A semi-supervised learning framework for gas chimney detection based on sparse autoencoder and TSVM

Supervised classifiers play important roles in seismic interpretation. Especially in gas chimney detection, the multilayer perceptron (MLP), a supervised classifier, is widely used. However, the lack of labeled data usually limits applications of the supervised classifiers. To get more accurate seis...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of geophysics and engineering Ročník 16; číslo 1; s. 52 - 61
Hlavní autori: Xu, Pengcheng, Lu, Wenkai, Wang, Benfeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London Oxford University Press 01.02.2019
Predmet:
ISSN:1742-2132, 1742-2140
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Supervised classifiers play important roles in seismic interpretation. Especially in gas chimney detection, the multilayer perceptron (MLP), a supervised classifier, is widely used. However, the lack of labeled data usually limits applications of the supervised classifiers. To get more accurate seismic interpretation results, we take advantage of the information of unlabeled data by unsupervised feature extraction and semi-supervised classification methods. The sparse autoencoder (SAE) is an unsupervised learning method that can extract the features of data without labels, and the transductive support vector machine (TSVM) is a semi-supervised method that trains a classifier according to both labeled and unlabeled data. In this paper, we propose a semi-supervised learning framework that combines SAE and TSVM to detect gas chimneys. In this framework, SAE is used to extract features from data and TSVM is used to classify the labeled and unlabeled features. Therefore, the unlabeled data is taken advantage of in both unsupervised feature extraction and semi-supervised classification to improve accuracy. In order to improve the precision of detection, the attributes of neighborhood regions are also utilized. Due to the information learned from plenty of unlabeled data, the proposed framework performs well. Numerical experiments are carried out on sample sets and field data. The proposed framework has higher testing accuracy than the traditional MLP method, especially when the labeled training set is small. In field data experiments, the proposed framework also gets good prediction results for gas chimney locations.
AbstractList Supervised classifiers play important roles in seismic interpretation. Especially in gas chimney detection, the multilayer perceptron (MLP), a supervised classifier, is widely used. However, the lack of labeled data usually limits applications of the supervised classifiers. To get more accurate seismic interpretation results, we take advantage of the information of unlabeled data by unsupervised feature extraction and semi-supervised classification methods. The sparse autoencoder (SAE) is an unsupervised learning method that can extract the features of data without labels, and the transductive support vector machine (TSVM) is a semi-supervised method that trains a classifier according to both labeled and unlabeled data. In this paper, we propose a semi-supervised learning framework that combines SAE and TSVM to detect gas chimneys. In this framework, SAE is used to extract features from data and TSVM is used to classify the labeled and unlabeled features. Therefore, the unlabeled data is taken advantage of in both unsupervised feature extraction and semi-supervised classification to improve accuracy. In order to improve the precision of detection, the attributes of neighborhood regions are also utilized. Due to the information learned from plenty of unlabeled data, the proposed framework performs well. Numerical experiments are carried out on sample sets and field data. The proposed framework has higher testing accuracy than the traditional MLP method, especially when the labeled training set is small. In field data experiments, the proposed framework also gets good prediction results for gas chimney locations.
