Stress-based topology optimization with discrete geometric components

In this paper, we introduce a framework for the stress-based topology optimization of structures made by the assembly of discrete geometric components, such as bars and plates, that are described by explicit geometry representations. To circumvent re-meshing upon design changes, we employ the geomet...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods in applied mechanics and engineering Ročník 325; s. 1 - 21
Hlavní autori: Zhang, Shanglong, Gain, Arun L., Norato, Julián A.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.10.2017
Elsevier BV
Predmet:
ISSN:0045-7825, 1879-2138
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, we introduce a framework for the stress-based topology optimization of structures made by the assembly of discrete geometric components, such as bars and plates, that are described by explicit geometry representations. To circumvent re-meshing upon design changes, we employ the geometry projection method to smoothly map the geometric components onto a continuous density field defined over a uniform finite element grid for analysis. The geometry projection is defined in a manner that prevents the singular optima phenomenon widely reported in the literature, and that effectively considers stresses only on the geometric components and not on the void region. As in previous work, a size variable is ascribed to each geometry component and penalized in the spirit of solid isotropic material with penalization (SIMP), allowing the optimizer to entirely remove geometric components from the design. We demonstrate our method on the L-bracket benchmark for stress-based optimization problems in 2-d and 3-d.
AbstractList In this paper, we introduce a framework for the stress-based topology optimization of structures made by the assembly of discrete geometric components, such as bars and plates, that are described by explicit geometry representations. To circumvent re-meshing upon design changes, we employ the geometry projection method to smoothly map the geometric components onto a continuous density field defined over a uniform finite element grid for analysis. The geometry projection is defined in a manner that prevents the singular optima phenomenon widely reported in the literature, and that effectively considers stresses only on the geometric components and not on the void region. As in previous work, a size variable is ascribed to each geometry component and penalized in the spirit of solid isotropic material with penalization (SIMP), allowing the optimizer to entirely remove geometric components from the design. We demonstrate our method on the L-bracket benchmark for stress-based optimization problems in 2-d and 3-d.
Author Zhang, Shanglong
Gain, Arun L.
Norato, Julián A.
Author_xml – sequence: 1
  givenname: Shanglong
  surname: Zhang
  fullname: Zhang, Shanglong
  organization: Department of Mechanical Engineering, The University of Connecticut, 191 Auditorium Road, U-3139, Storrs, CT 06269, USA
– sequence: 2
  givenname: Arun L.
  surname: Gain
  fullname: Gain, Arun L.
  organization: Caterpillar Inc., Champaign Simulation Center, 1901 S. First Street, Champaign, IL 61820, USA
– sequence: 3
  givenname: Julián A.
  surname: Norato
  fullname: Norato, Julián A.
  email: julian.norato@uconn.edu
  organization: Department of Mechanical Engineering, The University of Connecticut, 191 Auditorium Road, U-3139, Storrs, CT 06269, USA
