Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview

Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α∈(0,1) in time, commonly known as subdiffusion, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 346; pp. 332 - 358
Main Authors: Jin, Bangti, Lazarov, Raytcho, Zhou, Zhi
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.04.2019
Elsevier BV
Subjects:
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α∈(0,1) in time, commonly known as subdiffusion, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following topics of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space–time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.
AbstractList Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α∈(0,1) in time, commonly known as subdiffusion, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following topics of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space–time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.
Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α ∈(0,1) in time, commonly known as subdiffusion, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following topics of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space–time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature.
Author Jin, Bangti
Zhou, Zhi
Lazarov, Raytcho
Author_xml – sequence: 1
  givenname: Bangti
  orcidid: 0000-0002-3775-9155
  surname: Jin
  fullname: Jin, Bangti
  email: b.jin@ucl.ac.uk
  organization: Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK
– sequence: 2
  givenname: Raytcho
  surname: Lazarov
  fullname: Lazarov, Raytcho
  email: lazarov@math.tamu.edu
  organization: Department of Mathematics, Texas A&M University, College Station, TX 77843, USA
– sequence: 3
  givenname: Zhi
  surname: Zhou
  fullname: Zhou, Zhi
  email: zhizhou@polyu.edu.hk
  organization: Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
BookMark eNp9kD1PwzAQhi1UJNrCD2CzxJzgc-zGhQkhviQEC8yW41yEqyYG22nFv8elTAz1cq9091h3z4xMBj8gIefASmCwuFyVtjclZ6BK4CUDOCJTUPWy4FCpCZkyJmRRKy5PyCzGFctPAZ8S8zL2GJw1a9pj-vBtpJ0PNLkeiy4Ym5wfcg83fj3uMsWv0exCpFuXPmheI_be59SaZK7oDbV-sC4i9RsMG4fbU3LcmXXEs786J-_3d2-3j8Xz68PT7c1zYSsuU7FsBKpGgmQoJOtsIxd1BwjCtrLqTG1rtmyXbb1Qqu0MIGeNYEJJoXjDF1JUc3Kx__cz-K8RY9IrP4a8fNQclGQCZKXyVL2fssHHGLDT1qXfg1Iwbq2B6Z1PvdLZp9751MB19plJ-Ed-Bteb8H2Qud4zmA_PMoKO1uFgsXUBbdKtdwfoH-87kIo
CitedBy_id crossref_primary_10_1137_19M1261225
crossref_primary_10_1103_gbms_12x3
crossref_primary_10_1137_20M1355690
crossref_primary_10_1016_j_cam_2022_114647
crossref_primary_10_1090_mcom_3552
crossref_primary_10_1515_fca_2021_0053
crossref_primary_10_1016_j_cnsns_2024_107830
crossref_primary_10_1007_s10915_020_01250_9
crossref_primary_10_1007_s10915_023_02263_w
crossref_primary_10_1088_1361_6420_ad14a0
crossref_primary_10_1137_19M1295088
crossref_primary_10_11648_j_ijtam_20251101_11
crossref_primary_10_1137_20M1356270
crossref_primary_10_1007_s10915_019_01117_8
crossref_primary_10_1016_j_cam_2022_114470
crossref_primary_10_1088_2632_2153_aba8e7
crossref_primary_10_1016_j_camwa_2021_06_010
crossref_primary_10_1007_s42967_025_00521_2
crossref_primary_10_1016_j_jcp_2021_110789
crossref_primary_10_1007_s11075_023_01747_y
crossref_primary_10_1007_s42967_024_00406_w
crossref_primary_10_3390_fractalfract6110647
crossref_primary_10_1007_s10915_024_02619_w
crossref_primary_10_1134_S1995080225605077
crossref_primary_10_3390_ma14195792
crossref_primary_10_3390_fractalfract6080438
crossref_primary_10_1137_23M161450X
crossref_primary_10_1007_s10444_025_10221_3
crossref_primary_10_1016_j_apnum_2022_07_016
crossref_primary_10_1007_s12190_025_02552_7
crossref_primary_10_1016_j_aml_2021_107515
crossref_primary_10_1137_23M159531X
crossref_primary_10_1515_cmam_2020_0101
crossref_primary_10_1515_fca_2021_0037
crossref_primary_10_1002_mma_7391
crossref_primary_10_1007_s11425_022_2078_4
crossref_primary_10_1016_j_apnum_2024_02_013
crossref_primary_10_1016_j_matcom_2024_11_020
crossref_primary_10_1016_j_cnsns_2023_107099
crossref_primary_10_1088_1361_6420_ac1e7f
crossref_primary_10_1007_s10915_020_01375_x
crossref_primary_10_1007_s10915_023_02204_7
crossref_primary_10_1007_s11075_021_01205_7
crossref_primary_10_1016_j_camwa_2022_09_028
crossref_primary_10_3390_fractalfract6040206
crossref_primary_10_1002_num_22571
crossref_primary_10_1016_j_matcom_2023_02_007
crossref_primary_10_1016_j_cam_2019_112435
crossref_primary_10_1002_jnm_3233
crossref_primary_10_1007_s12190_021_01522_z
crossref_primary_10_1016_j_camwa_2024_11_001
crossref_primary_10_3390_math8081283
crossref_primary_10_1007_s10444_024_10188_7
crossref_primary_10_1093_imanum_draf011
crossref_primary_10_1007_s41478_024_00750_3
crossref_primary_10_1155_2021_9918955
crossref_primary_10_3390_fractalfract6080417
crossref_primary_10_1016_j_amc_2024_128609
crossref_primary_10_1080_00036811_2025_2533956
crossref_primary_10_3390_fractalfract9030167
crossref_primary_10_1007_s10915_020_01218_9
crossref_primary_10_1515_cmam_2021_0053
crossref_primary_10_1007_s10910_025_01718_9
crossref_primary_10_1007_s10915_020_01230_z
crossref_primary_10_1016_j_aml_2024_109071
crossref_primary_10_1016_j_apnum_2020_04_002
crossref_primary_10_1007_s10910_024_01693_7
crossref_primary_10_1007_s11075_019_00742_6
crossref_primary_10_1007_s00211_020_01128_w
crossref_primary_10_1007_s42967_019_00042_9
crossref_primary_10_1016_j_cnsns_2024_108285
crossref_primary_10_1007_s11075_025_02029_5
crossref_primary_10_1016_j_jcp_2020_109231
crossref_primary_10_1016_j_camwa_2024_03_015
crossref_primary_10_1007_s10915_020_01350_6
crossref_primary_10_1016_j_camwa_2024_01_010
crossref_primary_10_1016_j_cam_2025_116517
crossref_primary_10_1007_s11075_023_01547_4
crossref_primary_10_1063_5_0264522
crossref_primary_10_3390_math13050891
crossref_primary_10_1007_s10915_025_02906_0
crossref_primary_10_3390_fractalfract7090657
crossref_primary_10_1007_s10915_024_02556_8
crossref_primary_10_1080_00207160_2025_2544745
crossref_primary_10_1002_mma_8842
crossref_primary_10_3390_e23010110
crossref_primary_10_1007_s10915_022_01936_2
crossref_primary_10_1016_j_jcp_2025_114261
crossref_primary_10_1016_j_probengmech_2022_103228
crossref_primary_10_1007_s00211_020_01130_2
crossref_primary_10_1016_j_jcp_2021_110221
crossref_primary_10_3390_fractalfract9090557
crossref_primary_10_1007_s10915_022_01812_z
crossref_primary_10_1016_j_probengmech_2023_103471
crossref_primary_10_1137_21M1398264
crossref_primary_10_1137_21M1397295
crossref_primary_10_3390_fractalfract6090516
crossref_primary_10_1007_s10915_021_01630_9
crossref_primary_10_1016_j_matcom_2021_02_017
crossref_primary_10_1016_j_apnum_2022_11_020
crossref_primary_10_1515_fca_2021_0080
crossref_primary_10_1002_mma_6772
crossref_primary_10_1007_s10915_021_01527_7
crossref_primary_10_1016_j_jcp_2020_109576
crossref_primary_10_1186_s13662_020_03009_w
crossref_primary_10_3390_math11102312
crossref_primary_10_1016_j_apnum_2024_07_003
crossref_primary_10_1088_1361_6420_acef50
crossref_primary_10_1137_22M1494361
crossref_primary_10_1002_num_22401
crossref_primary_10_1137_21M1446708
crossref_primary_10_1016_j_camwa_2024_12_003
crossref_primary_10_1016_j_camwa_2020_04_024
crossref_primary_10_1137_19M1300686
crossref_primary_10_1007_s10915_022_01914_8
crossref_primary_10_1016_j_cam_2023_115122
crossref_primary_10_1007_s12190_025_02634_6
crossref_primary_10_1016_j_matcom_2019_09_021
crossref_primary_10_1088_1361_6420_abb61e
crossref_primary_10_3390_fractalfract7040340
crossref_primary_10_1016_j_cam_2024_116191
