Adaptive Multi-Step Evaluation Design With Stability Guarantee for Discrete-Time Optimal Learning Control

This paper is concerned with a novel integrated multi-step heuristic dynamic programming (MsHDP) algorithm for solving optimal control problems. It is shown that, initialized by the zero cost function, MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman (HJB) equation. Then, th...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/CAA journal of automatica sinica Vol. 10; no. 9; pp. 1797 - 1809
Main Authors: Wang, Ding, Wang, Jiangyu, Zhao, Mingming, Xin, Peng, Qiao, Junfei
Format: Journal Article
Language:English
Published: Piscataway Chinese Association of Automation (CAA) 01.09.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Faculty of Information Technology,the Beijing Key Laboratory of Computational Intelligence and Intelligent System,the Beijing Laboratory of Smart Environmental Protection,and the Beijing Institute of Artificial Intelligence,Beijing University of Technology,Beijing 100124,China
Subjects:
ISSN:2329-9266, 2329-9274
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper is concerned with a novel integrated multi-step heuristic dynamic programming (MsHDP) algorithm for solving optimal control problems. It is shown that, initialized by the zero cost function, MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman (HJB) equation. Then, the stability of the system is analyzed using control policies generated by MsHDP.Also, a general stability criterion is designed to determine the admissibility of the current control policy. That is, the criterion is applicable not only to traditional value iteration and policy iteration but also to MsHDP. Further, based on the convergence and the stability criterion, the integrated MsHDP algorithm using immature control policies is developed to accelerate learning efficiency greatly. Besides, actor-critic is utilized to implement the integrated MsHDP scheme, where neural networks are used to evaluate and improve the iterative policy as the parameter architecture. Finally, two simulation examples are given to demonstrate that the learning effectiveness of the integrated MsHDP scheme surpasses those of other fixed or integrated methods.
AbstractList This paper is concerned with a novel integrated multi-step heuristic dynamic programming (MsHDP) algorithm for solving optimal control problems. It is shown that, initialized by the zero cost function, MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman (HJB) equation. Then, the stability of the system is analyzed using control policies generated by MsHDP.Also, a general stability criterion is designed to determine the admissibility of the current control policy. That is, the criterion is applicable not only to traditional value iteration and policy iteration but also to MsHDP. Further, based on the convergence and the stability criterion, the integrated MsHDP algorithm using immature control policies is developed to accelerate learning efficiency greatly. Besides, actor-critic is utilized to implement the integrated MsHDP scheme, where neural networks are used to evaluate and improve the iterative policy as the parameter architecture. Finally, two simulation examples are given to demonstrate that the learning effectiveness of the integrated MsHDP scheme surpasses those of other fixed or integrated methods.
This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman(HJB)equation.Then,the stability of the system is analyzed using control policies gener-ated by MsHDP.Also,a general stability criterion is designed to determine the admissibility of the current control policy.That is,the criterion is applicable not only to traditional value iteration and policy iteration but also to MsHDP.Further,based on the convergence and the stability criterion,the integrated MsHDP algorithm using immature control policies is developed to accel-erate learning efficiency greatly.Besides,actor-critic is utilized to implement the integrated MsHDP scheme,where neural net-works are used to evaluate and improve the iterative policy as the parameter architecture.Finally,two simulation examples are given to demonstrate that the learning effectiveness of the inte-grated MsHDP scheme surpasses those of other fixed or inte-grated methods.
Author Qiao, Junfei
Xin, Peng
Wang, Ding
Zhao, Mingming
Wang, Jiangyu
AuthorAffiliation Faculty of Information Technology,the Beijing Key Laboratory of Computational Intelligence and Intelligent System,the Beijing Laboratory of Smart Environmental Protection,and the Beijing Institute of Artificial Intelligence,Beijing University of Technology,Beijing 100124,China
AuthorAffiliation_xml – name: Faculty of Information Technology,the Beijing Key Laboratory of Computational Intelligence and Intelligent System,the Beijing Laboratory of Smart Environmental Protection,and the Beijing Institute of Artificial Intelligence,Beijing University of Technology,Beijing 100124,China
Author_xml – sequence: 1
  givenname: Ding
  surname: Wang
  fullname: Wang, Ding
  email: dingwang@bjut.edu.cn
  organization: Beijing University of Technology,Faculty of Information Technology, the Beijing Key Laboratory of Computational Intelligence and Intelligent System, the Beijing Laboratory of Smart Environmental Protection, and the Beijing Institute of Artificial Intelligence,Beijing,China,100124
– sequence: 2
  givenname: Jiangyu
  surname: Wang
  fullname: Wang, Jiangyu
  email: wangjiangyu@emails.bjut.edu.cn
  organization: Beijing University of Technology,Faculty of Information Technology, the Beijing Key Laboratory of Computational Intelligence and Intelligent System, the Beijing Laboratory of Smart Environmental Protection, and the Beijing Institute of Artificial Intelligence,Beijing,China,100124
– sequence: 3
  givenname: Mingming
  surname: Zhao
  fullname: Zhao, Mingming
  email: zhaomm@emails.bjut.edu.cn
  organization: Beijing University of Technology,Faculty of Information Technology, the Beijing Key Laboratory of Computational Intelligence and Intelligent System, the Beijing Laboratory of Smart Environmental Protection, and the Beijing Institute of Artificial Intelligence,Beijing,China,100124
– sequence: 4
  givenname: Peng
  surname: Xin
  fullname: Xin, Peng
  email: xinpeng@emails.bjut.edu.cn
  organization: Beijing University of Technology,Faculty of Information Technology, the Beijing Key Laboratory of Computational Intelligence and Intelligent System, the Beijing Laboratory of Smart Environmental Protection, and the Beijing Institute of Artificial Intelligence,Beijing,China,100124
– sequence: 5
  givenname: Junfei
  surname: Qiao
  fullname: Qiao, Junfei
  email: adqiao@bjut.edu.cn
  organization: Beijing University of Technology,Faculty of Information Technology, the Beijing Key Laboratory of Computational Intelligence and Intelligent System, the Beijing Laboratory of Smart Environmental Protection, and the Beijing Institute of Artificial Intelligence,Beijing,China,100124
BookMark eNp9kD1v2zAQhonABeK4nrNkINAtgJwjKUriaDgfTeDCg11kJCjpZDNQKJeikrq_vnJUJEWHLnc3vB-454yMXOOQkHMGM8ZAXT3M1zMOXMwYF0kWn5AxF1xFiqfx6P1OklMybdsnAGBcpomKx8TOS7MP9gXpt64ONloH3NObF1N3JtjG0Wts7dbRRxt2dB1MbmsbDvSuM964gEirxtNr2xYeA0Yb-4x01cc9m5ou0Xhn3ZYuGhd8U38mnypTtzj9syfk--3NZvE1Wq7u7hfzZVQILkOUIyQxGACVyJzlrFRcKOCciQLiOClTnqSmygrFMpVnaSUrEwOkULFSlsoUYkIuh9xX4yrjtvqp6bzrG_Wvcvcz14fX_EgKFPRzQr4M4r1vfnTYhg81zyQTsRSp7FVXg6rwTdt6rPTe9z_6g2agj_x1z18fU_XAv3fIfxyFDW9Egze2_o_vYvBZRPyrhTMFGRO_AURrkv0
CODEN IJASJC
CitedBy_id crossref_primary_10_1002_oca_3173
crossref_primary_10_1002_acs_3801
crossref_primary_10_1007_s11071_024_09778_3
crossref_primary_10_1002_rnc_7914
crossref_primary_10_1007_s11071_025_11608_z
crossref_primary_10_1109_TII_2024_3452189
crossref_primary_10_1002_rnc_7834
crossref_primary_10_1016_j_engappai_2024_109756
crossref_primary_10_1016_j_engappai_2024_108228
crossref_primary_10_1016_j_neucom_2024_128418
crossref_primary_10_1016_j_engappai_2024_108033
crossref_primary_10_1109_TCYB_2025_3530951
crossref_primary_10_1016_j_swevo_2025_101913
crossref_primary_10_1016_j_neucom_2024_129156
crossref_primary_10_1016_j_neucom_2024_129311
crossref_primary_10_1016_j_neunet_2024_107025
crossref_primary_10_1109_JAS_2024_124989
crossref_primary_10_1016_j_neucom_2024_128185
crossref_primary_10_1109_TSMC_2025_3554219
crossref_primary_10_1007_s11071_024_10173_1
crossref_primary_10_1016_j_neucom_2025_130332
crossref_primary_10_3390_math12162499
crossref_primary_10_1109_TCSI_2024_3387914
crossref_primary_10_1109_TASE_2023_3313159
crossref_primary_10_1002_acs_3850
crossref_primary_10_1016_j_neucom_2023_127048
crossref_primary_10_1109_TII_2024_3488790
crossref_primary_10_1016_j_neucom_2025_129986
crossref_primary_10_1109_TSMC_2024_3428482
crossref_primary_10_1109_TASE_2024_3427657
crossref_primary_10_1109_TCDS_2024_3384269
crossref_primary_10_1016_j_automatica_2025_112168
crossref_primary_10_1016_j_neunet_2023_09_009
crossref_primary_10_1016_j_eswa_2024_123280
crossref_primary_10_1109_TCYB_2025_3562172
crossref_primary_10_1109_JAS_2024_125067
crossref_primary_10_1002_acs_3928
crossref_primary_10_1002_rnc_7595
crossref_primary_10_1016_j_neunet_2024_106347
crossref_primary_10_1109_TCSII_2024_3359258
crossref_primary_10_1016_j_neunet_2025_107280
crossref_primary_10_1109_TSMC_2024_3417230
crossref_primary_10_1080_00207721_2024_2312886
crossref_primary_10_1007_s11071_024_09524_9
crossref_primary_10_1109_TASE_2025_3539772
crossref_primary_10_1109_TNNLS_2025_3570716
crossref_primary_10_1109_TASE_2025_3581315
crossref_primary_10_1002_rnc_7183
crossref_primary_10_1016_j_neucom_2025_129977
crossref_primary_10_23919_cje_2024_00_287
crossref_primary_10_3389_frai_2024_1458230
crossref_primary_10_1016_j_neucom_2024_127592
crossref_primary_10_1016_j_neunet_2024_106274
crossref_primary_10_1109_TSMC_2024_3461781
crossref_primary_10_1109_TASE_2025_3567285
crossref_primary_10_1109_TCSII_2023_3339577
crossref_primary_10_1016_j_neucom_2023_127198
crossref_primary_10_1016_j_neunet_2025_107249
crossref_primary_10_1002_rnc_7583
crossref_primary_10_1002_rnc_7660
crossref_primary_10_1109_TFUZZ_2025_3581421
crossref_primary_10_1007_s11071_025_10946_2
crossref_primary_10_1109_TCSII_2023_3339829
crossref_primary_10_1002_acs_3793
crossref_primary_10_1109_TCSI_2024_3492255
crossref_primary_10_1016_j_neucom_2024_127835
crossref_primary_10_1016_j_engappai_2024_108284
crossref_primary_10_1016_j_neucom_2024_128734
crossref_primary_10_1016_j_neunet_2024_106483
crossref_primary_10_1002_rnc_7334
crossref_primary_10_1016_j_neunet_2024_106364
Cites_doi 10.1109/TAC.2019.2926167
10.1109/MCI.2019.2919363
10.1109/TSMC.2015.2417510
10.1109/TAC.2018.2790260
10.1109/TNNLS.2013.2281663
10.1109/TNNLS.2022.3178746
10.1109/JAS.2021.1003814
10.1109/TCYB.2021.3121542
10.1109/TCYB.2015.2492242
10.1109/TNNLS.2021.3123361
10.1038/nature16961
10.1109/72.623201
10.1109/TIE.2017.2698377
10.1109/JAS.2022.105692
10.1109/TSMCB.2008.926614
10.1109/TAC.2019.2905215
10.1016/j.epsr.2004.06.011
10.1109/TPWRS.2018.2823641
10.1109/72.914523
10.1109/TNNLS.2021.3051030
10.1109/TSMC.2017.2771516
10.1109/MCAS.2009.933854
10.1109/TNNLS.2022.3143527
10.1002/9780470182963
10.1109/TCYB.2021.3107801
10.1007/s10462-021-10118-9
10.1109/TNNLS.2022.3152268
10.1109/TNNLS.2020.2965208
10.1109/TSMC.2019.2898389
10.1109/TPWRS.2021.3100898
10.1109/TNNLS.2019.2919614
10.1109/TNN.2011.2168538
10.1016/j.neunet.2021.08.025
10.1109/TSMC.2021.3071968
10.1109/TAC.2021.3108121
10.1016/j.ins.2017.05.005
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1109/JAS.2023.123684
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2329-9274
EndPage 1809
ExternalDocumentID zdhxb_ywb202309002
10_1109_JAS_2023_123684
10219081
Genre orig-research
GroupedDBID -0I
-0Y
-SI
-S~
0R~
4.4
5VR
6IK
92M
97E
9D9
9DI
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AFUIB
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CAJEI
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PQQKQ
Q--
RIA
RIE
RT9
T8Y
TCJ
TGT
U1F
U1G
U5I
U5S
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
2B.
4A8
92I
93N
PSX
R-I
RIG
ID FETCH-LOGICAL-c325t-be0640a00965b1b1d923902213c0446d7267af8c9189b87f5fa40070f1d5d9ac3
IEDL.DBID RIE
ISICitedReferencesCount 89
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001049972900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2329-9266
IngestDate Thu May 29 04:10:31 EDT 2025
Sun Nov 30 05:24:56 EST 2025
Sat Nov 29 03:31:08 EST 2025
Tue Nov 18 21:25:26 EST 2025
Wed Aug 27 02:14:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords artificial neural networks
Adaptive critic
optimal control
Hamilton-Jacobi-Bellman(HJB)equation
multi-step heuristic dynamic pro-gramming
multi-step reinforcement learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-be0640a00965b1b1d923902213c0446d7267af8c9189b87f5fa40070f1d5d9ac3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2851345375
PQPubID 2040495
PageCount 13
ParticipantIDs crossref_primary_10_1109_JAS_2023_123684
wanfang_journals_zdhxb_ywb202309002
crossref_citationtrail_10_1109_JAS_2023_123684
ieee_primary_10219081
proquest_journals_2851345375
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Piscataway
PublicationPlace_xml – name: Piscataway
PublicationTitle IEEE/CAA journal of automatica sinica
PublicationTitleAbbrev JAS
PublicationTitle_FL IEEE/CAA Journal of Automatica Sinica
PublicationYear 2023
Publisher Chinese Association of Automation (CAA)
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Faculty of Information Technology,the Beijing Key Laboratory of Computational Intelligence and Intelligent System,the Beijing Laboratory of Smart Environmental Protection,and the Beijing Institute of Artificial Intelligence,Beijing University of Technology,Beijing 100124,China
Publisher_xml – name: Chinese Association of Automation (CAA)
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Faculty of Information Technology,the Beijing Key Laboratory of Computational Intelligence and Intelligent System,the Beijing Laboratory of Smart Environmental Protection,and the Beijing Institute of Artificial Intelligence,Beijing University of Technology,Beijing 100124,China
References ref35
wang (ref25) 2020; 105
ref12
ref34
ref37
ref14
ref36
ref31
ref30
ref11
ref33
ref10
ref32
ref2
sutton (ref41) 1998
ref39
ref38
ref19
ref18
bertsekas (ref16) 1995; 1
ref24
ref23
ref26
ref20
silver (ref1) 2016; 529
mnih (ref22) 0; 48
ref21
ref43
werbos (ref15) 1992
ref28
powell (ref13) 2007
ref27
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
ref40
landelius (ref42) 1997
sutton (ref17) 1998
References_xml – volume: 1
  year: 1995
  ident: ref16
  publication-title: Dynamic Programming and Optimal Control Chapter
– ident: ref28
  doi: 10.1109/TAC.2019.2926167
– ident: ref2
  doi: 10.1109/MCI.2019.2919363
– ident: ref32
  doi: 10.1109/TSMC.2015.2417510
– ident: ref39
  doi: 10.1109/TAC.2018.2790260
– year: 1998
  ident: ref17
  publication-title: Reinforcement Learning
– ident: ref31
  doi: 10.1109/TNNLS.2013.2281663
– ident: ref12
  doi: 10.1109/TNNLS.2022.3178746
– ident: ref33
  doi: 10.1109/JAS.2021.1003814
– volume: 48
  start-page: 1928
  year: 0
  ident: ref22
  article-title: Asynchronous methods for deep reinforcement learning
  publication-title: Proc Int Conf Machine Learning
– ident: ref3
  doi: 10.1109/TCYB.2021.3121542
– start-page: 163
  year: 1998
  ident: ref41
  article-title: Eligibility traces
  publication-title: Reinforcement Learning An Introduction
– ident: ref34
  doi: 10.1109/TCYB.2015.2492242
– ident: ref10
  doi: 10.1109/TNNLS.2021.3123361
– volume: 529
  start-page: 484
  year: 2016
  ident: ref1
  article-title: Mastering the game of go with deep neural networks and tree search
  publication-title: Nature
  doi: 10.1038/nature16961
– ident: ref14
  doi: 10.1109/72.623201
– ident: ref4
  doi: 10.1109/TIE.2017.2698377
– ident: ref8
  doi: 10.1109/JAS.2022.105692
– ident: ref27
  doi: 10.1109/TSMCB.2008.926614
– ident: ref11
  doi: 10.1109/TAC.2019.2905215
– ident: ref43
  doi: 10.1016/j.epsr.2004.06.011
– ident: ref5
  doi: 10.1109/TPWRS.2018.2823641
– ident: ref18
  doi: 10.1109/72.914523
– year: 1997
  ident: ref42
  article-title: Reinforcement learning and distributed local model synthesis
  publication-title: Linkoping Univ Linkoping
– ident: ref9
  doi: 10.1109/TNNLS.2021.3051030
– ident: ref21
  doi: 10.1109/TSMC.2017.2771516
– ident: ref35
  doi: 10.1109/MCAS.2009.933854
– ident: ref29
  doi: 10.1109/TNNLS.2022.3143527
– year: 2007
  ident: ref13
  publication-title: Approximate Dynamic Programming Solving the Curses of Dimensionality
  doi: 10.1002/9780470182963
– ident: ref24
  doi: 10.1109/TCYB.2021.3107801
– year: 1992
  ident: ref15
  article-title: Approximate dynamic programming for real-time control and neural modeling
  publication-title: Handbook of Intelligent Control Neural Fuzzy and Adaptive Approaches
– volume: 105
  start-page: 104443:1
  year: 2020
  ident: ref25
  article-title: Adaptive-critic-based hybrid intelligent optimal tracking for a class of nonlinear discrete-time systems
  publication-title: Engineering Applications of Artificial Intelligence
– ident: ref7
  doi: 10.1007/s10462-021-10118-9
– ident: ref37
  doi: 10.1109/TNNLS.2022.3152268
– ident: ref23
  doi: 10.1109/TNNLS.2020.2965208
– ident: ref30
  doi: 10.1109/TSMC.2019.2898389
– ident: ref6
  doi: 10.1109/TPWRS.2021.3100898
– ident: ref19
  doi: 10.1109/TNNLS.2019.2919614
– ident: ref36
  doi: 10.1109/TNN.2011.2168538
– ident: ref38
  doi: 10.1016/j.neunet.2021.08.025
– ident: ref40
  doi: 10.1109/TSMC.2021.3071968
– ident: ref26
  doi: 10.1109/TAC.2021.3108121
– ident: ref20
  doi: 10.1016/j.ins.2017.05.005
SSID ssj0001257694
Score 2.5389884
Snippet This paper is concerned with a novel integrated multi-step heuristic dynamic programming (MsHDP) algorithm for solving optimal control problems. It is shown...
This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown...
SourceID wanfang
proquest
crossref
ieee
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1797
SubjectTerms Adaptive control
Adaptive critic
Algorithms
artificial neural networks
Convergence
Cost function
Dynamic programming
Hamilton-Jacobi-Bellman (HJB) equation
Heuristic algorithms
Iterative methods
Mathematical models
multi-step heuristic dynamic programming
multi-step reinforcement learning
Neural networks
Observers
Optimal control
Policies
Stability analysis
Stability criteria
Time optimal control
Title Adaptive Multi-Step Evaluation Design With Stability Guarantee for Discrete-Time Optimal Learning Control
URI https://ieeexplore.ieee.org/document/10219081
https://www.proquest.com/docview/2851345375
https://d.wanfangdata.com.cn/periodical/zdhxb-ywb202309002
Volume 10
WOSCitedRecordID wos001049972900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2329-9274
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001257694
  issn: 2329-9266
  databaseCode: RIE
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELYAgQQDb0R5yRIMLC5OEzf2WEErxFCQAMEWxY9AJAhVH5Ty67lzQikDA1ukOJfI5_g-23ffR8iJDbVryqDJAKs6FjlpmNSCs8iGRkHAdzqyXmwi7nbl46O6qYrVfS2Mc84nn7k6XvqzfPtmRrhVdoYy1IpjofV8HDfLYq2ZDRWAzl74EECCYgoiT0XlE3B1dtW6raNSeB3ZRmT0Kwp5WZVfCHNpnBZZWjzNhJrO2j8_cp2sVpiStspBsEHmXLFJVmaYBrdI3rJpD2c26ituGSZ30faU6Zte-EQO-pAPnyngT58xO6E4frDnHQVoSy9ymGIAYzMsG6HXYO4V3loRtD7R8zLpfZvcd9p355esUllgJmyIIdMOD_NSXMsIHejAAuRTENmD0OBhr40bzTjNpFGBVFrGmchS1FLnWWCFVakJd8hC8Va4XUJh6STTUGjJNY8yG2sbgQ3nBDeiYYyukfp3ryemoiBHJYyXxC9FuErATQm6KSndVCOn0wd6JfvG30230RczzUo31MjBt1-T6vccJA3AmWEkwljUyHHl65-7n_b5QyeTsUbzXEHM2PvD-D5ZxjZlztkBWRj2R-6QLJr3YT7oH_nx-QUSruHY
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0haNX2QGlL1S20tUQPvXhxEntjH1d8CFpYKpWq3Kz4I7ASBAQLFH49M06gy4FDb5HiTCKP43m2Z94D-BoKFwc6G3DEqpHLqD3XTgkuQ-ENBvzoZEhiE-VopA8OzM-uWD3VwsQYU_JZ7NNlOssPp_6StspWSYbaCCq0nlNS5qIt15raUkHwnKQPESYYbjD2dGQ-mTCr34e_-qQV3ie-ES0fxaEkrPIIYz6_rpq6ag6ngs3m6__8zAWY71AlG7bD4A3MxOYtvJriGnwH42GozmhuY6nmllN6F9t44Ppm6ymVg_0ZT44YItCUM3vDaARR30eG4Jatj3GSQZTNqXCE7aG5E3xrR9F6yNbatPdF-L25sb-2xTudBe6LXE24i3ScV9FqRrnMZQFBn8HYnhWejntDmQ_KqtbeZNo4XdaqrkhNXdRZUMFUvngPs81pEz8Aw8WTrgrltHBC1qF0QaKNGJXwKvfe9aB_3-vWdyTkpIVxbNNiRBiLbrLkJtu6qQffHh44a_k3nm66SL6Yata6oQfL93613Q96YXNEmoVURal6sNL5-t_d23D019mba0fmhcGo8fEJ41_gxdb-7o7d2R79WIKX1L7NQFuG2cn5ZfwEz_zVZHxx_jmN1Tv4DeUf
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+Multi-Step+Evaluation+Design+With+Stability+Guarantee+for+Discrete-Time+Optimal+Learning+Control&rft.jtitle=IEEE%2FCAA+journal+of+automatica+sinica&rft.au=Wang%2C+Ding&rft.au=Wang%2C+Jiangyu&rft.au=Zhao%2C+Mingming&rft.au=Peng%2C+Xin&rft.date=2023-09-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=2329-9266&rft.eissn=2329-9274&rft.volume=10&rft.issue=9&rft.spage=1797&rft_id=info:doi/10.1109%2FJAS.2023.123684&rft.externalDBID=NO_FULL_TEXT
thumbnail_s http://cvtisr.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fzdhxb-ywb%2Fzdhxb-ywb.jpg