BookMark eNp9kD9PwzAQxS1UJNrCB2CLxJzgs2M7FROqyh8JiQGYLcdxiqMmDrYLKp8elzIx9JZb3u_uvTdDk8ENBqFLwAVg4NddoXtVEAyiwLzAhJ2gKVRikROg1QRNMS5ZLirCztAshA6nqYBM0eolehNCXqtgmiy60W3cepe5Mdrefqto3ZB92fieNTZob6LJ1sb1JnqrM-36MbkYYjhHp63aBHPxt-fo7W71unzIn57vH5e3T7mmhMVckWSMUL1oRNswTXlJK6p4TaHGddvSUguuuSiTTQUCQBBoQLUlqww0NeZ0jq4Od0fvPrYmRNm5rR_SSwkLzgAYITSpxEGlvQvBm1ZqG3-jRK_sRgKW-85kJ1Nnct-ZxFwma4mEf-Toba_87ihzc2BMCv5pjZdBWzNo01hvdJSNs0foH1x5hlc
CitedBy_id crossref_primary_10_1002_nme_5737
crossref_primary_10_1016_j_cma_2018_10_020
crossref_primary_10_1016_j_compstruct_2020_112718
crossref_primary_10_32604_cmes_2023_027603
crossref_primary_10_1016_j_cma_2018_08_045
crossref_primary_10_1007_s10409_020_00944_5
crossref_primary_10_1016_j_advengsoft_2020_102955
crossref_primary_10_1016_j_apm_2021_11_008
crossref_primary_10_1016_j_compstruct_2023_117532
crossref_primary_10_1007_s00158_019_02447_9
crossref_primary_10_1007_s11081_023_09851_7
crossref_primary_10_1007_s11831_023_10053_8
crossref_primary_10_1002_nme_6599
crossref_primary_10_1016_j_cma_2018_01_050
crossref_primary_10_1007_s11837_021_04659_1
crossref_primary_10_1016_j_matdes_2020_109286
crossref_primary_10_1177_09544054231223996
crossref_primary_10_1016_j_advengsoft_2023_103592
crossref_primary_10_1016_j_advengsoft_2023_103591
crossref_primary_10_1016_j_cma_2019_112685
crossref_primary_10_32604_cmes_2021_011187
crossref_primary_10_1016_j_tws_2022_110405
crossref_primary_10_1016_j_cma_2020_113293
crossref_primary_10_1007_s00158_018_1995_2
crossref_primary_10_1016_j_cma_2020_113093
crossref_primary_10_1080_15376494_2021_1896822
crossref_primary_10_1007_s00158_018_2045_9
crossref_primary_10_1016_j_cma_2020_113321
crossref_primary_10_1002_nme_6662
crossref_primary_10_1002_nme_6786
crossref_primary_10_1002_nme_6781
crossref_primary_10_1016_j_cma_2018_07_032
crossref_primary_10_1002_nme_6604
crossref_primary_10_1016_j_engstruct_2024_117595
crossref_primary_10_1007_s00158_021_03000_3
crossref_primary_10_1007_s11831_019_09362_8
crossref_primary_10_1007_s00158_018_2034_z
crossref_primary_10_3390_app14167171
crossref_primary_10_1016_j_cma_2022_115610
crossref_primary_10_1016_j_addma_2019_03_001
crossref_primary_10_1007_s00158_017_1883_1
crossref_primary_10_1007_s11837_020_04158_9
crossref_primary_10_1016_j_cma_2018_11_015
crossref_primary_10_1007_s00158_018_2019_y
crossref_primary_10_1002_nme_6314
crossref_primary_10_1007_s00158_020_02548_w
crossref_primary_10_1016_j_cma_2018_10_011
crossref_primary_10_1007_s00158_024_03936_2
crossref_primary_10_1155_2020_4749698
crossref_primary_10_1007_s00466_020_01859_5
crossref_primary_10_1007_s00158_019_02370_z
crossref_primary_10_1007_s40032_025_01199_4
crossref_primary_10_1016_j_cma_2020_112930
crossref_primary_10_1002_nme_6084
crossref_primary_10_1007_s00158_022_03219_8
crossref_primary_10_1016_j_cma_2021_114016
crossref_primary_10_1016_j_cma_2021_114456
crossref_primary_10_1016_j_cma_2022_115525
crossref_primary_10_1007_s00158_020_02649_6
crossref_primary_10_1007_s11081_021_09675_3
crossref_primary_10_1002_nme_7255
Cites_doi 10.1145/1268776.1268779
10.1016/j.cma.2015.02.012
10.1137/S1052623499362822
10.1007/s00158-012-0880-7
10.1002/nme.1044
10.1115/1.1762503
10.1007/s00158-007-0203-6
10.1007/s00158-015-1318-9
10.1515/jnma-2016-1045
10.1007/BF01836562
10.1007/BF01196941
10.1115/1.4036999
10.1137/0916069
10.1115/1.4010553
10.1115/1.4027609
10.1002/nme.1620240207
10.1080/174159794088027573
10.1007/BF01197454
10.1016/j.compstruc.2004.04.002
10.1016/j.cma.2015.05.005
10.1016/0045-7825(91)90046-9
10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
10.1007/BF01650949
10.1007/s00158-009-0440-y
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright Elsevier BV Oct 1, 2017
Copyright_xml – notice: 2017 Elsevier B.V.
– notice: Copyright Elsevier BV Oct 1, 2017
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2017.06.025
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 21
ExternalDocumentID 10_1016_j_cma_2017_06_025
S0045782517304577
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c325t-a202523c9d7fd5c364383a6b31b0bff34c76c674825a1711721d1af458e1db063
ISICitedReferencesCount 67
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000411735700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Fri Jul 25 03:43:14 EDT 2025
Tue Nov 18 22:13:32 EST 2025
Sat Nov 29 06:16:35 EST 2025
Fri Feb 23 02:20:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Geometry projection
Bar structures
Topology optimization
Design for manufacturing
Plate structures
Stress constraints
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-a202523c9d7fd5c364383a6b31b0bff34c76c674825a1711721d1af458e1db063
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1965115223
PQPubID 2045269
PageCount 21
ParticipantIDs proquest_journals_1965115223
crossref_citationtrail_10_1016_j_cma_2017_06_025
crossref_primary_10_1016_j_cma_2017_06_025
elsevier_sciencedirect_doi_10_1016_j_cma_2017_06_025
PublicationCentury 2000
PublicationDate 2017-10-01
2017-10-00
20171001
PublicationDateYYYYMMDD 2017-10-01
PublicationDate_xml – month: 10
  year: 2017
  text: 2017-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2017
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhang, Norato, Gain, Lyu (b3) 2016
Kirsch (b9) 1990; 2
(b29) 2016
Svanberg (b24) 2002; 12
Bruggi (b11) 2008; 36
Svanberg (b23) 1987; 24
Williams (b28) 1952; 19
Tortorelli, Michaleris (b17) 1994; 1
Cai, Zhang (b14) 2015; 289
Zhou, Rozvany (b5) 1991; 89
Huang (b26) 2004; 82
Verbart, Langelaar, van Keulen (b20) 2016
Sinclair (b27) 2004; 57
Bangerth, Davydov, Heister, Heltai, Kanschat, Kronbichler, Maier, Turcksin, Wells (b22) 2016; 24
Bell, Norato, Tortorelli (b1) 2012
Holmberg, Torstenfelt, Klarbring (b12) 2013; 48
Bangerth, Hartmann, Kanschat (b21) 2007; 33
Le, Norato, Bruns, Ha, Tortorelli (b8) 2010; 41
Bendsøe (b4) 1989; 1
Duysinx, Bendsøe (b10) 1998; 43
Verbart, Langelaar, van Keulen (b13) 2016; 53
Guo, Zhang, Zhong (b6) 2014; 81
Byrd, Lu, Nocedal, Zhu (b25) 1995; 16
Cheng, Guo (b7) 1997; 13
Norato, Haber, Tortorelli, Bendsøe (b16) 2004; 60
Duysinx, Sigmund (b19) 1998
Norato, Bell, Tortorelli (b2) 2015; 293
Yang, Chen (b18) 1996; 12
Zhang, Norato (b15) 2017; 139
Duysinx (10.1016/j.cma.2017.06.025_b19) 1998
Verbart (10.1016/j.cma.2017.06.025_b20) 2016
Bangerth (10.1016/j.cma.2017.06.025_b22) 2016; 24
Bendsøe (10.1016/j.cma.2017.06.025_b4) 1989; 1
Byrd (10.1016/j.cma.2017.06.025_b25) 1995; 16
Duysinx (10.1016/j.cma.2017.06.025_b10) 1998; 43
Cai (10.1016/j.cma.2017.06.025_b14) 2015; 289
Yang (10.1016/j.cma.2017.06.025_b18) 1996; 12
Holmberg (10.1016/j.cma.2017.06.025_b12) 2013; 48
Norato (10.1016/j.cma.2017.06.025_b2) 2015; 293
Tortorelli (10.1016/j.cma.2017.06.025_b17) 1994; 1
Bell (10.1016/j.cma.2017.06.025_b1) 2012
Kirsch (10.1016/j.cma.2017.06.025_b9) 1990; 2
Zhang (10.1016/j.cma.2017.06.025_b15) 2017; 139
Svanberg (10.1016/j.cma.2017.06.025_b23) 1987; 24
Svanberg (10.1016/j.cma.2017.06.025_b24) 2002; 12
Verbart (10.1016/j.cma.2017.06.025_b13) 2016; 53
Zhou (10.1016/j.cma.2017.06.025_b5) 1991; 89
Norato (10.1016/j.cma.2017.06.025_b16) 2004; 60
Cheng (10.1016/j.cma.2017.06.025_b7) 1997; 13
Bruggi (10.1016/j.cma.2017.06.025_b11) 2008; 36
Sinclair (10.1016/j.cma.2017.06.025_b27) 2004; 57
Le (10.1016/j.cma.2017.06.025_b8) 2010; 41
Zhang (10.1016/j.cma.2017.06.025_b3) 2016
Williams (10.1016/j.cma.2017.06.025_b28) 1952; 19
(10.1016/j.cma.2017.06.025_b29) 2016
Huang (10.1016/j.cma.2017.06.025_b26) 2004; 82
Guo (10.1016/j.cma.2017.06.025_b6) 2014; 81
Bangerth (10.1016/j.cma.2017.06.025_b21) 2007; 33
References_xml – volume: 48
  start-page: 33
  year: 2013
  end-page: 47
  ident: b12
  article-title: Stress constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 24
  year: 2016
  ident: b22
  article-title: The
  publication-title: J. Numer. Math.
– volume: 24
  start-page: 359
  year: 1987
  end-page: 373
  ident: b23
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 81
  start-page: 081009
  year: 2014
  ident: b6
  article-title: Doing topology optimization explicitly and geometrically a new moving morphable components based framework
  publication-title: J. Appl. Mech.
– volume: 13
  start-page: 258
  year: 1997
  end-page: 266
  ident: b7
  article-title: -relaxed approach in structural topology optimization
  publication-title: Struct. Optim.
– volume: 33
  start-page: 24/1
  year: 2007
  end-page: 24/27
  ident: b21
  article-title: deal.II – a General purpose object oriented finite element library
  publication-title: ACM Trans. Math. Software
– volume: 139
  start-page: 081403
  year: 2017
  ident: b15
  article-title: Optimal design of panel reinforcements with ribs made of plates
  publication-title: J. Mech. Des.
– volume: 53
  start-page: 1081
  year: 2016
  end-page: 1098
  ident: b13
  article-title: Damage approach: A new method for topology optimization with local stress constraints
  publication-title: Struct. Multidiscip. Optim.
– volume: 60
  start-page: 2289
  year: 2004
  end-page: 2312
  ident: b16
  article-title: A geometry projection method for shape optimization
  publication-title: Internat. J. Numer. Methods Engrg.
– start-page: 1
  year: 2016
  end-page: 17
  ident: b20
  article-title: A unified aggregation and relaxation approach for stress-constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
– start-page: 4906
  year: 1998
  ident: b19
  article-title: New developments in handling stress constraints in optimal material distribution
  publication-title: 7th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization
– volume: 293
  start-page: 306
  year: 2015
  end-page: 327
  ident: b2
  article-title: A geometry projection method for continuum-based topology optimization with discrete elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 12
  start-page: 98
  year: 1996
  end-page: 105
  ident: b18
  article-title: Stress-based topology optimization
  publication-title: Struct. Optim.
– volume: 82
  start-page: 1657
  year: 2004
  end-page: 1669
  ident: b26
  article-title: Corner stress singularities in a high-order plate theory
  publication-title: Comput. Struct.
– volume: 1
  start-page: 71
  year: 1994
  end-page: 105
  ident: b17
  article-title: Design sensitivity analysis: overview and review
  publication-title: Inverse Prob. Eng.