crossref_primary_10_1007_s10915_021_01495_y
crossref_primary_10_1007_s12190_024_02037_z
crossref_primary_10_3390_fractalfract7100698
crossref_primary_10_1002_num_22773
crossref_primary_10_1016_j_camwa_2021_01_010
crossref_primary_10_1016_j_physd_2024_134264
Cites_doi 10.1016/j.jcp.2014.10.016
10.1090/mcom/2960
10.1137/17M1118816
10.1016/j.jcp.2014.02.008
10.1007/s11075-010-9379-8
10.1137/110833294
10.1137/120873984
10.1007/s00211-014-0669-2
10.2478/s13540-014-0203-3
10.1137/140979563
10.1515/cmam-2017-0027
10.1515/cmam-2017-0036
10.1088/0305-4470/37/31/R01
10.1137/15M102664X
10.1016/j.jcp.2007.02.001
10.1023/B:BITN.0000046813.23911.2d
10.1016/j.jcp.2013.06.031
10.1016/S1570-8659(05)80043-2
10.1137/140992278
10.1007/s00211-017-0904-8
10.1090/mcom/3228
10.1103/PhysRevB.12.2455
10.1016/j.jde.2003.12.002
10.1111/j.1365-246X.1967.tb02303.x
10.1093/imanum/dru018
10.1090/S0025-5718-2011-02503-2
10.1016/j.jmaa.2017.11.048
10.1080/01495728008961767
10.1017/S1446181111000617
10.1016/j.camwa.2018.03.003
10.1016/j.jcp.2015.01.025
10.1137/030602666
10.1016/j.jcp.2017.12.035
10.1093/imanum/drx019
10.1088/0266-5611/31/3/035003
10.1515/cmam-2016-0027
10.1515/fca-2016-0048
10.1137/17M1134160
10.1051/m2an/2018029
10.1007/BF01398686
10.1137/17M1131829
10.1016/j.jcp.2014.08.050
10.1016/j.jmaa.2011.04.058
10.1137/130933447
10.1090/S0025-5718-99-01192-8
10.1002/num.20112
10.1016/j.cma.2004.06.006
10.1137/130941900
10.1137/070700280
10.1137/15M1040918
10.1007/s10915-017-0450-7
10.1515/fca-2017-0002
10.1090/S0025-5718-06-01788-1
10.1002/pssb.2221330150
10.1137/18M118414X
10.1017/S1446181116000365
10.1137/16M1070323
10.1029/98WR00214
10.1214/07-AOAS149
10.1137/040605278
10.1007/s00205-016-0969-z
10.1016/j.jmaa.2008.10.018
10.5802/jedp.657
10.1137/0517050
10.1515/cmam-2015-0018
10.1016/j.cma.2014.10.051
10.1007/s00791-018-0289-y
10.1137/16M1082329
10.1016/j.aim.2016.08.046
10.1515/cmam-2017-0026
10.1515/cmam-2012-0006
10.1039/C4CP03465A
10.1142/S0218127412500757
10.1137/16M1089320
10.1137/16M1094257
10.1137/130910865
10.1515/fca-2015-0048
10.1051/m2an/2016017
10.1016/S0370-1573(00)00070-3
10.1016/j.camwa.2015.11.014
10.1016/j.jcp.2015.04.007
10.1515/fca-2017-0058
10.1016/j.jcp.2011.08.020
10.1137/080718942
10.1016/j.apnum.2005.03.003
10.1090/mcom/3304
10.1515/cmam-2017-0037
10.1063/1.528578
10.1090/S0025-5718-1995-1284670-0
10.1090/S0025-5718-96-00677-1
10.1090/mcom/3167
10.5565/PUBLMAT_60116_01
10.1016/0378-4371(92)90566-9
10.1007/s11075-008-9258-8
10.1090/mcom3035
10.1515/fca-2016-0080
10.1016/j.jcp.2013.11.017
10.1137/0719003
10.1137/17M1160318
10.1016/j.jcp.2014.09.031
10.1137/140952107
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright Elsevier BV Apr 1, 2019
Copyright_xml – notice: 2018 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 1, 2019
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2018.12.011
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
EndPage 358
ExternalDocumentID 10_1016_j_cma_2018_12_011
S0045782518306091
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-9b4e8b5150e450fcb567f1e14cd53fa7c709d9d7688dfa1e20b40485482b26543
ISICitedReferencesCount 157
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456713400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sun Nov 09 07:08:33 EST 2025
Tue Nov 18 20:49:35 EST 2025
Sat Nov 29 06:16:39 EST 2025
Fri Feb 23 02:20:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Finite element method
Time-stepping
Nonsmooth solution
Space–time formulation
Error estimates
Time-fractional evolution
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-9b4e8b5150e450fcb567f1e14cd53fa7c709d9d7688dfa1e20b40485482b26543
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3775-9155
PQID 2185041538
PQPubID 2045269
PageCount 27
ParticipantIDs proquest_journals_2185041538
crossref_citationtrail_10_1016_j_cma_2018_12_011
crossref_primary_10_1016_j_cma_2018_12_011
elsevier_sciencedirect_doi_10_1016_j_cma_2018_12_011
PublicationCentury 2000
PublicationDate 2019-04-01
2019-04-00
20190401
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2019
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Thomée (b20) 2006
Ervin, Roop (b118) 2006; 22
Chou, Li (b66) 2000; 69
Kim, Kim, Lim (b53) 2017; 306
Hou, Hasan, Xu (b115) 2018; 18
Yan (b19) 2005; 43
Schneider, Wyss (b49) 1989; 30
Ros-Oton (b24) 2016; 60
Stynes (b35) 2016; 19
Prüss (b48) 1993
Ginoa, Cerbelli, Roman (b3) 1992; 191
Kilbas, Srivastava, Trujillo (b11) 2006
Li, Xu (b112) 2009; 47
Diethelm, Ford, Freed, Luchko (b26) 2005; 194
Jin, Lazarov, Pasciak, Zhou (b34) 2015; 35
Zayernouri, Karniadakis (b120) 2013; 252
Seybold, Hilfer (b30) 2009; 47
Karaa, Pani (b71) 2018; 52
Zhou, Gong (b16) 2016; 71
Mustapha, McLean (b107) 2011; 56
Mustapha (b108) 2015; 130
Eidelman, Kochubei (b39) 2004; 199
Liu, Rundell, Yamamoto (b45) 2016; 19
Metzler, Klafter (b8) 2004; 37
Yuste, Acedo (b81) 2005; 42
Akrivis, Li, Lubich (b37) 2017; 86
Chatzipantelidis, Lazarov, Thomée (b67) 2013; 13
Alikhanov (b105) 2015; 280
McLean (b42) 2010; 52
Chen, Deng (b93) 2014; 52
Jin, Lazarov, Zhou (b57) 2013; 51
Adams, Fournier (b27) 2003
Luchko (b40) 2009; 351
.
Liao, Li, Zhang (b77) 2018; 56
Klafter, Sokolov (b10) 2011
Karkulik (b124) 2018; 75
Kovács, Li, Lubich (b36) 2016; 54
Hatano, Hatano (b5) 1998; 34
Metzler, Klafter (b7) 2000; 339
Arendt, Batty, Hieber, Neubrander (b28) 2011
Zhang, Sun, Liao (b75) 2014; 265
Jin, Li, Zhou (b95) 2018; 38
Karniadakis, Hesthaven, Podlubny (b14) 2015; 293
Sakamoto, Yamamoto (b33) 2011; 382
Podlubny (b85) 1999
Oldham, Spanier (b84) 1974
Cao, Zeng, Zhang, Karniadakis (b88) 2016; 38
Jin, Li, Zhou (b32) 2018; 138
Stynes, O’Riordan, Gracia (b76) 2017; 55
Lubich (b80) 2004; 44
Jin, Li, Zhou (b17) 2018
Dimitrov (b94) 2014; 5
B. Li, H. Luo, X. Xie, Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data, 2018. Preprint
Huang, Zhang (b114) 2015; 286
Zayernouri, Ainsworth, Karniadakis (b113) 2015; 283
Zhang, Sun (b55) 2011; 230
Karaa (b69) 2018; 56
Quarteroni, Valli (b74) 1994
Fujita, Suzuki (b60) 1991; vol. II
Jin, Lazarov, Zhou (b122) 2016; 54
Larsson, Molteni (b123) 2017; 17
Li, Liu (b51) 2018; 50
Jin, Li, Zhou (b90) 2017; 39
Sun, Wu (b96) 2006; 56
Chen, Shen, Wang (b119) 2016; 85
Yan, Khan, Ford (b99) 2018; 56
Jin, Lazarov, Zhou (b97) 2016; 36
Mustapha, Abdallah, Furati (b104) 2014; 52
C. Gal, M. Warma, Fractional-in-time semilinear parabolic equations and applications, 2017. Preprint, available at
Mustapha (b73) 2018; 87
Kou (b6) 2008; 2
Bajlekova (b31) 2001
Lv, Xu (b102) 2016; 38
Karaa, Mustapha, Pani (b70) 2018; 74
Du, Gunzburger, Lehoucq, Zhou (b25) 2012; 54
Jin, Lazarov, Thomée, Zhou (b64) 2017; 86
Luskin, Rannacher (b72) 1982; 19
Lubich (b78) 1986; 17
Kwaśnicki (b21) 2017; 20
Le, McLean, Lamichhane (b59) 2017; 59
Yamamoto (b46) 2018; 460
Lin, Xu (b54) 2007; 225
Caputo (b2) 1967; 13
Vergara, Zacher (b52) 2015; 47
Jin, Lazarov, Zhou (b83) 2016; 38
Scher, Montroll (b1) 1975; 12
Jin, Rundell (b18) 2015; 31
M. Salo, The fractional Calderón problem, 2017. Preprint
Xing, Yan (b100) 2018; 357
Duan, Jin, Lazarov, Pasciak, Zhou (b121) 2018; 18
Jin, Lazarov, Vabishchevich (b15) 2017; 17
Zeng, Li, Liu, Turner (b82) 2013; 35
Nigmatullin (b4) 1986; 133
Djrbashian (b12) 1993
Baliga, Patankar (b65) 1980; 3
Jin, Lazarov, Pasciak, Rundell (b117) 2015; 84
McLean, Mustapha (b109) 2015; 293
Gorenflo, Luchko, Yamamoto (b50) 2015; 18
McLean, Mustapha (b106) 2009; 52
Gorenflo, Loutchko, Luchko (b29) 2002; 5
Chatzipantelidis, Lazarov, Thomée (b68) 2012; 81
N. Kopteva, Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions, 2017. Preprint