Author Lu, Wenkai
Xu, Pengcheng
Wang, Benfeng
Author_xml – sequence: 1
  givenname: Pengcheng
  orcidid: 0000-0002-5231-877X
  surname: Xu
  fullname: Xu, Pengcheng
  organization: Easysignal Group, Institute for Artificial Intelligence, Tsinghua University (THUAI), State Key Laboratory of Intelligent Technology and Systems, Beijing National Research Center for Information Science and Technology (BNRist), Department of Automation, Tsinghua University, Beijing 100084, China
– sequence: 2
  givenname: Wenkai
  orcidid: 0000-0003-0249-2144
  surname: Lu
  fullname: Lu, Wenkai
  email: lwkmf@mail.tsinghua.edu.cn
  organization: Easysignal Group, Institute for Artificial Intelligence, Tsinghua University (THUAI), State Key Laboratory of Intelligent Technology and Systems, Beijing National Research Center for Information Science and Technology (BNRist), Department of Automation, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Benfeng
  orcidid: 0000-0002-5743-0664
  surname: Wang
  fullname: Wang, Benfeng
  organization: State Key Laboratory of Marine Geology, School of Ocean and Earth Science, Institute for Advanced Study, Tongji University, Shanghai 200092, China
BookMark eNp9kEtLw0AUhQepYFvd-AsGxI0QO88mWZbiCyourG7DZHITpzYzcSZR--9NibgQ8W7uWXznXs6ZoJF1FhA6peSSkpTPNhXMqs8dIeIAjWksWMSoIKMfzdkRmoSwIYT3I8dIL3CA2kSha8C_mwAF3oLy1tgKl17V8OH8Ky6dx5UKWL-Y2sIOF9CCbo2zOFd7Sy9Co3wArLrWgdWuAI-VLfD68fn-GB2Wahvg5HtP0dP11Xp5G60ebu6Wi1WkOZNtlPMkZ6JMgEmlFSNaiznTcQwJyEKmvJBCqoRxVsg8T6AUKqEsoWkuJOOKpXyKzoa7jXdvHYQ227jO2_5lxmlMkjlJ-9xTRAZKexeChzLTplX7MK1XZptRku2rzPoqs6HK3nLxy9J4Uyu_-xs-H2DXNf9xX0FghZI
CitedBy_id crossref_primary_10_3390_en17112576
crossref_primary_10_1190_geo2020_0297_1
crossref_primary_10_1190_geo2024_0085_1
crossref_primary_10_1109_ACCESS_2020_3025324
crossref_primary_10_1190_geo2023_0135_1
crossref_primary_10_1016_j_petsci_2022_09_008
crossref_primary_10_1109_TGRS_2020_2967344
crossref_primary_10_1109_TGRS_2019_2947085
crossref_primary_10_1016_j_earscirev_2024_104887
crossref_primary_10_1016_j_marpetgeo_2023_106231
crossref_primary_10_1109_TGRS_2022_3205301
Cites_doi 10.1016/j.jappgeo.2014.11.007
10.1016/j.jappgeo.2015.11.006
10.1190/INT-2015-0098.1
10.1088/1742-2140/aaa2f0
10.1190/geo2014-0065.1
10.1038/323533a0
10.1016/j.jappgeo.2015.04.004
10.1088/1742-2140/aaa4db
10.1088/1742-2132/8/4/011
10.1126/science.1127647
10.1088/1742-2140/aa8433
10.1071/EG00481
10.1080/01431161.2016.1171928
10.1190/1.1438976
10.3997/2214-4609.20148759
10.1109/MSP.2017.2785979
10.1088/1742-2140/aa5b5b
10.3997/2214-4609.20141200
10.1016/j.jappgeo.2013.12.004
10.1016/j.jappgeo.2016.03.027
10.1190/1.3479999
10.1016/j.jappgeo.2014.06.012
10.3997/2214-4609.201700920
10.1190/1.2392789
10.1190/geo2017-0495.1
10.1088/1742-2132/11/6/065005
10.1190/1.1437657
10.1109/LGRS.2015.2482520
10.1190/geo2010-0185.1
10.1016/S0920-4105(01)00090-0
10.1109/LGRS.2017.2785834
10.1109/ICOSP.2006.346109
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press on behalf of the Sinopec Geophysical Research Institute. 2019
The Author(s) 2019. Published by Oxford University Press on behalf of the Sinopec Geophysical Research Institute. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Sinopec Geophysical Research Institute. 2019
– notice: The Author(s) 2019. Published by Oxford University Press on behalf of the Sinopec Geophysical Research Institute. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID TOX
AAYXX
CITATION
AEUYN
AFKRA
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
HCIFZ
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
DOI 10.1093/jge/gxy004
DatabaseName Oxford Journals Open Access Collection
CrossRef
One Sustainability
ProQuest Central UK/Ireland
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
ProQuest One Community College
ProQuest Central
SciTech Premium Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
ProQuest One Academic UKI Edition
Natural Science Collection
ProQuest Central Korea
ProQuest One Academic
ProQuest Central (New)
ProQuest One Academic (New)
DatabaseTitleList ProQuest One Academic Middle East (New)

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1742-2140
EndPage 61
ExternalDocumentID 10_1093_jge_gxy004
10.1093/jge/gxy004
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 41674116; 41604096
  funderid: 10.13039/501100001809
– fundername: China State Key Science and Technology Projects
  grantid: 2016ZX05024001–005
GroupedDBID 0R~
1JI
4.4
5B3
5GY
5VS
5ZH
7.M
7.Q
AAFWJ
AAJIO
AAJKP
AAPXW
AAVAP
ABEJV
ABGNP
ABPTD
ABQJV
ABXVV
ACAFW
ACGFS
AENEX
AFULF
AFYNE
ALMA_UNASSIGNED_HOLDINGS
AMNDL
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
GROUPED_DOAJ
H13
HAK
IHE
IJHAN
IOP
IZVLO
KOT
KSI
LAP
N5L
N9A
OK1
P2P
PJBAE
RIN
RO9
ROL
ROX
SY9
TOX
W28
XPP
~02
AAYXX
AEUYN
AFFHD
AFKRA
AFPKN
BENPR
BHPHI
BKSAR
CCPQU
CITATION
HCIFZ
PCBAR
PHGZM
PHGZT
DWQXO
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PUEGO
ID FETCH-LOGICAL-c325t-b38b24f8e25aca20cc462c77e8e5d593d545a8232d5bb8ef4a812819b4523a293
IEDL.DBID BENPR
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000466715700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1742-2132
IngestDate Fri Sep 19 20:57:21 EDT 2025
Sat Nov 29 05:59:19 EST 2025
Tue Nov 18 21:56:12 EST 2025
Wed Feb 05 08:35:00 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords transductive support vector machine
gas chimney detection
multi-attribute classification
semi-supervised learning
sparse autoencoder
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-b38b24f8e25aca20cc462c77e8e5d593d545a8232d5bb8ef4a812819b4523a293
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0249-2144
0000-0002-5743-0664
0000-0002-5231-877X
OpenAccessLink https://dx.doi.org/10.1093/jge/gxy004
PQID 3170860900
PQPubID 7097369
PageCount 10
ParticipantIDs proquest_journals_3170860900
crossref_citationtrail_10_1093_jge_gxy004
crossref_primary_10_1093_jge_gxy004
oup_primary_10_1093_jge_gxy004
PublicationCentury 2000
PublicationDate 20190201
2019-02-01
PublicationDateYYYYMMDD 2019-02-01
PublicationDate_xml – month: 02
  year: 2019
  text: 20190201
  day: 01
PublicationDecade 2010
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of geophysics and engineering
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Liu ( key 2019040811502660200_bib18) 2011; 76
Al Moqbel ( key 2019040811502660200_bib1) 2011; 8
Wang ( key 2019040811502660200_bib31a) 2019; 84
Hu ( key 2019040811502660200_bib12) 2012
Luo ( key 2019040811502660200_bib20) 2018; 15
Joachims ( key 2019040811502660200_bib13) 1999; 99
Yuan ( key 2019040811502660200_bib35) 2018; 15
Li ( key 2019040811502660200_bib17) 2018; 15
Othman ( key 2019040811502660200_bib25) 2016; 37
Zhang ( key 2019040811502660200_bib38) 2010
Xiong ( key 2019040811502660200_bib32) 2014
Tingdahl ( key 2019040811502660200_bib31) 2001; 29
Meldahl ( key 2019040811502660200_bib23) 1999
Qi ( key 2019040811502660200_bib26) 2016; 4
Tao ( key 2019040811502660200_bib30) 2015; 12
Mahmoodi ( key 2019040811502660200_bib22) 2016; 124
Aminzadeh ( key 2019040811502660200_bib3) 2002
Du ( key 2019040811502660200_bib8) 2015; 112
Yuan ( key 2019040811502660200_bib37) 2015; 80
Rumelhart ( key 2019040811502660200_bib27) 1986; 323
Hampson ( key 2019040811502660200_bib9) 2000; 31
Nourollah ( key 2019040811502660200_bib24) 2010; 29
Kahrizi ( key 2019040811502660200_bib14) 2014; 108
Konaté ( key 2019040811502660200_bib15) 2015; 118
Di Giuseppe ( key 2019040811502660200_bib7) 2014; 101
Yuan ( key 2019040811502660200_bib36) 2018
Chen ( key 2019040811502660200_bib4) 1997; 16
Machado ( key 2019040811502660200_bib21) 2006
Song ( key 2019040811502660200_bib29) 2017; 14
Heggland ( key 2019040811502660200_bib10) 1999
de Matos ( key 2019040811502660200_bib5) 2006; 72
Yang ( key 2019040811502660200_bib34) 2006
Zhang ( key 2019040811502660200_bib39) 2015
Liu ( key 2019040811502660200_bib19) 2016; 129
Xu ( key 2019040811502660200_bib33) 2017
AlRegib ( key 2019040811502660200_bib2) 2018; 35
Deng ( key 2019040811502660200_bib6) 2017; 14
Kourki ( key 2019040811502660200_bib16) 2014; 11
Singh ( key 2019040811502660200_bib28) 2016
Hinton ( key 2019040811502660200_bib11) 2006; 313
Meldahl ( key 2019040811502660200_bib23a) 2001; 20
References_xml – volume: 112
  start-page: 52
  year: 2015
  ident: key 2019040811502660200_bib8
  article-title: Seismic facies analysis based on self-organizing map and empirical mode decomposition
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2014.11.007
– volume: 124
  start-page: 17
  year: 2016
  ident: key 2019040811502660200_bib22
  article-title: Supervised classification of down-hole physical properties measurements using neural network to predict the lithology
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2015.11.006
– volume: 4
  start-page: SB91
  year: 2016
  ident: key 2019040811502660200_bib26
  article-title: Semisupervised multiattribute seismic facies analysis
  publication-title: Interpretation
  doi: 10.1190/INT-2015-0098.1
– volume: 15
  start-page: 1407
  year: 2018
  ident: key 2019040811502660200_bib17
  article-title: Improved modeling of channel prediction based on gray relational analysis and a support vector machine: a case study on the X pilot area in the Daqing oilfield in China
  publication-title: Journal of Geophysics and Engineering
  doi: 10.1088/1742-2140/aaa2f0
– volume: 80
  start-page: R71
  year: 2015
  ident: key 2019040811502660200_bib37
  article-title: Simultaneous multitrace impedance inversion with transform-domain sparsity promotion
  publication-title: Geophysics
  doi: 10.1190/geo2014-0065.1
– volume: 323
  start-page: 533
  year: 1986
  ident: key 2019040811502660200_bib27
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– start-page: 440
  volume-title: SEG Technical Program Expanded Abstracts
  year: 2002
  ident: key 2019040811502660200_bib3
  article-title: Interpretation of gas chimney volumes
– volume: 118
  start-page: 37
  year: 2015
  ident: key 2019040811502660200_bib15
  article-title: Capability of self-organizing map neural network in geophysical log data classification: case study from the CCSD-MH
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2015.04.004
– volume: 15
  start-page: 895
  year: 2018
  ident: key 2019040811502660200_bib20
  article-title: A lithology identification method for continental shale oil reservoir based on BP neural network
  publication-title: Journal of Geophysics and Engineering
  doi: 10.1088/1742-2140/aaa4db
– volume: 8
  start-page: 592
  year: 2011
  ident: key 2019040811502660200_bib1
  article-title: Carbonate reservoir characterization with lithofacies clustering and porosity prediction
  publication-title: Journal of Geophysics and Engineering
  doi: 10.1088/1742-2132/8/4/011
– volume: 313
  start-page: 504
  year: 2006
  ident: key 2019040811502660200_bib11
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 14
  start-page: 1535
  year: 2017
  ident: key 2019040811502660200_bib29
  article-title: Unsupervised seismic facies analysis with spatial constraints using regularized fuzzy c-means
  publication-title: Journal of Geophysics and Engineering
  doi: 10.1088/1742-2140/aa8433
– volume: 31
  start-page: 481
  year: 2000
  ident: key 2019040811502660200_bib9
  article-title: Using multi-attribute transforms to predict log properties from seismic data
  publication-title: Exploration Geophysics
  doi: 10.1071/EG00481
– volume: 37
  start-page: 2149
  year: 2016
  ident: key 2019040811502660200_bib25
  article-title: Using convolutional features and a sparse autoencoder for land-use scene classification
  publication-title: International Journal of Remote Sensing
  doi: 10.1080/01431161.2016.1171928
– volume: 20
  start-page: 474
  year: 2001
  ident: key 2019040811502660200_bib23a
  article-title: Identifying faults and gas chimneys using multiattributes and neural networks
  publication-title: Lead. Edge
  doi: 10.1190/1.1438976
– volume-title: 74th EAGE Conference and Exhibition
  year: 2012
  ident: key 2019040811502660200_bib12
  article-title: Semi-supervised classification of seismic attributes
  doi: 10.3997/2214-4609.20148759
– start-page: 935
  volume-title: SEG Technical Program Expanded Abstracts
  year: 1999
  ident: key 2019040811502660200_bib10
  article-title: The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks: part II; interpretation
– volume: 35
  start-page: 82
  year: 2018
  ident: key 2019040811502660200_bib2
  article-title: Subsurface structure analysis using computational interpretation and learning: a visual signal processing perspective
  publication-title: IEEE Signal Processing Magazine
  doi: 10.1109/MSP.2017.2785979
– volume: 14
  start-page: 341
  year: 2017
  ident: key 2019040811502660200_bib6
  article-title: Support vector machine as an alternative method for lithology classification of crystalline rocks
  publication-title: Journal of Geophysics and Engineering
  doi: 10.1088/1742-2140/aa5b5b
– volume-title: 76th EAGE Conference and Exhibition
  year: 2014
  ident: key 2019040811502660200_bib32
  article-title: Adaboost-based multi-attribute classification technology and its application
  doi: 10.3997/2214-4609.20141200
– volume: 101
  start-page: 108
  year: 2014
  ident: key 2019040811502660200_bib7
  article-title: k-Means clustering as tool for multivariate geophysical data analysis. An application to shallow fault zone imaging
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2013.12.004
– volume: 129
  start-page: 28
  year: 2016
  ident: key 2019040811502660200_bib19
  article-title: A modified Fuzzy C-Means (FCM) clustering algorithm and its application on carbonate fluid identification
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2016.03.027
– start-page: 931
  volume-title: SEG Technical Program Expanded Abstracts
  year: 1999
  ident: key 2019040811502660200_bib23
  article-title: The chimney cube, an example of semi-automated detection of seismic objects by directive attributes and neural networks: part I; methodology
– volume: 29
  start-page: 896
  year: 2010
  ident: key 2019040811502660200_bib24
  article-title: Gas chimney identification through seismic attribute analysis in the Gippsland Basin, Australia
  publication-title: The Leading Edge
  doi: 10.1190/1.3479999
– year: 2018
  ident: key 2019040811502660200_bib36
  article-title: Geosteering phase attributes: a new detector for the discontinuities of seismic images
  publication-title: IEEE Geoscience and Remote Sensing Letters
– start-page: 208
  volume-title: Ninth Brazilian Symposium on Neural Networks
  year: 2006
  ident: key 2019040811502660200_bib21
  article-title: Using neural networks to evaluate the effectiveness of a new seismic fault attribute
– volume: 99
  start-page: 200
  year: 1999
  ident: key 2019040811502660200_bib13
  article-title: Transductive inference for text classification using support vector machines
  publication-title: ICML
– start-page: 594
  volume-title: International Congress on Image and Signal Processing
  year: 2015
  ident: key 2019040811502660200_bib39
  article-title: Deep neural network for face recognition based on sparse autoencoder
– volume: 108
  start-page: 159
  year: 2014
  ident: key 2019040811502660200_bib14
  article-title: Neuron curve as a tool for performance evaluation of MLP and RBF architecture in first break picking of seismic data
  publication-title: Journal of Applied Geophysics
  doi: 10.1016/j.jappgeo.2014.06.012
– volume-title: 79th EAGE Conference and Exhibition
  year: 2017
  ident: key 2019040811502660200_bib33
  article-title: Multi-attribute classification based on sparse autoencoder-a gas chimney detection example
  doi: 10.3997/2214-4609.201700920
– volume: 72
  start-page: 9
  year: 2006
  ident: key 2019040811502660200_bib5
  article-title: Unsupervised seismic facies analysis using wavelet transform and self-organizing maps
  publication-title: Geophysics
  doi: 10.1190/1.2392789
– volume: 84
  start-page: V11
  year: 2019
  ident: key 2019040811502660200_bib31a
  article-title: Deep-learning-based seismic data interpolation: a preliminary result
  publication-title: Geophysics
  doi: 10.1190/geo2017-0495.1
– start-page: 1586
  volume-title: SEG Technical Program Expanded Abstracts
  year: 2010
  ident: key 2019040811502660200_bib38
  article-title: Seismic attributes selection based on SVM for hydrocarbon reservoir prediction
– volume: 11
  start-page: 65005
  year: 2014
  ident: key 2019040811502660200_bib16
  article-title: Seismic facies analysis from pre-stack data using self-organizing maps
  publication-title: Journal of Geophysics and Engineering
  doi: 10.1088/1742-2132/11/6/065005
– volume: 16
  start-page: 445
  year: 1997
  ident: key 2019040811502660200_bib4
  article-title: Seismic attribute technology for reservoir forecasting and monitoring
  publication-title: The Leading Edge
  doi: 10.1190/1.1437657
– volume: 12
  start-page: 2438
  year: 2015
  ident: key 2019040811502660200_bib30
  article-title: Unsupervised spectral–spatial feature learning with stacked sparse autoencoder for hyperspectral imagery classification
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2015.2482520
– volume: 76
  start-page: 23
  year: 2011
  ident: key 2019040811502660200_bib18
  article-title: Time-frequency analysis of seismic data using local attributes
  publication-title: Geophysics
  doi: 10.1190/geo2010-0185.1
– volume: 29
  start-page: 205
  year: 2001
  ident: key 2019040811502660200_bib31
  article-title: Improving seismic chimney detection using directional attributes
  publication-title: Journal of Petroleum Science and Engineering
  doi: 10.1016/S0920-4105(01)00090-0
– volume: 15
  start-page: 272
  year: 2018
  ident: key 2019040811502660200_bib35
  article-title: Seismic waveform classification and first-break picking using convolution neural networks
  publication-title: IEEE Geoscience and Remote Sensing Letters
  doi: 10.1109/LGRS.2017.2785834
– start-page: 2082
  volume-title: SEG Technical Program Expanded Abstracts
  year: 2016
  ident: key 2019040811502660200_bib28
  article-title: Interpretation of gas chimney in the Maari 3D field of southern Taranaki Basin, New Zealand
– volume-title: 8th International Conference on Signal Processing
  year: 2006
  ident: key 2019040811502660200_bib34
  article-title: Seismic data analysis based on fuzzy clustering
  doi: 10.1109/ICOSP.2006.346109
SSID ssj0033335
Score 2.2202065
Snippet Supervised classifiers play important roles in seismic interpretation. Especially in gas chimney detection, the multilayer perceptron (MLP), a supervised...
SourceID proquest
crossref
oup
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 52
SubjectTerms Accuracy
Algorithms
Classification
Engineering
Geophysics
Lithology
Neural networks
Support vector machines
Title A semi-supervised learning framework for gas chimney detection based on sparse autoencoder and TSVM
URI https://www.proquest.com/docview/3170860900
Volume 16
WOSCitedRecordID wos000466715700004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1742-2140
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033335
  issn: 1742-2132
  databaseCode: DOA
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1742-2140
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033335
  issn: 1742-2132
  databaseCode: TOX
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1742-2140
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033335
  issn: 1742-2132
  databaseCode: PCBAR
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1742-2140
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0033335
  issn: 1742-2132
  databaseCode: BENPR
  dateStart: 20040301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF58gh58VMVnWdCLh6VhN9tsTqJi9aC1aJXewr5aK5rWJhX7750kGx8gvZhDCGRZws5k5pud2fkQOmJ1Tk2gLamHihE_tJwoKg2BeMjjUnJlZM5ach00m6LTCVtuwy1xZZWlTcwNtRnobI-8Bn4O0LcXet7J8I1krFFZdtVRaMyi-axTGej5_NlFs3VX2mIGFy-ORFJCIfAqG5SGrPbcs7Xex8RzFG2lS_p1zK20y7mzaaz-9zPX0IqDmfi00It1NGPjClr-0XywghYvc1LfyQbSpzixr32SjIeZ5UiswY5Mooe7ZfEWBnSLezLB-qn_GtsJNjbNy7hinHlCg-EBrNMosViO00HWH9PYEZaxwe37x5tN9NC4aJ9fEUe-QDSjPCWKCUX9rrCUSy2pp7VfpzoIrLDc8JAZgF5SAB4zXClhu74UeVJO-RDaSgARW2guHsR2G2GI0ThnAZeB9H2YTDADblNyEao6h3l30HG5_pF2nckzgoyXqMiQswhkFRWy2kGHX2OHRT-OP0dVQYxTB-yX4ovcT5tE37Lbnf56Dy0BbgqL4u19NJeOxvYALej3tJ-Mqk4Hq3l4D_f2becT2mnpLg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LbtQwFL2qpiDogkdpRaEUS8CChTWRHU-cBar6pFWnowoG1F3q1wyD2swwydDOT_Ube53EPCTUXRdkFSmWpcRH554bX98D8JZ3BLOJcbSTak7j1AmqmbIU86FIKCW0VZVrSTfp9eTpaXqyANfhLIwvqwycWBG1HRv_j7yNcQ7Vd5RG0ebkB_WuUX53NVho1LA4cvNLTNmKD4e7uL7vGNvf6-8c0MZVgBrOREk1l5rFA-mYUEaxyJi4w0ySOOmEFSm3qCmURKFhhdbSDWIlq90mHWPOpphvvoSUvxhzpJgWLG7v9U4-Be7neIn6CCajDBO90BA15e3vQ9ceXs2jxhIuhMC_jtWFOFAFt_3H_9tneQKPGhlNtmrcP4UFly_D0h_NFZfh_sfKtHj-DMwWKdzFiBaziWfGwlnSmGUMySAUpxFU72SoCmK-jS5yNyfWlVWZWk58pLcEb5B9p4UjalaOff9P66ZE5Zb0P389XoEvd_K-q9DKx7l7DgRzUCF4IlSi4hgnk9yiLFBCprojcN41eB_WOzNN53VvAHKe1RUAPENsZDU21uDNr7GTut_IP0dtIGxuHbAe4JI1pFRkv7Hy4vbHr-HBQf-4m3UPe0cv4SFqxLQuVF-HVjmduVdwz_wsR8V0o8E_gbO7xtYNGrhDNw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+semi-supervised+learning+framework+for+gas+chimney+detection+based+on+sparse+autoencoder+and+TSVM&rft.jtitle=Journal+of+geophysics+and+engineering&rft.au=Xu%2C+Pengcheng&rft.au=Lu%2C+Wenkai&rft.au=Wang%2C+Benfeng&rft.date=2019-02-01&rft.issn=1742-2132&rft.eissn=1742-2140&rft.volume=16&rft.issue=1&rft.spage=52&rft.epage=61&rft_id=info:doi/10.1093%2Fjge%2Fgxy004&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_jge_gxy004
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1742-2132&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1742-2132&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1742-2132&client=summon