– start-page: 1
  year: 2016
  end-page: 18
  ident: b3
  article-title: A geometry projection method for the topology optimization of plate structures
  publication-title: Struct. Multidiscip. Optim.
– volume: 1
  start-page: 193
  year: 1989
  end-page: 202
  ident: b4
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
– start-page: 5485
  year: 2012
  ident: b1
  article-title: A geometry projection method for continuum-based topology optimization of structures
  publication-title: 12th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference and 14th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference
– year: 2016
  ident: b29
  article-title: OptiStruct, Users Manual v/. 14.0
– volume: 12
  start-page: 555
  year: 2002
  end-page: 573
  ident: b24
  article-title: A class of globally convergent optimization methods based on conservative convex separable approximations
  publication-title: SIAM J. Optim.
– volume: 57
  start-page: 251
  year: 2004
  end-page: 298
  ident: b27
  article-title: Stress singularities in classical elasticity—I: Removal, interpretation, and analysis
  publication-title: Appl. Mech. Rev.
– volume: 41
  start-page: 605
  year: 2010
  end-page: 620
  ident: b8
  article-title: Stress-based topology optimization for continua
  publication-title: Struct. Multidiscip. Optim.
– volume: 289
  start-page: 267
  year: 2015
  end-page: 290
  ident: b14
  article-title: Stress constrained topology optimization with free-form design domains
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 2
  start-page: 133
  year: 1990
  end-page: 142
  ident: b9
  article-title: On singular topologies in optimum structural design
  publication-title: Struct. Optim.
– volume: 43
  start-page: 1453
  year: 1998
  end-page: 1478
  ident: b10
  article-title: Topology optimization of continuum structures with local stress constraints
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 16
  start-page: 1190
  year: 1995
  end-page: 1208
  ident: b25
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
– volume: 36
  start-page: 125
  year: 2008
  end-page: 141
  ident: b11
  article-title: On an alternative approach to stress constraints relaxation in topology optimization
  publication-title: Struct. Multidiscip. Optim.
– volume: 19
  start-page: 526
  year: 1952
  end-page: 528
  ident: b28
  article-title: Stress singularities resulting from various boundary conditions
  publication-title: J. Appl. Mech.
– volume: 89
  start-page: 309
  year: 1991
  end-page: 336
  ident: b5
  article-title: The COC algorithm, Part II: Topological, geometrical and generalized shape optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 33
  start-page: 24/1
  issue: 4
  year: 2007
  ident: 10.1016/j.cma.2017.06.025_b21
  article-title: deal.II – a General purpose object oriented finite element library
  publication-title: ACM Trans. Math. Software
  doi: 10.1145/1268776.1268779
– volume: 289
  start-page: 267
  year: 2015
  ident: 10.1016/j.cma.2017.06.025_b14
  article-title: Stress constrained topology optimization with free-form design domains
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2015.02.012
– volume: 12
  start-page: 555
  issue: 2
  year: 2002
  ident: 10.1016/j.cma.2017.06.025_b24
  article-title: A class of globally convergent optimization methods based on conservative convex separable approximations
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623499362822
– volume: 48
  start-page: 33
  issue: 1
  year: 2013
  ident: 10.1016/j.cma.2017.06.025_b12
  article-title: Stress constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-012-0880-7
– volume: 60
  start-page: 2289
  issue: 14
  year: 2004
  ident: 10.1016/j.cma.2017.06.025_b16
  article-title: A geometry projection method for shape optimization
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1044
– start-page: 4906
  year: 1998
  ident: 10.1016/j.cma.2017.06.025_b19
  article-title: New developments in handling stress constraints in optimal material distribution
– volume: 57
  start-page: 251
  issue: 4
  year: 2004
  ident: 10.1016/j.cma.2017.06.025_b27
  article-title: Stress singularities in classical elasticity—I: Removal, interpretation, and analysis
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.1762503
– year: 2016
  ident: 10.1016/j.cma.2017.06.025_b29
– start-page: 1
  year: 2016
  ident: 10.1016/j.cma.2017.06.025_b20
  article-title: A unified aggregation and relaxation approach for stress-constrained topology optimization
  publication-title: Struct. Multidiscip. Optim.