M. Fischer, Fast and parallel Runge-Kutta approximation of fractional evolution equations, 2018. Preprint
Allen, Caffarelli, Vasseur (b44) 2016; 221
Lubich, Ostermann (b91) 1995; 64
Jin, Lazarov, Pasciak, Zhou (b58) 2013; vol. 8236
Karaa, Mustapha, Pani (b61) 2017; 37
Kochubei (b43) 2014; 17
Lubich (b79) 1988; 52
Gunzburger, Wang (b111) 2019; 16
Sousa (b86) 2012; 22
Jin, Zhou (b98) 2017; 51
Metzler, Jeon, Cherstvy, Barkai (b9) 2014; 16
Gao, Sun, Zhang (b103) 2014; 259
Ford, Yan (b101) 2017; 20
Chen, Xu, Hesthaven (b56) 2015; 293
Chatzipantelidis, Horváth, Thomée (b63) 2015; 15
Bonito, Borthagaray, Nochetto, Otárola, Salgado (b22) 2018
Nakagawa, Sakamoto, Yamamoto (b13) 2010; 2A
Jin, Li, Zhou (b38) 2018; 56
Cuesta, Lubich, Palencia (b87) 2006; 75
Lubich, Sloan, Thomée (b89) 1996; 65
Yang, Yan, Ford (b110) 2018; 18
Pskhu (b41) 2009; 73
Scher (10.1016/j.cma.2018.12.011_b1) 1975; 12
Jin (10.1016/j.cma.2018.12.011_b58) 2013; vol. 8236
Yan (10.1016/j.cma.2018.12.011_b99) 2018; 56
Nakagawa (10.1016/j.cma.2018.12.011_b13) 2010; 2A
Prüss (10.1016/j.cma.2018.12.011_b48) 1993
Le (10.1016/j.cma.2018.12.011_b59) 2017; 59
Diethelm (10.1016/j.cma.2018.12.011_b26) 2005; 194
Hou (10.1016/j.cma.2018.12.011_b115) 2018; 18
McLean (10.1016/j.cma.2018.12.011_b42) 2010; 52
Karaa (10.1016/j.cma.2018.12.011_b71) 2018; 52
Yang (10.1016/j.cma.2018.12.011_b110) 2018; 18
Bajlekova (10.1016/j.cma.2018.12.011_b31) 2001
10.1016/j.cma.2018.12.011_b92
Fujita (10.1016/j.cma.2018.12.011_b60) 1991; vol. II
Quarteroni (10.1016/j.cma.2018.12.011_b74) 1994
Stynes (10.1016/j.cma.2018.12.011_b76) 2017; 55
Jin (10.1016/j.cma.2018.12.011_b17) 2018
Sun (10.1016/j.cma.2018.12.011_b96) 2006; 56
Lubich (10.1016/j.cma.2018.12.011_b91) 1995; 64
Chatzipantelidis (10.1016/j.cma.2018.12.011_b68) 2012; 81
Huang (10.1016/j.cma.2018.12.011_b114) 2015; 286
Zayernouri (10.1016/j.cma.2018.12.011_b113) 2015; 283
Luskin (10.1016/j.cma.2018.12.011_b72) 1982; 19
Jin (10.1016/j.cma.2018.12.011_b117) 2015; 84
Liu (10.1016/j.cma.2018.12.011_b45) 2016; 19
Metzler (10.1016/j.cma.2018.12.011_b7) 2000; 339
Mustapha (10.1016/j.cma.2018.12.011_b104) 2014; 52
Ervin (10.1016/j.cma.2018.12.011_b118) 2006; 22
Gorenflo (10.1016/j.cma.2018.12.011_b50) 2015; 18
Jin (10.1016/j.cma.2018.12.011_b98) 2017; 51
10.1016/j.cma.2018.12.011_b23
Lv (10.1016/j.cma.2018.12.011_b102) 2016; 38
Sousa (10.1016/j.cma.2018.12.011_b86) 2012; 22
Cao (10.1016/j.cma.2018.12.011_b88) 2016; 38
Schneider (10.1016/j.cma.2018.12.011_b49) 1989; 30
Jin (10.1016/j.cma.2018.12.011_b122) 2016; 54
Yan (10.1016/j.cma.2018.12.011_b19) 2005; 43
Lubich (10.1016/j.cma.2018.12.011_b78) 1986; 17
Kochubei (10.1016/j.cma.2018.12.011_b43) 2014; 17
Yuste (10.1016/j.cma.2018.12.011_b81) 2005; 42
Kilbas (10.1016/j.cma.2018.12.011_b11) 2006
Jin (10.1016/j.cma.2018.12.011_b90) 2017; 39
Dimitrov (10.1016/j.cma.2018.12.011_b94) 2014; 5
Jin (10.1016/j.cma.2018.12.011_b64) 2017; 86
Chen (10.1016/j.cma.2018.12.011_b56) 2015; 293
Podlubny (10.1016/j.cma.2018.12.011_b85) 1999
Zayernouri (10.1016/j.cma.2018.12.011_b120) 2013; 252
Baliga (10.1016/j.cma.2018.12.011_b65) 1980; 3
Chatzipantelidis (10.1016/j.cma.2018.12.011_b67) 2013; 13
Eidelman (10.1016/j.cma.2018.12.011_b39) 2004; 199
Allen (10.1016/j.cma.2018.12.011_b44) 2016; 221
McLean (10.1016/j.cma.2018.12.011_b106) 2009; 52
Jin (10.1016/j.cma.2018.12.011_b34) 2015; 35
Lin (10.1016/j.cma.2018.12.011_b54) 2007; 225
Zhang (10.1016/j.cma.2018.12.011_b75) 2014; 265
Pskhu (10.1016/j.cma.2018.12.011_b41) 2009; 73
Chen (10.1016/j.cma.2018.12.011_b93) 2014; 52
Gunzburger (10.1016/j.cma.2018.12.011_b111) 2019; 16
Mustapha (10.1016/j.cma.2018.12.011_b107) 2011; 56
Lubich (10.1016/j.cma.2018.12.011_b79) 1988; 52
10.1016/j.cma.2018.12.011_b47
Gao (10.1016/j.cma.2018.12.011_b103) 2014; 259
Metzler (10.1016/j.cma.2018.12.011_b8) 2004; 37
Cuesta (10.1016/j.cma.2018.12.011_b87) 2006; 75
Stynes (10.1016/j.cma.2018.12.011_b35) 2016; 19
Chou (10.1016/j.cma.2018.12.011_b66) 2000; 69
Jin (10.1016/j.cma.2018.12.011_b15) 2017; 17
Xing (10.1016/j.cma.2018.12.011_b100) 2018; 357
Caputo (10.1016/j.cma.2018.12.011_b2) 1967; 13
Lubich (10.1016/j.cma.2018.12.011_b80) 2004; 44
Akrivis (10.1016/j.cma.2018.12.011_b37) 2017; 86
Kwaśnicki (10.1016/j.cma.2018.12.011_b21) 2017; 20
Zeng (10.1016/j.cma.2018.12.011_b82) 2013; 35
Jin (10.1016/j.cma.2018.12.011_b97) 2016; 36
Karaa (10.1016/j.cma.2018.12.011_b70) 2018; 74
Mustapha (10.1016/j.cma.2018.12.011_b73) 2018; 87
Jin (10.1016/j.cma.2018.12.011_b18) 2015; 31
Duan (10.1016/j.cma.2018.12.011_b121) 2018; 18
Li (10.1016/j.cma.2018.12.011_b51) 2018; 50
Jin (10.1016/j.cma.2018.12.011_b57) 2013; 51
Ford (10.1016/j.cma.2018.12.011_b101) 2017; 20
Jin (10.1016/j.cma.2018.12.011_b95) 2018; 38
Li (10.1016/j.cma.2018.12.011_b112) 2009; 47
Klafter (10.1016/j.cma.2018.12.011_b10) 2011
Liao (10.1016/j.cma.2018.12.011_b77) 2018; 56
10.1016/j.cma.2018.12.011_b116
Karaa (10.1016/j.cma.2018.12.011_b61) 2017; 37
Jin (10.1016/j.cma.2018.12.011_b83) 2016; 38
Kovács (10.1016/j.cma.2018.12.011_b36) 2016; 54
10.1016/j.cma.2018.12.011_b62
Metzler (10.1016/j.cma.2018.12.011_b9) 2014; 16
Bonito (10.1016/j.cma.2018.12.011_b22) 2018
Adams (10.1016/j.cma.2018.12.011_b27) 2003
Ginoa (10.1016/j.cma.2018.12.011_b3) 1992; 191
Hatano (10.1016/j.cma.2018.12.011_b5) 1998; 34
Mustapha (10.1016/j.cma.2018.12.011_b108) 2015; 130
Arendt (10.1016/j.cma.2018.12.011_b28) 2011
Alikhanov (10.1016/j.cma.2018.12.011_b105) 2015; 280
Lubich (10.1016/j.cma.2018.12.011_b89) 1996; 65
Oldham (10.1016/j.cma.2018.12.011_b84) 1974
Seybold (10.1016/j.cma.2018.12.011_b30) 2009; 47
Karaa (10.1016/j.cma.2018.12.011_b69) 2018; 56
Karkulik (10.1016/j.cma.2018.12.011_b124) 2018; 75
Chen (10.1016/j.cma.2018.12.011_b119) 2016; 85
Thomée (10.1016/j.cma.2018.12.011_b20) 2006
Nigmatullin (10.1016/j.cma.2018.12.011_b4) 1986; 133
Larsson (10.1016/j.cma.2018.12.011_b123) 2017; 17
Kou (10.1016/j.cma.2018.12.011_b6) 2008; 2
Ros-Oton (10.1016/j.cma.2018.12.011_b24) 2016; 60
McLean (10.1016/j.cma.2018.12.011_b109) 2015; 293
Djrbashian (10.1016/j.cma.2018.12.011_b12) 1993
Jin (10.1016/j.cma.2018.12.011_b38) 2018; 56
Yamamoto (10.1016/j.cma.2018.12.011_b46) 2018; 460
Gorenflo (10.1016/j.cma.2018.12.011_b29) 2002; 5
Chatzipantelidis (10.1016/j.cma.2018.12.011_b63) 2015; 15
Karniadakis (10.1016/j.cma.2018.12.011_b14) 2015; 293
Du (10.1016/j.cma.2018.12.011_b25) 2012; 54
Zhang (10.1016/j.cma.2018.12.011_b55) 2011; 230
Luchko (10.1016/j.cma.2018.12.011_b40) 2009; 351
Zhou (10.1016/j.cma.2018.12.011_b16) 2016; 71
Sakamoto (10.1016/j.cma.2018.12.011_b33) 2011; 382
Kim (10.1016/j.cma.2018.12.011_b53) 2017; 306
Vergara (10.1016/j.cma.2018.12.011_b52) 2015; 47
Jin (10.1016/j.cma.2018.12.011_b32) 2018; 138
References_xml – volume: 199
  start-page: 211
  year: 2004
  end-page: 255
  ident: b39
  article-title: Cauchy problem for fractional diffusion equations
  publication-title: J. Differential Equations
– volume: vol. II
  start-page: 789
  year: 1991
  end-page: 928
  ident: b60
  article-title: Evolution problems
  publication-title: Handbook of Numerical Analysis
– volume: 194
  start-page: 743
  year: 2005
  end-page: 773
  ident: b26
  article-title: Algorithms for the fractional calculus: a selection of numerical methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 19
  start-page: 93
  year: 1982
  end-page: 113
  ident: b72
  article-title: On the smoothing property of the Galerkin method for parabolic equations
  publication-title: SIAM J. Numer. Anal.
– volume: 357
  start-page: 305
  year: 2018
  end-page: 323
  ident: b100
  article-title: A higher order numerical method for time fractional partial differential equations with nonsmooth data
  publication-title: J. Comput. Phys.
– volume: 38
  start-page: 518
  year: 2018
  end-page: 541
  ident: b95
  article-title: An analysis of the Crank–Nicolson method for subdiffusion
  publication-title: IMA J. Numer. Anal.
– start-page: vi+152
  year: 2011
  ident: b10
  article-title: First Steps in Random Walks
– volume: 86
  start-page: 1527
  year: 2017
  end-page: 1552
  ident: b37
  article-title: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations
  publication-title: Math. Comp.
– volume: 293
  start-page: 157
  year: 2015
  end-page: 172
  ident: b56
  article-title: A multi-domain spectral method for time-fractional differential equations
  publication-title: J. Comput. Phys.
– start-page: xiv+256
  year: 1993
  ident: b12
  article-title: Harmonic Analysis and Boundary Value Problems in the Complex Domain
– volume: 252
  start-page: 495
  year: 2013
  end-page: 517
  ident: b120
  article-title: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation
  publication-title: J. Comput. Phys.
– year: 2018
  ident: b22
  article-title: Numerical methods for fractional diffusion
  publication-title: Comput. Vis. Sci.
– volume: 5
  start-page: 491
  year: 2002
  end-page: 518
  ident: b29
  article-title: Computation of the Mittag-Leffler function
  publication-title: Fract. Calc. Appl. Anal.
– volume: 52
  start-page: 1418
  year: 2014
  end-page: 1438
  ident: b93
  article-title: Fourth order accurate scheme for the space fractional diffusion equations
  publication-title: SIAM J. Numer. Anal.
– year: 2001
  ident: b31
  article-title: Fractional Evolution Equations in Banach Spaces
– volume: 19
  start-page: 888
  year: 2016
  end-page: 906
  ident: b45
  article-title: Strong maximum principle for fractional diffusion equations and an application to an inverse source problem
  publication-title: Fract. Calc. Appl. Anal.
– volume: 3
  start-page: 393
  year: 1980
  end-page: 409
  ident: b65
  article-title: A new finite-element formulation for convection-diffusion problems
  publication-title: Numer. Heat Transfer
– volume: 81
  start-page: 1
  year: 2012
  end-page: 20
  ident: b68
  article-title: Some error estimates for the lumped mass finite element method for a parabolic problem
  publication-title: Math. Comp.
– volume: 55
  start-page: 1057
  year: 2017
  end-page: 1079
  ident: b76
  article-title: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation
  publication-title: SIAM J. Numer. Anal.
– volume: 19
  start-page: 1554
  year: 2016
  end-page: 1562
  ident: b35
  article-title: Too much regularity may force too much uniqueness
  publication-title: Fract. Calc. Appl. Anal.
– year: 2011
  ident: b28
  article-title: Vector-valued Laplace Transforms and Cauchy Problems
– volume: 52
  start-page: 69
  year: 2009
  end-page: 88
  ident: b106
  article-title: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation
  publication-title: Numer. Algorithms
– volume: 280
  start-page: 424
  year: 2015
  end-page: 438
  ident: b105
  article-title: A new difference scheme for the time fractional diffusion equation
  publication-title: J. Comput. Phys.
– start-page: xvi+543
  year: 1994
  ident: b74
  article-title: Numerical Approximation of Partial Differential Equations
– volume: 259
  start-page: 33
  year: 2014
  end-page: 50
  ident: b103
  article-title: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications
  publication-title: J. Comput. Phys.
– volume: 56
  start-page: 1673
  year: 2018
  end-page: 1692
  ident: b69
  article-title: Semidiscrete finite element analysis of time fractional parabolic problems: a unified approach
  publication-title: SIAM J. Numer. Anal.
– volume: 35
  start-page: A2976
  year: 2013
  end-page: A3000
  ident: b82
  article-title: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation
  publication-title: SIAM J. Sci. Comput.
– volume: 64
  start-page: 601
  year: 1995
  end-page: 627
  ident: b91
  article-title: Runge-Kutta approximation of quasi-linear parabolic equations
  publication-title: Math. Comp.
– volume: 50
  start-page: 2867
  year: 2018
  end-page: 2900
  ident: b51
  article-title: A generalized definition of Caputo derivatives and its application to fractional ODEs
  publication-title: SIAM J. Math. Anal.
– volume: 16
  start-page: 24128
  year: 2014
  end-page: 24164
  ident: b9
  article-title: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
  publication-title: Phys. Chem. Chem. Phys.
– volume: 286
  start-page: 118
  year: 2015
  end-page: 127
  ident: b114
  article-title: Convergence of a
  publication-title: J. Comput. Phys.
– volume: 47
  start-page: 210
  year: 2015
  end-page: 239
  ident: b52
  article-title: Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods
  publication-title: SIAM J. Math. Anal.
– volume: 65
  start-page: 1
  year: 1996
  end-page: 17
  ident: b89
  article-title: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term
  publication-title: Math. Comp.
– start-page: xiv+305
  year: 2003
  ident: b27
  article-title: Sobolev Spaces
– start-page: xvi+523
  year: 2006
  ident: b11
  article-title: Theory and Applications of Fractional Differential Equations
– volume: 56
  start-page: 210
  year: 2018
  end-page: 227
  ident: b99
  article-title: An analysis of the modified L1 scheme for time-fractional partial pifferential equations with nonsmooth data
  publication-title: SIAM J. Numer. Anal.
– volume: 30
  start-page: 134
  year: 1989
  end-page: 144
  ident: b49
  article-title: Fractional diffusion and wave equations
  publication-title: J. Math. Phys.
– volume: 2A
  start-page: 99
  year: 2010
  end-page: 108
  ident: b13
  article-title: Overview to mathematical analysis for fractional diffusion equations—new mathematical aspects motivated by industrial collaboration
  publication-title: J. Math-for-Ind.
– volume: 37
  start-page: 945
  year: 2017
  end-page: 964
  ident: b61
  article-title: Finite volume element method for two-dimensional fractional subdiffusion problems
  publication-title: IMA J. Numer. Anal.
– volume: 18
  start-page: 799
  year: 2015
  end-page: 820
  ident: b50
  article-title: Time-fractional diffusion equation in the fractional Sobolev spaces
  publication-title: Fract. Calc. Appl. Anal.
– volume: 18
  start-page: 129
  year: 2018
  end-page: 146
  ident: b110
  article-title: Some time stepping methods for fractional diffusion problems with nonsmooth data
  publication-title: Comput. Methods Appl. Math.
– volume: 15
  start-page: 417
  year: 2015
  end-page: 437
  ident: b63
  article-title: On preservation of positivity in some finite element methods for the heat equation
  publication-title: Comput. Methods Appl. Math.
– volume: 56
  start-page: 159
  year: 2011
  end-page: 184
  ident: b107
  article-title: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation
  publication-title: Numer. Algorithms
– volume: 22
  start-page: 558
  year: 2006
  end-page: 576
  ident: b118
  article-title: Variational formulation for the stationary fractional advection dispersion equation
  publication-title: Numer. Methods Part. Diff. Eq.
– volume: 56
  start-page: 1112
  year: 2018
  end-page: 1133
  ident: b77
  article-title: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations
  publication-title: SIAM J. Numer. Anal.
– volume: 225
  start-page: 1533
  year: 2007
  end-page: 1552
  ident: b54
  article-title: Finite difference/spectral approximations for the time-fractional diffusion equation
  publication-title: J. Comput. Phys.
– volume: 31
  start-page: 035003, 40
  year: 2015
  ident: b18
  article-title: A tutorial on inverse problems for anomalous diffusion processes
  publication-title: Inverse Problems
– start-page: xxvi+366
  year: 1993
  ident: b48
  article-title: Evolutionary Integral Equations and Applications
– volume: 51
  start-page: 445
  year: 2013
  end-page: 466
  ident: b57
  article-title: Error estimates for a semidiscrete finite element method for fractional order parabolic equations
  publication-title: SIAM J. Numer. Anal.
– volume: 52
  start-page: 129
  year: 1988
  end-page: 145
  ident: b79
  article-title: Convolution quadrature and discretized operational calculus. I
  publication-title: Numer. Math.
– volume: 38
  start-page: A2699
  year: 2016
  end-page: A2724
  ident: b102
  article-title: Error analysis of a high order method for time-fractional diffusion equations
  publication-title: SIAM J. Sci. Comput.
– volume: 460
  start-page: 365
  year: 2018
  end-page: 381
  ident: b46
  article-title: Weak solutions to non-homogeneous boundary value problems for time-fractional diffusion equations
  publication-title: J. Math. Anal. Appl.
– reference: B. Li, H. Luo, X. Xie, Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data, 2018. Preprint,
– volume: 34
  start-page: 1027
  year: 1998
  end-page: 1033
  ident: b5
  article-title: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles
  publication-title: Water Resour. Res.
– volume: 52
  start-page: 773
  year: 2018
  end-page: 801
  ident: b71
  article-title: Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data
  publication-title: ESAIM Math. Model. Numer. Anal.
– volume: 38
  start-page: A3070
  year: 2016
  end-page: A3093
  ident: b88
  article-title: Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions
  publication-title: SIAM J. Sci. Comput.
– volume: 75
  start-page: 673
  year: 2006
  end-page: 696
  ident: b87
  article-title: Convolution quadrature time discretization of fractional diffusion-wave equations
  publication-title: Math. Comp.
– volume: 20
  start-page: 1076
  year: 2017
  end-page: 1105
  ident: b101
  article-title: An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data
  publication-title: Fract. Calc. Appl. Anal.
– volume: 60
  start-page: 3
  year: 2016
  end-page: 26
  ident: b24
  article-title: Nonlocal elliptic equations in bounded domains: a survey
  publication-title: Publ. Math.
– volume: 293
  start-page: 1
  year: 2015
  end-page: 3
  ident: b14
  article-title: Special issue on “Fractional PDEs: theory, numerics, and applications” [Editorial]
  publication-title: J. Comput. Phys.
– volume: 87
  start-page: 2259
  year: 2018
  end-page: 2272
  ident: b73
  article-title: FEM for time-fractional diffusion equations, novel optimal error analyses
  publication-title: Math. Comp.
– volume: 71
  start-page: 301
  year: 2016
  end-page: 318
  ident: b16
  article-title: Finite element approximation of optimal control problems governed by time fractional diffusion equation
  publication-title: Comput. Math. Appl.
– volume: 42
  start-page: 1862
  year: 2005
  end-page: 1874
  ident: b81
  article-title: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
  publication-title: SIAM J. Numer. Anal.
– reference: M. Fischer, Fast and parallel Runge-Kutta approximation of fractional evolution equations, 2018. Preprint,
– volume: 2
  start-page: 501
  year: 2008
  end-page: 535
  ident: b6
  article-title: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins
  publication-title: Ann. Appl. Stat.
– volume: 85
  start-page: 1603
  year: 2016
  end-page: 1638
  ident: b119
  article-title: Generalized Jacobi functions and their applications to fractional differential equations
  publication-title: Math. Comp.
– volume: 38
  start-page: A146
  year: 2016
  end-page: A170
  ident: b83
  article-title: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data
  publication-title: SIAM J. Sci. Comput.
– volume: 130
  start-page: 497
  year: 2015
  end-page: 516
  ident: b108
  article-title: Time-stepping discontinuous Galerkin methods for fractional diffusion problems
  publication-title: Numer. Math.
– volume: 17
  start-page: 65
  year: 2017
  end-page: 84
  ident: b123
  article-title: Numerical solution of parabolic problems based on a weak space-time formulation
  publication-title: Comput. Methods Appl. Math.
– volume: 36
  start-page: 197
  year: 2016
  end-page: 221
  ident: b97
  article-title: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data
  publication-title: IMA J. Numer. Anal.
– volume: 54
  start-page: 481
  year: 2016
  end-page: 503
  ident: b122
  article-title: A Petrov-Galerkin finite element method for fractional convection-diffusion equations
  publication-title: SIAM J. Numer. Anal.
– year: 2018
  ident: b17
  article-title: Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint
  publication-title: IMA J. Numer. Anal.
– volume: 35
  start-page: 561
  year: 2015
  end-page: 582
  ident: b34
  article-title: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion
  publication-title: IMA J. Numer. Anal.
– volume: 47
  start-page: 69
  year: 2009
  end-page: 88
  ident: b30
  article-title: Numerical algorithm for calculating the generalized Mittag-Leffler function
  publication-title: SIAM J. Numer. Anal.
– volume: 17
  start-page: 704
  year: 1986
  end-page: 719
  ident: b78
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
– volume: 221
  start-page: 603
  year: 2016
  end-page: 630
  ident: b44
  article-title: A parabolic problem with a fractional time derivative
  publication-title: Arch. Ration. Mech. Anal.
– volume: 18
  start-page: 43
  year: 2018
  end-page: 62
  ident: b115
  article-title: Müntz spectral methods for the time-fractional diffusion equation
  publication-title: Comput. Methods Appl. Math.
– start-page: xiii+234
  year: 1974
  ident: b84
  article-title: The Fractional Calculus
– volume: 56
  start-page: 193
  year: 2006
  end-page: 209
  ident: b96
  article-title: A fully discrete difference scheme for a diffusion-wave system
  publication-title: Appl. Numer. Math.
– volume: 293
  start-page: 201
  year: 2015
  end-page: 217
  ident: b109
  article-title: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data
  publication-title: J. Comput. Phys.
– volume: 17
  start-page: 643
  year: 2017
  end-page: 646
  ident: b15
  article-title: Preface: Numerical analysis of fractional differential equations
  publication-title: Comput. Methods Appl. Math.
– volume: 138
  start-page: 101
  year: 2018
  end-page: 131
  ident: b32
  article-title: Discrete maximal regularity of time-stepping schemes for fractional evolution equations
  publication-title: Numer. Math.
– volume: 382
  start-page: 426
  year: 2011
  end-page: 447
  ident: b33
  article-title: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems
  publication-title: J. Math. Anal. Appl.
– volume: 52
  start-page: 2512
  year: 2014
  end-page: 2529
  ident: b104
  article-title: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations
  publication-title: SIAM J. Numer. Anal.
– start-page: xxiv+340
  year: 1999
  ident: b85
  article-title: Fractional Differential Equations
– volume: 18
  start-page: 1
  year: 2018
  end-page: 20
  ident: b121
  article-title: Space-time Petrov-Galerkin FEM for fractional diffusion problems
  publication-title: Comput. Methods Appl. Math.
– volume: 191
  start-page: 449
  year: 1992
  end-page: 453
  ident: b3
  article-title: Fractional diffusion equation and relaxation in complex viscoelastic materials
  publication-title: Physica A
– reference: C. Gal, M. Warma, Fractional-in-time semilinear parabolic equations and applications, 2017. Preprint, available at
– volume: 339
  start-page: 1
  year: 2000
  end-page: 77
  ident: b7
  article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys. Rep.
– volume: 230
  start-page: 8713
  year: 2011
  end-page: 8728
  ident: b55
  article-title: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation
  publication-title: J. Comput. Phys.
– volume: 44
  start-page: 503
  year: 2004
  end-page: 514
  ident: b80
  article-title: Convolution quadrature revisited
  publication-title: BIT
– volume: 84
  start-page: 2665
  year: 2015
  end-page: 2700
  ident: b117
  article-title: Variational formulation of problems involving fractional order differential operators
  publication-title: Math. Comp.
– volume: vol. 8236
  start-page: 24
  year: 2013
  end-page: 37
  ident: b58
  article-title: Galerkin FEM for fractional order parabolic equations with initial data in
  publication-title: Numerical Analysis and its Applications
– volume: 54
  start-page: 667
  year: 2012
  end-page: 696
  ident: b25
  article-title: Analysis and approximation of nonlocal diffusion problems with volume constraints
  publication-title: SIAM Rev.
– volume: 43
  start-page: 1363
  year: 2005
  end-page: 1384
  ident: b19
  article-title: Galerkin finite element methods for stochastic parabolic partial differential equations
  publication-title: SIAM J. Numer. Anal.
– volume: 283
  start-page: 1545
  year: 2015
  end-page: 1569
  ident: b113
  article-title: A unified Petrov-Galerkin spectral method for fractional PDEs
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 37
  start-page: R161
  year: 2004
  end-page: R208
  ident: b8
  article-title: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics
  publication-title: J. Phys. A
– volume: 13
  start-page: 251
  year: 2013
  end-page: 279
  ident: b67
  article-title: Some error estimates for the finite volume element method for a parabolic problem
  publication-title: Comput. Methods Appl. Math.
– volume: 351
  start-page: 218
  year: 2009
  end-page: 223
  ident: b40
  article-title: Maximum principle for the generalized time-fractional diffusion equation
  publication-title: J. Math. Anal. Appl.
– volume: 56
  start-page: 1
  year: 2018
  end-page: 23
  ident: b38
  article-title: Numerical analysis of nonlinear subdiffusion equations
  publication-title: SIAM J. Numer. Anal.
– volume: 74
  start-page: 519
  year: 2018
  end-page: 535
  ident: b70
  article-title: Optimal error analysis of a FEM for fractional diffusion problems by energy arguments
  publication-title: J. Sci. Comput.
– volume: 306
  start-page: 123
  year: 2017
  end-page: 176
  ident: b53
  article-title: An
  publication-title: Adv. Math.
– volume: 75
  start-page: 3929
  year: 2018
  end-page: 3938
  ident: b124
  article-title: Variational formulation of time-fractional parabolic equations
  publication-title: Comput. Math. Appl.
– volume: 54
  start-page: 3600
  year: 2016
  end-page: 3624
  ident: b36
  article-title: A-stable time discretizations preserve maximal parabolic regularity
  publication-title: SIAM J. Numer. Anal.
– start-page: xii+370
  year: 2006
  ident: b20
  article-title: Galerkin Finite Element Methods for Parabolic Problems
– volume: 133
  start-page: 425
  year: 1986
  end-page: 430
  ident: b4
  article-title: The realization of the generalized transfer equation in a medium with fractal geometry
  publication-title: Phys. Stat. Sol. B
– volume: 20
  start-page: 7
  year: 2017
  end-page: 51
  ident: b21
  article-title: Ten equivalent definitions of the fractional laplace operator
  publication-title: Fract. Calc. Appl. Anal.
– volume: 69
  start-page: 103
  year: 2000
  end-page: 120
  ident: b66
  article-title: Error estimates in
  publication-title: Math. Comp.
– volume: 17
  start-page: 881
  year: 2014
  end-page: 896
  ident: b43
  article-title: Asymptotic properties of solutions of the fractional diffusion-wave equation
  publication-title: Fract. Calc. Appl. Anal.
– volume: 86
  start-page: 2239
  year: 2017
  end-page: 2260
  ident: b64
  article-title: On nonnegativity preservation in finite element methods for subdiffusion equations
  publication-title: Math. Comp.
– volume: 12
  start-page: 2455
  year: 1975
  end-page: 2477
  ident: b1
  article-title: Anomalous transit-time dispersion in amorphous solids
  publication-title: Phys. Rev.
– volume: 51
  start-page: 89
  year: 2017
  end-page: 113
  ident: b98
  article-title: An analysis of Galerkin proper orthogonal decomposition for subdiffusion
  publication-title: ESAIM Math. Model. Numer. Anal.
– reference: .
– volume: 5
  year: 2014
  ident: b94
  article-title: Numerical approximations for fractional differential equations
  publication-title: J. Fract. Calc. Appl.
– volume: 16
  start-page: 225
  year: 2019
  end-page: 239
  ident: b111
  article-title: A second-order Crank-Nicolson scheme for time-fractional PDEs
  publication-title: Int. J. Numer. Anal. & Model.
– volume: 52
  start-page: 123
  year: 2010
  end-page: 138
  ident: b42
  article-title: Regularity of solutions to a time-fractional diffusion equation
  publication-title: ANZIAM J.
– volume: 39
  start-page: A3129
  year: 2017
  end-page: A3152
  ident: b90
  article-title: Correction of high-order BDF convolution quadrature for fractional evolution equations
  publication-title: SIAM J. Sci. Comput.
– reference: M. Salo, The fractional Calderón problem, 2017. Preprint,
– volume: 13
  start-page: 529
  year: 1967
  end-page: 539
  ident: b2
  article-title: Linear models of dissipation whose
  publication-title: Geophys. J. Int.
– volume: 59
  start-page: 61
  year: 2017
  end-page: 82
  ident: b59
  article-title: Finite element approximation of a time-fractional diffusion problem for a domain with a re-entrant corner
  publication-title: ANZIAM J.
– reference: N. Kopteva, Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions, 2017. Preprint,
– volume: 265
  start-page: 195
  year: 2014
  end-page: 210
  ident: b75
  article-title: Finite difference methods for the time fractional diffusion equation on non-uniform meshes
  publication-title: J. Comput. Phys.
– volume: 73
  start-page: 141
  year: 2009
  end-page: 182
  ident: b41
  article-title: The fundamental solution of a diffusion-wave equation of fractional order
  publication-title: Izv. Ross. Akad. Nauk Ser. Mat.
– volume: 47
  start-page: 2108
  year: 2009
  end-page: 2131
  ident: b112
  article-title: A space-time spectral method for the time fractional diffusion equation
  publication-title: SIAM J. Numer. Anal.
– volume: 22
  start-page: 1250075
  year: 2012
  ident: b86
  article-title: How to approximate the fractional derivative of order
  publication-title: Internat. J. Bifur. Chaos Appl. Sci. Engrg.
– volume: 293
  start-page: 157
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b56
  article-title: A multi-domain spectral method for time-fractional differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.10.016
– volume: 84
  start-page: 2665
  issue: 296
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b117
  article-title: Variational formulation of problems involving fractional order differential operators
  publication-title: Math. Comp.
  doi: 10.1090/mcom/2960
– volume: 39
  start-page: A3129
  issue: 6
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b90
  article-title: Correction of high-order BDF convolution quadrature for fractional evolution equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/17M1118816
– year: 2011
  ident: 10.1016/j.cma.2018.12.011_b28
– volume: 265
  start-page: 195
  year: 2014
  ident: 10.1016/j.cma.2018.12.011_b75
  article-title: Finite difference methods for the time fractional diffusion equation on non-uniform meshes
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.02.008
– start-page: xiii+234
  year: 1974
  ident: 10.1016/j.cma.2018.12.011_b84
– volume: 56
  start-page: 159
  issue: 2
  year: 2011
  ident: 10.1016/j.cma.2018.12.011_b107
  article-title: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-010-9379-8
– volume: 54
  start-page: 667
  issue: 4
  year: 2012
  ident: 10.1016/j.cma.2018.12.011_b25
  article-title: Analysis and approximation of nonlocal diffusion problems with volume constraints
  publication-title: SIAM Rev.
  doi: 10.1137/110833294
– volume: 2A
  start-page: 99
  year: 2010
  ident: 10.1016/j.cma.2018.12.011_b13
  article-title: Overview to mathematical analysis for fractional diffusion equations—new mathematical aspects motivated by industrial collaboration
  publication-title: J. Math-for-Ind.
– volume: 51
  start-page: 445
  issue: 1
  year: 2013
  ident: 10.1016/j.cma.2018.12.011_b57
  article-title: Error estimates for a semidiscrete finite element method for fractional order parabolic equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/120873984
– volume: 130
  start-page: 497
  issue: 3
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b108
  article-title: Time-stepping discontinuous Galerkin methods for fractional diffusion problems
  publication-title: Numer. Math.
  doi: 10.1007/s00211-014-0669-2
– volume: 17
  start-page: 881
  issue: 3
  year: 2014
  ident: 10.1016/j.cma.2018.12.011_b43
  article-title: Asymptotic properties of solutions of the fractional diffusion-wave equation
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.2478/s13540-014-0203-3
– volume: 38
  start-page: A146
  issue: 1
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b83
  article-title: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/140979563
– volume: 18
  start-page: 43
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b115
  article-title: Müntz spectral methods for the time-fractional diffusion equation
  publication-title: Comput. Methods Appl. Math.
  doi: 10.1515/cmam-2017-0027
– start-page: xiv+256
  year: 1993
  ident: 10.1016/j.cma.2018.12.011_b12
– volume: 17
  start-page: 643
  issue: 4
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b15
  article-title: Preface: Numerical analysis of fractional differential equations
  publication-title: Comput. Methods Appl. Math.
  doi: 10.1515/cmam-2017-0036
– volume: 37
  start-page: R161
  issue: 31
  year: 2004
  ident: 10.1016/j.cma.2018.12.011_b8
  article-title: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics
  publication-title: J. Phys. A
  doi: 10.1088/0305-4470/37/31/R01
– volume: 38
  start-page: A2699
  issue: 5
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b102
  article-title: Error analysis of a high order method for time-fractional diffusion equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/15M102664X
– volume: 225
  start-page: 1533
  issue: 2
  year: 2007
  ident: 10.1016/j.cma.2018.12.011_b54
  article-title: Finite difference/spectral approximations for the time-fractional diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.02.001
– volume: 44
  start-page: 503
  issue: 3
  year: 2004
  ident: 10.1016/j.cma.2018.12.011_b80
  article-title: Convolution quadrature revisited
  publication-title: BIT
  doi: 10.1023/B:BITN.0000046813.23911.2d
– start-page: xxvi+366
  year: 1993
  ident: 10.1016/j.cma.2018.12.011_b48
– year: 2018
  ident: 10.1016/j.cma.2018.12.011_b17
  article-title: Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint
  publication-title: IMA J. Numer. Anal.
– volume: 252
  start-page: 495
  year: 2013
  ident: 10.1016/j.cma.2018.12.011_b120
  article-title: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.06.031
– start-page: vi+152
  year: 2011
  ident: 10.1016/j.cma.2018.12.011_b10
– volume: vol. II
  start-page: 789
  year: 1991
  ident: 10.1016/j.cma.2018.12.011_b60
  article-title: Evolution problems
  doi: 10.1016/S1570-8659(05)80043-2
– volume: 54
  start-page: 481
  issue: 1
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b122
  article-title: A Petrov-Galerkin finite element method for fractional convection-diffusion equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/140992278
– volume: 138
  start-page: 101
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b32
  article-title: Discrete maximal regularity of time-stepping schemes for fractional evolution equations
  publication-title: Numer. Math.
  doi: 10.1007/s00211-017-0904-8
– volume: 86
  start-page: 1527
  issue: 306
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b37
  article-title: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations
  publication-title: Math. Comp.
  doi: 10.1090/mcom/3228
– start-page: xvi+523
  year: 2006
  ident: 10.1016/j.cma.2018.12.011_b11
– volume: 12
  start-page: 2455
  issue: 6
  year: 1975
  ident: 10.1016/j.cma.2018.12.011_b1
  article-title: Anomalous transit-time dispersion in amorphous solids
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.12.2455
– volume: 199
  start-page: 211
  issue: 2
  year: 2004
  ident: 10.1016/j.cma.2018.12.011_b39
  article-title: Cauchy problem for fractional diffusion equations
  publication-title: J. Differential Equations
  doi: 10.1016/j.jde.2003.12.002
– volume: 13
  start-page: 529
  issue: 5
  year: 1967
  ident: 10.1016/j.cma.2018.12.011_b2
  article-title: Linear models of dissipation whose Q is almost frequency independentII
  publication-title: Geophys. J. Int.
  doi: 10.1111/j.1365-246X.1967.tb02303.x
– volume: 35
  start-page: 561
  issue: 2
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b34
  article-title: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/dru018
– volume: 16
  start-page: 225
  year: 2019
  ident: 10.1016/j.cma.2018.12.011_b111
  article-title: A second-order Crank-Nicolson scheme for time-fractional PDEs
  publication-title: Int. J. Numer. Anal. & Model.
– volume: 81
  start-page: 1
  issue: 277
  year: 2012
  ident: 10.1016/j.cma.2018.12.011_b68
  article-title: Some error estimates for the lumped mass finite element method for a parabolic problem
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-2011-02503-2
– volume: 460
  start-page: 365
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b46
  article-title: Weak solutions to non-homogeneous boundary value problems for time-fractional diffusion equations
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2017.11.048
– volume: 3
  start-page: 393
  issue: 4
  year: 1980
  ident: 10.1016/j.cma.2018.12.011_b65
  article-title: A new finite-element formulation for convection-diffusion problems
  publication-title: Numer. Heat Transfer
  doi: 10.1080/01495728008961767
– volume: 52
  start-page: 123
  issue: 2
  year: 2010
  ident: 10.1016/j.cma.2018.12.011_b42
  article-title: Regularity of solutions to a time-fractional diffusion equation
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181111000617
– volume: 75
  start-page: 3929
  issue: 11
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b124
  article-title: Variational formulation of time-fractional parabolic equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2018.03.003
– volume: 286
  start-page: 118
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b114
  article-title: Convergence of a p-version/hp-version method for fractional differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.01.025
– volume: 42
  start-page: 1862
  issue: 5
  year: 2005
  ident: 10.1016/j.cma.2018.12.011_b81
  article-title: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/030602666
– year: 2001
  ident: 10.1016/j.cma.2018.12.011_b31
– start-page: xvi+543
  year: 1994
  ident: 10.1016/j.cma.2018.12.011_b74
– volume: 357
  start-page: 305
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b100
  article-title: A higher order numerical method for time fractional partial differential equations with nonsmooth data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.12.035
– volume: 38
  start-page: 518
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b95
  article-title: An analysis of the Crank–Nicolson method for subdiffusion
  publication-title: IMA J. Numer. Anal.
  doi: 10.1093/imanum/drx019
– start-page: xiv+305
  year: 2003
  ident: 10.1016/j.cma.2018.12.011_b27
– volume: 31
  start-page: 035003, 40
  issue: 3
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b18
  article-title: A tutorial on inverse problems for anomalous diffusion processes
  publication-title: Inverse Problems
  doi: 10.1088/0266-5611/31/3/035003
– volume: 17
  start-page: 65
  issue: 1
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b123
  article-title: Numerical solution of parabolic problems based on a weak space-time formulation
  publication-title: Comput. Methods Appl. Math.
  doi: 10.1515/cmam-2016-0027
– volume: 19
  start-page: 888
  issue: 4
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b45
  article-title: Strong maximum principle for fractional diffusion equations and an application to an inverse source problem
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2016-0048
– volume: 56
  start-page: 1673
  issue: 3
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b69
  article-title: Semidiscrete finite element analysis of time fractional parabolic problems: a unified approach
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M1134160
– volume: 52
  start-page: 773
  issue: 2
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b71
  article-title: Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2018029
– volume: 52
  start-page: 129
  issue: 2
  year: 1988
  ident: 10.1016/j.cma.2018.12.011_b79
  article-title: Convolution quadrature and discretized operational calculus. I
  publication-title: Numer. Math.
  doi: 10.1007/BF01398686
– volume: 56
  start-page: 1112
  issue: 2
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b77
  article-title: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/17M1131829
– volume: 293
  start-page: 201
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b109
  article-title: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.08.050
– start-page: xxiv+340
  year: 1999
  ident: 10.1016/j.cma.2018.12.011_b85
– volume: 382
  start-page: 426
  issue: 1
  year: 2011
  ident: 10.1016/j.cma.2018.12.011_b33
  article-title: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2011.04.058
– volume: 52
  start-page: 1418
  issue: 3
  year: 2014
  ident: 10.1016/j.cma.2018.12.011_b93
  article-title: Fourth order accurate scheme for the space fractional diffusion equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/130933447
– volume: 69
  start-page: 103
  issue: 229
  year: 2000
  ident: 10.1016/j.cma.2018.12.011_b66
  article-title: Error estimates in L2,H1 and L∞ in covolume methods for elliptic and parabolic problems: a unified approach
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-99-01192-8
– volume: 22
  start-page: 558
  issue: 3
  year: 2006
  ident: 10.1016/j.cma.2018.12.011_b118
  article-title: Variational formulation for the stationary fractional advection dispersion equation
  publication-title: Numer. Methods Part. Diff. Eq.
  doi: 10.1002/num.20112
– volume: 194
  start-page: 743
  issue: 6–8
  year: 2005
  ident: 10.1016/j.cma.2018.12.011_b26
  article-title: Algorithms for the fractional calculus: a selection of numerical methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.06.006
– volume: 47
  start-page: 210
  issue: 1
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b52
  article-title: Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/130941900
– volume: 47
  start-page: 69
  issue: 1
  year: 2009
  ident: 10.1016/j.cma.2018.12.011_b30
  article-title: Numerical algorithm for calculating the generalized Mittag-Leffler function
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/070700280
– volume: 54
  start-page: 3600
  issue: 6
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b36
  article-title: A-stable time discretizations preserve maximal parabolic regularity
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/15M1040918
– volume: 74
  start-page: 519
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b70
  article-title: Optimal error analysis of a FEM for fractional diffusion problems by energy arguments
  publication-title: J. Sci. Comput.
  doi: 10.1007/s10915-017-0450-7
– volume: 20
  start-page: 7
  issue: 1
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b21
  article-title: Ten equivalent definitions of the fractional laplace operator
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2017-0002
– volume: 75
  start-page: 673
  issue: 254
  year: 2006
  ident: 10.1016/j.cma.2018.12.011_b87
  article-title: Convolution quadrature time discretization of fractional diffusion-wave equations
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-06-01788-1
– volume: 133
  start-page: 425
  year: 1986
  ident: 10.1016/j.cma.2018.12.011_b4
  article-title: The realization of the generalized transfer equation in a medium with fractal geometry
  publication-title: Phys. Stat. Sol. B
  doi: 10.1002/pssb.2221330150
– ident: 10.1016/j.cma.2018.12.011_b116
  doi: 10.1137/18M118414X
– volume: 59
  start-page: 61
  issue: 1
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b59
  article-title: Finite element approximation of a time-fractional diffusion problem for a domain with a re-entrant corner
  publication-title: ANZIAM J.
  doi: 10.1017/S1446181116000365
– volume: 38
  start-page: A3070
  issue: 5
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b88
  article-title: Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/16M1070323
– volume: 34
  start-page: 1027
  year: 1998
  ident: 10.1016/j.cma.2018.12.011_b5
  article-title: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles
  publication-title: Water Resour. Res.
  doi: 10.1029/98WR00214
– volume: 2
  start-page: 501
  issue: 2
  year: 2008
  ident: 10.1016/j.cma.2018.12.011_b6
  article-title: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins
  publication-title: Ann. Appl. Stat.
  doi: 10.1214/07-AOAS149
– volume: 43
  start-page: 1363
  issue: 4
  year: 2005
  ident: 10.1016/j.cma.2018.12.011_b19
  article-title: Galerkin finite element methods for stochastic parabolic partial differential equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/040605278
– volume: 221
  start-page: 603
  issue: 2
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b44
  article-title: A parabolic problem with a fractional time derivative
  publication-title: Arch. Ration. Mech. Anal.
  doi: 10.1007/s00205-016-0969-z
– volume: 351
  start-page: 218
  issue: 1
  year: 2009
  ident: 10.1016/j.cma.2018.12.011_b40
  article-title: Maximum principle for the generalized time-fractional diffusion equation
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/j.jmaa.2008.10.018
– volume: 73
  start-page: 141
  issue: 2
  year: 2009
  ident: 10.1016/j.cma.2018.12.011_b41
  article-title: The fundamental solution of a diffusion-wave equation of fractional order
  publication-title: Izv. Ross. Akad. Nauk Ser. Mat.
– ident: 10.1016/j.cma.2018.12.011_b23
  doi: 10.5802/jedp.657
– volume: 17
  start-page: 704
  issue: 3
  year: 1986
  ident: 10.1016/j.cma.2018.12.011_b78
  article-title: Discretized fractional calculus
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/0517050
– volume: 15
  start-page: 417
  issue: 4
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b63
  article-title: On preservation of positivity in some finite element methods for the heat equation
  publication-title: Comput. Methods Appl. Math.
  doi: 10.1515/cmam-2015-0018
– volume: 283
  start-page: 1545
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b113
  article-title: A unified Petrov-Galerkin spectral method for fractional PDEs
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2014.10.051
– year: 2018
  ident: 10.1016/j.cma.2018.12.011_b22
  article-title: Numerical methods for fractional diffusion
  publication-title: Comput. Vis. Sci.
  doi: 10.1007/s00791-018-0289-y
– volume: 55
  start-page: 1057
  issue: 2
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b76
  article-title: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1082329
– volume: 5
  issue: suppl. 3S
  year: 2014
  ident: 10.1016/j.cma.2018.12.011_b94
  article-title: Numerical approximations for fractional differential equations
  publication-title: J. Fract. Calc. Appl.
– volume: 306
  start-page: 123
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b53
  article-title: An Lq(Lp)-theory for the time fractional evolution equations with variable coefficients
  publication-title: Adv. Math.
  doi: 10.1016/j.aim.2016.08.046
– volume: 18
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b121
  article-title: Space-time Petrov-Galerkin FEM for fractional diffusion problems
  publication-title: Comput. Methods Appl. Math.
  doi: 10.1515/cmam-2017-0026
– volume: 13
  start-page: 251
  issue: 3
  year: 2013
  ident: 10.1016/j.cma.2018.12.011_b67
  article-title: Some error estimates for the finite volume element method for a parabolic problem
  publication-title: Comput. Methods Appl. Math.
  doi: 10.1515/cmam-2012-0006
– volume: 37
  start-page: 945
  issue: 2
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b61
  article-title: Finite volume element method for two-dimensional fractional subdiffusion problems
  publication-title: IMA J. Numer. Anal.
– volume: 16
  start-page: 24128
  issue: 44
  year: 2014
  ident: 10.1016/j.cma.2018.12.011_b9
  article-title: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C4CP03465A
– volume: 22
  start-page: 1250075
  issue: 4
  year: 2012
  ident: 10.1016/j.cma.2018.12.011_b86
  article-title: How to approximate the fractional derivative of order 1<α≤2
  publication-title: Internat. J. Bifur. Chaos Appl. Sci. Engrg.
  doi: 10.1142/S0218127412500757
– volume: 56
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b38
  article-title: Numerical analysis of nonlinear subdiffusion equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1089320
– volume: 56
  start-page: 210
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b99
  article-title: An analysis of the modified L1 scheme for time-fractional partial pifferential equations with nonsmooth data
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/16M1094257
– volume: 35
  start-page: A2976
  issue: 6
  year: 2013
  ident: 10.1016/j.cma.2018.12.011_b82
  article-title: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/130910865
– volume: vol. 8236
  start-page: 24
  year: 2013
  ident: 10.1016/j.cma.2018.12.011_b58
  article-title: Galerkin FEM for fractional order parabolic equations with initial data in H−s, 0≤s≤1
– volume: 18
  start-page: 799
  issue: 3
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b50
  article-title: Time-fractional diffusion equation in the fractional Sobolev spaces
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2015-0048
– volume: 51
  start-page: 89
  issue: 1
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b98
  article-title: An analysis of Galerkin proper orthogonal decomposition for subdiffusion
  publication-title: ESAIM Math. Model. Numer. Anal.
  doi: 10.1051/m2an/2016017
– volume: 339
  start-page: 1
  issue: 1
  year: 2000
  ident: 10.1016/j.cma.2018.12.011_b7
  article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Phys. Rep.
  doi: 10.1016/S0370-1573(00)00070-3
– volume: 71
  start-page: 301
  issue: 1
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b16
  article-title: Finite element approximation of optimal control problems governed by time fractional diffusion equation
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2015.11.014
– volume: 293
  start-page: 1
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b14
  article-title: Special issue on “Fractional PDEs: theory, numerics, and applications” [Editorial]
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.04.007
– volume: 20
  start-page: 1076
  issue: 5
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b101
  article-title: An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2017-0058
– volume: 230
  start-page: 8713
  issue: 24
  year: 2011
  ident: 10.1016/j.cma.2018.12.011_b55
  article-title: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2011.08.020
– volume: 47
  start-page: 2108
  issue: 3
  year: 2009
  ident: 10.1016/j.cma.2018.12.011_b112
  article-title: A space-time spectral method for the time fractional diffusion equation
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/080718942
– ident: 10.1016/j.cma.2018.12.011_b62
– volume: 56
  start-page: 193
  issue: 2
  year: 2006
  ident: 10.1016/j.cma.2018.12.011_b96
  article-title: A fully discrete difference scheme for a diffusion-wave system
  publication-title: Appl. Numer. Math.
  doi: 10.1016/j.apnum.2005.03.003
– volume: 87
  start-page: 2259
  issue: 313
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b73
  article-title: FEM for time-fractional diffusion equations, novel optimal error analyses
  publication-title: Math. Comp.
  doi: 10.1090/mcom/3304
– volume: 18
  start-page: 129
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b110
  article-title: Some time stepping methods for fractional diffusion problems with nonsmooth data
  publication-title: Comput. Methods Appl. Math.
  doi: 10.1515/cmam-2017-0037
– volume: 30
  start-page: 134
  issue: 1
  year: 1989
  ident: 10.1016/j.cma.2018.12.011_b49
  article-title: Fractional diffusion and wave equations
  publication-title: J. Math. Phys.
  doi: 10.1063/1.528578
– volume: 64
  start-page: 601
  issue: 210
  year: 1995
  ident: 10.1016/j.cma.2018.12.011_b91
  article-title: Runge-Kutta approximation of quasi-linear parabolic equations
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-1995-1284670-0
– volume: 65
  start-page: 1
  issue: 213
  year: 1996
  ident: 10.1016/j.cma.2018.12.011_b89
  article-title: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-96-00677-1
– volume: 86
  start-page: 2239
  issue: 307
  year: 2017
  ident: 10.1016/j.cma.2018.12.011_b64
  article-title: On nonnegativity preservation in finite element methods for subdiffusion equations
  publication-title: Math. Comp.
  doi: 10.1090/mcom/3167
– volume: 60
  start-page: 3
  issue: 1
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b24
  article-title: Nonlocal elliptic equations in bounded domains: a survey
  publication-title: Publ. Math.
  doi: 10.5565/PUBLMAT_60116_01
– volume: 191
  start-page: 449
  issue: 1–4
  year: 1992
  ident: 10.1016/j.cma.2018.12.011_b3
  article-title: Fractional diffusion equation and relaxation in complex viscoelastic materials
  publication-title: Physica A
  doi: 10.1016/0378-4371(92)90566-9
– volume: 52
  start-page: 69
  issue: 1
  year: 2009
  ident: 10.1016/j.cma.2018.12.011_b106
  article-title: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation
  publication-title: Numer. Algorithms
  doi: 10.1007/s11075-008-9258-8
– volume: 85
  start-page: 1603
  issue: 300
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b119
  article-title: Generalized Jacobi functions and their applications to fractional differential equations
  publication-title: Math. Comp.
  doi: 10.1090/mcom3035
– volume: 19
  start-page: 1554
  issue: 6
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b35
  article-title: Too much regularity may force too much uniqueness
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2016-0080
– volume: 259
  start-page: 33
  year: 2014
  ident: 10.1016/j.cma.2018.12.011_b103
  article-title: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.11.017
– volume: 36
  start-page: 197
  issue: 1
  year: 2016
  ident: 10.1016/j.cma.2018.12.011_b97
  article-title: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data
  publication-title: IMA J. Numer. Anal.
– ident: 10.1016/j.cma.2018.12.011_b92
– volume: 5
  start-page: 491
  issue: 4
  year: 2002
  ident: 10.1016/j.cma.2018.12.011_b29
  article-title: Computation of the Mittag-Leffler function Eα,β(z) and its derivative
  publication-title: Fract. Calc. Appl. Anal.
– volume: 19
  start-page: 93
  issue: 1
  year: 1982
  ident: 10.1016/j.cma.2018.12.011_b72
  article-title: On the smoothing property of the Galerkin method for parabolic equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0719003
– start-page: xii+370
  year: 2006
  ident: 10.1016/j.cma.2018.12.011_b20
– volume: 50
  start-page: 2867
  issue: 3
  year: 2018
  ident: 10.1016/j.cma.2018.12.011_b51
  article-title: A generalized definition of Caputo derivatives and its application to fractional ODEs
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/17M1160318
– ident: 10.1016/j.cma.2018.12.011_b47
– volume: 280
  start-page: 424
  year: 2015
  ident: 10.1016/j.cma.2018.12.011_b105
  article-title: A new difference scheme for the time fractional diffusion equation
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.09.031
– volume: 52
  start-page: 2512
  issue: 5
  year: 2014
  ident: 10.1016/j.cma.2018.12.011_b104
  article-title: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/140952107
SSID ssj0000812
Score 2.6456976
Snippet Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α∈(0,1) in time,...
Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α ∈(0,1) in time,...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 332
SubjectTerms Computer simulation
Convolution
Error estimates
Evolution
Finite element method
Formulations
Galerkin method
Inverse problems
Mathematical analysis
Mathematical models
Nonsmooth solution
Numerical analysis
Numerical methods
Optimal control
Space–time formulation
Time-fractional evolution
Time-stepping
Title Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview
URI https://dx.doi.org/10.1016/j.cma.2018.12.011
https://www.proquest.com/docview/2185041538
Volume 346
WOSCitedRecordID wos000456713400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOAwaIjYF8QByojOI4XhxuFeoEqCocuqk3y0nckalNu35pcOFf5zl23FBEBQcuUZTUdeTfz8_Pz-8DoVdxmjARKE1UoHMSpZEm4kynhAd5pNKU51nlbXHZjwcDMRolX1qtH3UszGYSl6W4vU3m_xVqeAZgm9DZf4Db_yk8gHsAHa4AO1z_CvjB2h7CTFx16KX1JCymmowXNowB3umN-4iOvlk7d7jKJlvC3XQG-HWM86gNXIc9sym-0THunv4ooU5v4MpC-N6KsqOcajvVJq64zgOtt6kPvd-OqxavyqtV4X2D1He1mG0q8NU3YNVsa92eravTlK9F01pBk4aTS2VC82E0l02pHHECmgpvSmUWNeUqs0bQ3-S9NT1cv82qHFJUVKZdJ71_ya09-CzPL_p9OeyNhq_nN8SUHTPH864Gyx10EMY8EW100P3YG33aLuaC2oTz7hPrg_HKRXCn1z-pNjuLfKW5DB-iQ7flwF1LlUeopcsj9MBtP7AT7ssjdL-Rm_IxUp5H2CGLgUd4h0fY8wh7HmHDI-x5hA2P3uEudizCNYueoIvz3vD9B-LqcZCMhXxFEpjJIgUFONARD8ZZys_iMdU0ynLOxiqGaZ3kSQ4bWJGPFdVhkEawQMCeOExDE8P8FLWhc_0MYdB7GacZU8YcQCmDFkmac61YGGQ0UscoqIdSZi5ZvamZMpG1V-K1hNGXZvQlDSWM_jF645vMbaaWfT-OanykUzWtCimBWfuandZYSjfllxKUZG4SXTBxsv_1c3RvOyVOUXu1WOsX6G62WRXLxUvHvJ97EKrU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+methods+for+time-fractional+evolution+equations+with+nonsmooth+data%3A+A+concise+overview&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Jin%2C+Bangti&rft.au=Lazarov%2C+Raytcho&rft.au=Zhou%2C+Zhi&rft.date=2019-04-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=346&rft.spage=332&rft_id=info:doi/10.1016%2Fj.cma.2018.12.011&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon