Multi-objective algorithm for the design of prediction intervals for wind power forecasting model

A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously through machine learning method embedding a newly proposed optimization method (multi-objective salp swarm algorithm). In this study, data pre-proc...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Mathematical Modelling Ročník 67; s. 101
Hlavní autoři: Jiang, Ping, Li, Ranran, Li, Hongmin
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier BV 01.03.2019
Témata:
ISSN:1088-8691, 0307-904X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously through machine learning method embedding a newly proposed optimization method (multi-objective salp swarm algorithm). In this study, data pre-process strategy based on feature extraction is served for reducing the fluctuations of wind power generation and select appropriate input forms of wind speed datasets for the sake of improving the overall performance. Besides, fuzzy set theory selection technique is used to determine the best compromise solutions from Pareto front set deriving from the optimization phase. To test the effectiveness of the proposed composite forecasting framework, several case studies based on different time-scale wind speed datasets are conducted. The corresponding results present that the proposed framework significantly outperforms other benchmark methods, and it can provide very satisfactory results in both goals between high coverage and small width.
AbstractList A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously through machine learning method embedding a newly proposed optimization method (multi-objective salp swarm algorithm). In this study, data pre-process strategy based on feature extraction is served for reducing the fluctuations of wind power generation and select appropriate input forms of wind speed datasets for the sake of improving the overall performance. Besides, fuzzy set theory selection technique is used to determine the best compromise solutions from Pareto front set deriving from the optimization phase. To test the effectiveness of the proposed composite forecasting framework, several case studies based on different time-scale wind speed datasets are conducted. The corresponding results present that the proposed framework significantly outperforms other benchmark methods, and it can provide very satisfactory results in both goals between high coverage and small width.
Author Li, Ranran
Li, Hongmin
Jiang, Ping
Author_xml – sequence: 1
  givenname: Ping
  surname: Jiang
  fullname: Jiang, Ping
– sequence: 2
  givenname: Ranran
  surname: Li
  fullname: Li, Ranran
– sequence: 3
  givenname: Hongmin
  surname: Li
  fullname: Li, Hongmin
BookMark eNotjl1LwzAYhYNMcE5_gHcBr1vfpEmaXMrwCybeKHg3uuTNltIltc22v2_9uDo88HDOuSSzmCIScsOgZMDUXVs2_b7kwPTEJTBzRuZQQV0YEJ8zMmegdaGVYRfkchxbAMa1gjlpXg9dDkXatGhzOCJtum0aQt7tqU8DzTukDsewjTR52g_owqSlSEPMOBybbvzVTiE62qcTDj-IthlziFu6Tw67K3LuJw-v_3NBPh4f3pfPxert6WV5vypsxWUuNkp6Z6fHXlYNWCmFRrCWWS1q4SvuhJYOPXDVCCNR-rquasHdxhlnhMJqQW7_evshfR1wzOs2HYY4Ta45q5UyhoOsvgHovlrp
CitedBy_id crossref_primary_10_1007_s12652_020_01866_7
crossref_primary_10_1016_j_scs_2020_102036
crossref_primary_10_3390_en15249657
crossref_primary_10_1049_tje2_12186
crossref_primary_10_3233_JIFS_210004
crossref_primary_10_1109_ACCESS_2021_3127940
crossref_primary_10_1155_2020_9601763
crossref_primary_10_3390_sym15040781
crossref_primary_10_1016_j_jclepro_2019_119318
crossref_primary_10_1109_ACCESS_2022_3171610
crossref_primary_10_1016_j_renene_2019_04_154
crossref_primary_10_1016_j_ins_2020_10_034
crossref_primary_10_1016_j_swevo_2022_101070
crossref_primary_10_1016_j_apenergy_2025_126234
crossref_primary_10_1016_j_eswa_2020_113498
crossref_primary_10_1016_j_renene_2021_05_082
crossref_primary_10_1061__ASCE_WR_1943_5452_0001329
crossref_primary_10_1007_s00521_019_04629_4
crossref_primary_10_1016_j_energy_2021_122012
crossref_primary_10_1016_j_ress_2022_108820
crossref_primary_10_1016_j_apm_2019_10_069
crossref_primary_10_1016_j_apenergy_2019_113353
crossref_primary_10_1109_ACCESS_2020_2978169
crossref_primary_10_1016_j_epsr_2023_109159
crossref_primary_10_1155_2022_3764215
crossref_primary_10_1016_j_scs_2020_102052
crossref_primary_10_1016_j_renene_2022_07_009
crossref_primary_10_3390_s19092055
crossref_primary_10_1016_j_asoc_2022_108933
crossref_primary_10_1016_j_apenergy_2019_05_016
crossref_primary_10_3390_app11209383
crossref_primary_10_1016_j_seta_2020_100757
crossref_primary_10_3390_a18060354
crossref_primary_10_1016_j_rser_2021_111758
crossref_primary_10_1109_ACCESS_2019_2957174
crossref_primary_10_1002_we_2763
crossref_primary_10_1016_j_energy_2020_119361
crossref_primary_10_3390_su15010334
crossref_primary_10_1007_s42452_020_2830_0
crossref_primary_10_2166_ws_2021_146
crossref_primary_10_1016_j_asoc_2023_110464
crossref_primary_10_1016_j_egyr_2022_11_167
crossref_primary_10_1109_ACCESS_2019_2957062
crossref_primary_10_1016_j_asoc_2019_03_035
crossref_primary_10_1016_j_renene_2022_10_122
crossref_primary_10_1109_ACCESS_2020_2980562
crossref_primary_10_1016_j_oceaneng_2025_122518
crossref_primary_10_1016_j_enconman_2020_112474
crossref_primary_10_1109_ACCESS_2021_3129883
crossref_primary_10_1016_j_eswa_2022_118622
crossref_primary_10_1016_j_jclepro_2019_119195
crossref_primary_10_1016_j_egyr_2023_05_063
crossref_primary_10_1002_2050_7038_13189
crossref_primary_10_1016_j_apenergy_2019_114257
crossref_primary_10_1109_ACCESS_2022_3142083
crossref_primary_10_1016_j_apenergy_2019_114137
crossref_primary_10_1007_s12555_020_0529_z
crossref_primary_10_3390_app13031311
crossref_primary_10_1016_j_energy_2024_131057
crossref_primary_10_1016_j_engappai_2020_104133
crossref_primary_10_12677_aam_2024_1310429
crossref_primary_10_1016_j_enconman_2020_113324
crossref_primary_10_1016_j_apenergy_2019_114243
crossref_primary_10_1109_ACCESS_2021_3135527
crossref_primary_10_1155_2020_9564287
crossref_primary_10_1080_15325008_2023_2220688
crossref_primary_10_1002_eng2_12178
crossref_primary_10_1007_s00521_020_04996_3
crossref_primary_10_1002_jnm_3094
crossref_primary_10_1093_jcde_qwac021
crossref_primary_10_1007_s10462_019_09768_7
crossref_primary_10_1016_j_apenergy_2021_117446
crossref_primary_10_1109_ACCESS_2022_3189477
crossref_primary_10_1049_rpg2_12588
crossref_primary_10_1109_ACCESS_2019_2942040
crossref_primary_10_1016_j_apenergy_2019_03_097
crossref_primary_10_1007_s00500_021_06189_z
crossref_primary_10_1016_j_compeleceng_2022_108000
crossref_primary_10_1109_ACCESS_2020_2977921
crossref_primary_10_3390_su152015050
crossref_primary_10_1007_s00521_024_09923_4
crossref_primary_10_1155_2021_6632390
crossref_primary_10_3390_en12214146
crossref_primary_10_3390_en16031530
crossref_primary_10_1049_gtd2_12291
crossref_primary_10_1016_j_asoc_2020_106900
crossref_primary_10_1371_journal_pone_0273257
crossref_primary_10_1016_j_egyr_2022_04_050
crossref_primary_10_1016_j_measurement_2020_108373
crossref_primary_10_1016_j_measurement_2021_109762
crossref_primary_10_1016_j_asoc_2020_106509
crossref_primary_10_1109_ACCESS_2020_3025967
crossref_primary_10_1007_s10586_024_04996_1
crossref_primary_10_1016_j_asoc_2019_105587
crossref_primary_10_1016_j_segan_2025_101664
crossref_primary_10_1080_15567036_2022_2126035
crossref_primary_10_3390_electronics14173373
crossref_primary_10_1016_j_asoc_2020_106476
ContentType Journal Article
Copyright Copyright Elsevier BV Mar 2019
Copyright_xml – notice: Copyright Elsevier BV Mar 2019
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2018.10.019
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Mathematics
EISSN 0307-904X
GroupedDBID -W8
-~X
.7I
.GO
.QK
0BK
0R~
23M
2DF
4.4
53G
5GY
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
EAP
EBR
EBS
EBU
EDJ
EJD
EMK
EPL
EPS
EST
ESX
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
HZ~
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
O9-
P2P
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-b65fdc307f53a0c5548e0cc1c8474f32d485def026a495e5f773742dbd9d946e3
ISICitedReferencesCount 107
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456492500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1088-8691
IngestDate Sun Nov 09 07:25:16 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-b65fdc307f53a0c5548e0cc1c8474f32d485def026a495e5f773742dbd9d946e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://dx.doi.org/10.1016/j.apm.2018.10.019
PQID 2176699205
PQPubID 2045280
ParticipantIDs proquest_journals_2176699205
PublicationCentury 2000
PublicationDate 20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 20190301
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2019
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
SSID ssj0012860
ssj0005904
Score 2.554938
Snippet A composite forecasting framework is designed and implemented successfully to estimate the prediction intervals of wind speed time series simultaneously...
SourceID proquest
SourceType Aggregation Database
StartPage 101
SubjectTerms Algorithms
Datasets
Electric power generation
Feature extraction
Forecasting
Fuzzy set theory
Fuzzy sets
Intervals
Machine learning
Multiple objective analysis
Pareto optimization
Variation
Wind power
Wind power generation
Wind speed
Title Multi-objective algorithm for the design of prediction intervals for wind power forecasting model
URI https://www.proquest.com/docview/2176699205
Volume 67
WOSCitedRecordID wos000456492500008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 1088-8691
  databaseCode: TFW
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1NbxMxELVC4VAOCAqoQEE-IC7I0X7G9hGhRhxCqNAWcou8u3ZJle6GTVrKv2fG9n7QSggOXFaJs1lt8t6OZ-w3M4S8hmcZaCBKprQULMlTzaThExaC65yjfx4IZZtN8PlcLBbyZDS6bHNhrta8qsT1tdz8V6hhDMDG1Nl_gLu7KAzAawAdjgA7HP8KeJtSy-r83Jmyt2p9Vjer3beLTlFYWtWG1To3uE_j9Y4ofsRiynjajxXWD8AOavhWF2pr5dG2b87Qn22d2I9d9VfM9cWz1u2ciPKclV-VPhkMzqyO4LOqmoEsyPXQrquzC18R3C9IYA5UPFyQ6DNlvgzsKhgzJiauMddY-4StgDMZOIFma4xdbw5vTUN32VtW3i04nI_VBmsJhGKM-jxveX-rqD3_tJyezmbL7HiRvdl8Z9hsDDflfeeVO-RuxFOJSsBs-rVXBkkMUf1OVCRcpnn7A9qdcasRvHEDt-Zz66RkD8kDH13Qd44Vj8hIVwfkfg_O9oDsd1Pez8dE3SAL7chCAXYKX6OOLLQ2tCcL7chiT0OyUEsWOiALtWR5Qk6nx9n7D8w33WBFHKU7lk9SUxYAjUljFRTgbQodFEVYgBuTmDgqE5GW2kDoriC21qnhPOZJVOalLGUy0fFTslfVlT4kNDK5AX9TyTIW4CsZFXOeQ7gdJkZAXBs_I0ft37X0D9B2GWHFUimjIH3-549fkP2efUdkb9dc6pfkXnG1W22bVxbRX233bSg
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-objective+algorithm+for+the+design+of+prediction+intervals+for+wind+power+forecasting+model&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Jiang%2C+Ping&rft.au=Li%2C+Ranran&rft.au=Li%2C+Hongmin&rft.date=2019-03-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=67&rft.spage=101&rft_id=info:doi/10.1016%2Fj.apm.2018.10.019&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-8691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-8691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-8691&client=summon