– start-page: 5485
  year: 2012
  ident: 10.1016/j.cma.2017.06.025_b1
  article-title: A geometry projection method for continuum-based topology optimization of structures
– volume: 36
  start-page: 125
  issue: 2
  year: 2008
  ident: 10.1016/j.cma.2017.06.025_b11
  article-title: On an alternative approach to stress constraints relaxation in topology optimization
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-007-0203-6
– volume: 53
  start-page: 1081
  issue: 5
  year: 2016
  ident: 10.1016/j.cma.2017.06.025_b13
  article-title: Damage approach: A new method for topology optimization with local stress constraints
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-015-1318-9
– volume: 24
  year: 2016
  ident: 10.1016/j.cma.2017.06.025_b22
  article-title: The deal.II library, version 8.4
  publication-title: J. Numer. Math.
  doi: 10.1515/jnma-2016-1045
– volume: 2
  start-page: 133
  issue: 3
  year: 1990
  ident: 10.1016/j.cma.2017.06.025_b9
  article-title: On singular topologies in optimum structural design
  publication-title: Struct. Optim.
  doi: 10.1007/BF01836562
– volume: 12
  start-page: 98
  issue: 2–3
  year: 1996
  ident: 10.1016/j.cma.2017.06.025_b18
  article-title: Stress-based topology optimization
  publication-title: Struct. Optim.
  doi: 10.1007/BF01196941
– volume: 139
  start-page: 081403
  issue: 8
  year: 2017
  ident: 10.1016/j.cma.2017.06.025_b15
  article-title: Optimal design of panel reinforcements with ribs made of plates
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4036999
– volume: 16
  start-page: 1190
  issue: 5
  year: 1995
  ident: 10.1016/j.cma.2017.06.025_b25
  article-title: A limited memory algorithm for bound constrained optimization
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/0916069
– volume: 19
  start-page: 526
  issue: 4
  year: 1952
  ident: 10.1016/j.cma.2017.06.025_b28
  article-title: Stress singularities resulting from various boundary conditions
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4010553
– volume: 81
  start-page: 081009
  issue: 8
  year: 2014
  ident: 10.1016/j.cma.2017.06.025_b6
  article-title: Doing topology optimization explicitly and geometrically a new moving morphable components based framework
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4027609
– start-page: 1
  year: 2016
  ident: 10.1016/j.cma.2017.06.025_b3
  article-title: A geometry projection method for the topology optimization of plate structures
  publication-title: Struct. Multidiscip. Optim.
– volume: 24
  start-page: 359
  issue: 2
  year: 1987
  ident: 10.1016/j.cma.2017.06.025_b23
  article-title: The method of moving asymptotes—a new method for structural optimization
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1620240207
– volume: 1
  start-page: 71
  issue: 1
  year: 1994
  ident: 10.1016/j.cma.2017.06.025_b17
  article-title: Design sensitivity analysis: overview and review
  publication-title: Inverse Prob. Eng.
  doi: 10.1080/174159794088027573
– volume: 13
  start-page: 258
  issue: 4
  year: 1997
  ident: 10.1016/j.cma.2017.06.025_b7
  article-title: ε-relaxed approach in structural topology optimization
  publication-title: Struct. Optim.
  doi: 10.1007/BF01197454
– volume: 82
  start-page: 1657
  issue: 20
  year: 2004
  ident: 10.1016/j.cma.2017.06.025_b26
  article-title: Corner stress singularities in a high-order plate theory
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.04.002
– volume: 293
  start-page: 306
  year: 2015
  ident: 10.1016/j.cma.2017.06.025_b2
  article-title: A geometry projection method for continuum-based topology optimization with discrete elements
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2015.05.005
– volume: 89
  start-page: 309
  issue: 1–3
  year: 1991
  ident: 10.1016/j.cma.2017.06.025_b5
  article-title: The COC algorithm, Part II: Topological, geometrical and generalized shape optimization
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/0045-7825(91)90046-9
– volume: 43
  start-page: 1453
  issue: 8
  year: 1998
  ident: 10.1016/j.cma.2017.06.025_b10
  article-title: Topology optimization of continuum structures with local stress constraints
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19981230)43:8<1453::AID-NME480>3.0.CO;2-2
– volume: 1
  start-page: 193
  issue: 4
  year: 1989
  ident: 10.1016/j.cma.2017.06.025_b4
  article-title: Optimal shape design as a material distribution problem
  publication-title: Struct. Optim.
  doi: 10.1007/BF01650949
– volume: 41
  start-page: 605
  issue: 4
  year: 2010
  ident: 10.1016/j.cma.2017.06.025_b8
  article-title: Stress-based topology optimization for continua
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-009-0440-y
SSID ssj0000812
Score 2.4983068
Snippet In this paper, we introduce a framework for the stress-based topology optimization of structures made by the assembly of discrete geometric components, such as...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Bar structures
Bars
Design for manufacturing
Discrete element method
Finite element method
Geometry projection
Meshing
Optimization algorithms
Plate structures
Stress constraints
Stress state
Stresses
Studies
Topology
Topology optimization
Title Stress-based topology optimization with discrete geometric components
URI https://dx.doi.org/10.1016/j.cma.2017.06.025
https://www.proquest.com/docview/1965115223
Volume 325
WOSCitedRecordID wos000411735700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKxgM88DFAbAyUB56oUsVxEiePFSpfmiakDalvlmM7iKlNqrab9s4_vrvYTsIqJkDixYrSJHZ957vz-e53hLzlXCWK8zLMdcHDRBew5qANjaRgbZdM07IFcT3hp6f5fF58HY1--lyYqwWv6_z6ulj9V1LDPSA2ps7-Bbm7j8INuAaiQwtkh_aPCH_WZn-EqJ40WJYrC7LUgGhYupxL63zFfNw1mMzj76ZZYl0t1caXN7VHd-oADFzhB1dtug2glc54XRrMHPZIz6YHN9x1SOPFoul_-SgdfMH6sh6fTDqvNPJk06Vu4zk-rcfTydA9ASrPB7o5n9lO3oyVw0kagm1iz7ONFb05L8KYWqwXL5uZe8RKVzpQ0zavekcBWF_ExUS1oFKUt-Csvp9fcLXPcBA4BsrxtJjze2Q_5mkB0n1_-nk2_9Ir9Jxa0Hk3aH843oYJ3urod-bNLUXfWi_nT8gjt-0IppZdnpKRqQ_IY7cFCZyA3xyQhwN8ymdkNuSlwPNSMOSlAHkp8LwUdLwU9Lz0nHz7MDt__yl0dTdCBfO9DWUMfyRmqtC80qliGcLZyqxktIzKqmKwuDOFRWriVFJO0YmgqaySNDdUl2DzviB7NfTwkgRFlPMqYloh7CCLjcxkkrFSRwYM18jQQxL56RLKgdJjbZSF8NGHFwJmWOAMC4zAjNND8q57ZWURWe56OPE0EM6ktKaiAIa567VjTy_hlvZGIPYm7J_Anj76t6--Ig_6FXJM9rbrS_Oa3FdX2x-b9RvHdTfHFqQQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stress-based+topology+optimization+with+discrete+geometric+components&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Zhang%2C+Shanglong&rft.au=Gain%2C+Arun+L.&rft.au=Norato%2C+Juli%C3%A1n+A.&rft.date=2017-10-01&rft.pub=Elsevier+B.V&rft.issn=0045-7825&rft.eissn=1879-2138&rft.volume=325&rft.spage=1&rft.epage=21&rft_id=info:doi/10.1016%2Fj.cma.2017.06.025&rft.externalDocID=S0045782517304577
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon