume: 136 start-page: 51 issue: 1 year: 2010 ident: 10.1016/j.cma.2019.112716_b39 article-title: Nonlinear unified strength criterion for concrete under three-dimensional stress states publication-title: J. Eng. Mech. – volume: 115 start-page: 1183 issue: 6 year: 1989 ident: 10.1016/j.cma.2019.112716_b2 article-title: Fracture energy-based plasticity formulation of plain concrete publication-title: J. Eng. Mech. – volume: 115 start-page: 345 issue: 2 year: 1989 ident: 10.1016/j.cma.2019.112716_b6 article-title: Continuum damage theory—application to concrete publication-title: J. Eng. Mech. – volume: 43 start-page: 583 issue: 3–4 year: 2006 ident: 10.1016/j.cma.2019.112716_b10 article-title: An energy release rate-based plastic-damage model for concrete publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2005.05.038 – volume: 108 start-page: 186 year: 2017 ident: 10.1016/j.cma.2019.112716_b22 article-title: A three-invariant cap-plasticity damage model for cementitious materials publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2016.12.015 – volume: 328 start-page: 612 year: 2018 ident: 10.1016/j.cma.2019.112716_b18 article-title: A geometrically regularized gradient-damage model with energetic equivalence publication-title: Comput. Method. Appl. Mech. doi: 10.1016/j.cma.2017.09.027 – volume: 298 start-page: 428 year: 2016 ident: 10.1016/j.cma.2019.112716_b17 article-title: Bifurcation investigations of coupled damage-plasticity models for concrete materials publication-title: Comput. Method. Appl. Mech. doi: 10.1016/j.cma.2015.10.010 – volume: 18 start-page: 121 issue: 1/2 year: 2001 ident: 10.1016/j.cma.2019.112716_b46 article-title: Refined explicit integration of elastoplastic models with automatic error control publication-title: Eng. Comput. doi: 10.1108/02644400110365842 – ident: 10.1016/j.cma.2019.112716_b36 – volume: 61 start-page: 195 issue: 2 year: 1964 ident: 10.1016/j.cma.2019.112716_b52 article-title: Stress–strain relations for concrete under cyclic loading publication-title: J. Am. Concr. Inst. – volume: 195 start-page: 7077 issue: 52 year: 2006 ident: 10.1016/j.cma.2019.112716_b16 article-title: An elastic plastic damage formulation for concrete: Application to elementary tests and comparison with an isotropic damage model publication-title: Comput. Methods Appl. Mech. doi: 10.1016/j.cma.2005.04.017 – volume: 105 start-page: 277 year: 2019 ident: 10.1016/j.cma.2019.112716_b26 article-title: Fractional elastoplastic constitutive model for soils based on a novel 3D fractional plastic flow rule publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2018.10.004 – volume: 41 start-page: 555 issue: 4 year: 2017 ident: 10.1016/j.cma.2019.112716_b25 article-title: Fractional order model for granular soils under drained cyclic loading publication-title: Int. J. Numer. Anal. Methods doi: 10.1002/nag.2570 – volume: 189 start-page: 541 year: 2019 ident: 10.1016/j.cma.2019.112716_b24 article-title: A new concrete plastic-damage model with an evolutive dilatancy parameter publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2019.03.086 – volume: 150 start-page: 584 year: 2019 ident: 10.1016/j.cma.2019.112716_b56 article-title: A plastic-damage model for concrete under compression publication-title: Int. J. Mech. Sci. doi: 10.1016/j.ijmecsci.2018.10.042 – volume: 47 start-page: 3166 issue: 22–23 year: 2010 ident: 10.1016/j.cma.2019.112716_b41 article-title: A generalized anisotropic failure criterion for geomaterials publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2010.07.016 – volume: 95 start-page: 2543 year: 1969 ident: 10.1016/j.cma.2019.112716_b53 article-title: Behavior of concrete under compressive loadings publication-title: J. Struct. Div. doi: 10.1061/JSDEAG.0002424 – volume: 51 start-page: 31 issue: 1–3 year: 1985 ident: 10.1016/j.cma.2019.112716_b34 article-title: Coupled elasto-plasticity and damage constitutive equations publication-title: Comput. Methods Appl. Mech. doi: 10.1016/0045-7825(85)90026-X – ident: 10.1016/j.cma.2019.112716_b37 – volume: 295 start-page: 414 year: 2015 ident: 10.1016/j.cma.2019.112716_b47 article-title: Evaluation of stress integration algorithms for elastic–plastic constitutive models based on associated and non-associated flow rules publication-title: Comput. Methods Appl. Mech. doi: 10.1016/j.cma.2015.07.014 – start-page: 342 year: 1969 ident: 10.1016/j.cma.2019.112716_b30 article-title: Creep rupture – volume: 129 start-page: 81 issue: 1–2 year: 1996 ident: 10.1016/j.cma.2019.112716_b14 article-title: Coupled plastic-damaged model publication-title: Comput. Methods Appl. Mech. doi: 10.1016/0045-7825(95)00887-X – volume: 120 start-page: 1983 issue: 9 year: 1994 ident: 10.1016/j.cma.2019.112716_b40 article-title: Fracture energy formulation for inelastic behavior of plain concrete publication-title: J. Eng. Mech. – volume: 297 start-page: 371 year: 2015 ident: 10.1016/j.cma.2019.112716_b7 article-title: A thermodynamically consistent nonlocal damage model for concrete materials with unilateral effects publication-title: Comput. Methods Appl. Mech. doi: 10.1016/j.cma.2015.09.010 – volume: 124 start-page: 892 issue: 8 year: 1998 ident: 10.1016/j.cma.2019.112716_b9 article-title: Plastic-damage model for cyclic loading of concrete structures publication-title: J. Eng. Mech. – volume: 13 start-page: 289 issue: 4 year: 1980 ident: 10.1016/j.cma.2019.112716_b43 article-title: A mathematical model of the deformational behavior of concrete under generalised stress based on fundamental material properties publication-title: Mat. Constr. doi: 10.1007/BF02480434 – volume: 47 start-page: 691 issue: 6 year: 2004 ident: 10.1016/j.cma.2019.112716_b38 article-title: Generalized non-linear strength theory and transformed stress space publication-title: Sci. China Technol. Sci. doi: 10.1360/04ye0199 – volume: 80 start-page: 294 issue: 2 year: 2009 ident: 10.1016/j.cma.2019.112716_b48 article-title: NICE—An explicit numerical scheme for efficient integration of nonlinear constitutive equations publication-title: Math. Comput. Simulation doi: 10.1016/j.matcom.2009.06.030 – volume: 165 start-page: 160 year: 2019 ident: 10.1016/j.cma.2019.112716_b21 article-title: A 3D fractional elastoplastic constitutive model for concrete material publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2019.02.004 – year: 1984 ident: 10.1016/j.cma.2019.112716_b32 – volume: 193 start-page: 2625 issue: 27–29 year: 2004 ident: 10.1016/j.cma.2019.112716_b15 article-title: A coupled elastoplastic damage model for geomaterials publication-title: Comput. Methods Appl. Mech. doi: 10.1016/j.cma.2003.11.013 – volume: 21 start-page: 581 issue: 3 year: 1985 ident: 10.1016/j.cma.2019.112716_b1 article-title: Constitutive modeling of concrete in finite element analysis publication-title: Comput. Struct. doi: 10.1016/0045-7949(85)90135-X – volume: 8 start-page: 26 year: 1958 ident: 10.1016/j.cma.2019.112716_b29 article-title: Time of the rupture process under creep conditions publication-title: Izy Akad. Nank SSR Otd Tech Nauk. – volume: 29 start-page: 483 issue: 3 year: 1990 ident: 10.1016/j.cma.2019.112716_b50 article-title: Formulation of implicit finite element methods for multiplicative finite deformation plasticity publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1620290304 – volume: 50 start-page: 3805 issue: 24 year: 2013 ident: 10.1016/j.cma.2019.112716_b11 article-title: Cdpm2: A damage-plasticity approach to modelling the failure of concrete publication-title: Int. J. Solids Struct. doi: 10.1016/j.ijsolstr.2013.07.008 – volume: 27 start-page: 423 issue: 4 year: 1976 ident: 10.1016/j.cma.2019.112716_b31 article-title: On stable progressively fracturing solids publication-title: Z. Angew. Math. Phys. ZAMP doi: 10.1007/BF01594899 |
| SSID | ssj0000812 |
| Score | 2.6016777 |
| Snippet | A plastic damage model with the non-orthogonal flow rule is developed, which is consisted of the damage part driven by plastic strain and the plastic part... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 112716 |
| SubjectTerms | Algorithms Concrete Constitutive model Cyclic testing Damage Damage assessment Degeneration Dilatancy Error correction Exponential functions Hardening Mechanical properties Non-orthogonal flow rule Numerical algorithm Plastic deformation Stiffness Three dimensional models |
| Title | A 3D non-orthogonal plastic damage model for concrete |
| URI | https://dx.doi.org/10.1016/j.cma.2019.112716 https://www.proquest.com/docview/2353614417 |
| Volume | 360 |
| WOSCitedRecordID | wos000506874400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000812 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg4wCHAQPExkA-IA5MQXUcN_Gxot0ATYVDh3KzYsfeOm1tWZppf_6efyTppq2CA5cochIn8nt--d7z8_sQ-ihTWpCMGzvTZJTEBYkAVScRYSklJe0VcVw4sol0PM7ynP8Ku0sqRyeQzmbZ9TVf_FdRQxsI226d_Qdxt51CA5yD0OEIYofjXwl-sE-H--DUR3ZFZn7iIn0LwMi2MmtZXNgcHUd_4xIMwRsG2Li8XbAgED0EdmmXMFsEsHqh7U7hprKz7ooZdgHoeW3Flk-7XJ_aGzZ1Wrdtw3BTfT7tQvre7BzW8-pUhx5DPAKczzYhywfJ2o0yv1ftbsIiwCJs1e5STyQQLCe515770MLZF-VqRBFudzyl5J7a2eOf4uD46EhMRvnk0-JPZGnF7PJ74Fh5jDbjlHGw3JuD76P8R_ezzogvKB8-sFn4dimAd976EHS58xN3yGTyAm0FlwIPvCq8RI_0bBs9D-4FDsa72kbPVmpPvkJsgOkQ39YTHPQEez3BTk8w6Alu9OQ1Oj4YTb5-iwKHRqRozJaRNDLpJ1m_oKXmzFg-glICrgNYpvqGqj5jsjAwWaX1fZmUAFaMjqk0PSNLLukbtAGfot8iTEwiJe_x2MQkUdApB9QjC6pNmSpF9Q7qNcMjVCgwb3lOzkWTSXgmYESFHVHhR3QHfW4fWfjqKutuTpoxFwEeetgnQFvWPbbXyEeEaVqJmDJqQyEk3V1_-R162in5HtpYXtb6PXqirpbT6vJD0KYbTXeK7w |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+3D+non-orthogonal+plastic+damage+model+for+concrete&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Zhou%2C+Xin&rft.au=Lu%2C+Dechun&rft.au=Du%2C+Xiuli&rft.au=Wang%2C+Guosheng&rft.date=2020-03-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=360&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2019.112716&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |