Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview
Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α∈(0,1) in time, commonly known as subdiffusion, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount...
Saved in:
| Published in: | Computer methods in applied mechanics and engineering Vol. 346; pp. 332 - 358 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.04.2019
Elsevier BV |
| Subjects: | |
| ISSN: | 0045-7825, 1879-2138 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α∈(0,1) in time, commonly known as subdiffusion, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following topics of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space–time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature. |
|---|---|
| AbstractList | Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α∈(0,1) in time, commonly known as subdiffusion, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following topics of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space–time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature. Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α ∈(0,1) in time, commonly known as subdiffusion, due to their many successful applications in engineering, physics, biology and finance. Thus, it is of paramount importance to develop and to analyze efficient and accurate numerical methods for reliably simulating such models, and the literature on the topic is vast and fast growing. The present paper gives a concise overview on numerical schemes for the subdiffusion model with nonsmooth problem data, which are important for the numerical analysis of many problems arising in optimal control, inverse problems and stochastic analysis. We focus on the following topics of the subdiffusion model: regularity theory, Galerkin finite element discretization in space, time-stepping schemes (including convolution quadrature and L1 type schemes), and space–time variational formulations, and compare the results with that for standard parabolic problems. Further, these aspects are showcased with illustrative numerical experiments and complemented with perspectives and pointers to relevant literature. |
| Author | Jin, Bangti Zhou, Zhi Lazarov, Raytcho |
| Author_xml | – sequence: 1 givenname: Bangti orcidid: 0000-0002-3775-9155 surname: Jin fullname: Jin, Bangti email: b.jin@ucl.ac.uk organization: Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK – sequence: 2 givenname: Raytcho surname: Lazarov fullname: Lazarov, Raytcho email: lazarov@math.tamu.edu organization: Department of Mathematics, Texas A&M University, College Station, TX 77843, USA – sequence: 3 givenname: Zhi surname: Zhou fullname: Zhou, Zhi email: zhizhou@polyu.edu.hk organization: Department of Applied Mathematics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China |
| BookMark | eNp9kD1PwzAQhi1UJNrCD2CzxJzgc-zGhQkhviQEC8yW41yEqyYG22nFv8elTAz1cq9091h3z4xMBj8gIefASmCwuFyVtjclZ6BK4CUDOCJTUPWy4FCpCZkyJmRRKy5PyCzGFctPAZ8S8zL2GJw1a9pj-vBtpJ0PNLkeiy4Ym5wfcg83fj3uMsWv0exCpFuXPmheI_be59SaZK7oDbV-sC4i9RsMG4fbU3LcmXXEs786J-_3d2-3j8Xz68PT7c1zYSsuU7FsBKpGgmQoJOtsIxd1BwjCtrLqTG1rtmyXbb1Qqu0MIGeNYEJJoXjDF1JUc3Kx__cz-K8RY9IrP4a8fNQclGQCZKXyVL2fssHHGLDT1qXfg1Iwbq2B6Z1PvdLZp9751MB19plJ-Ed-Bteb8H2Qud4zmA_PMoKO1uFgsXUBbdKtdwfoH-87kIo |
| CitedBy_id | crossref_primary_10_1137_19M1261225 crossref_primary_10_1103_gbms_12x3 crossref_primary_10_1137_20M1355690 crossref_primary_10_1016_j_cam_2022_114647 crossref_primary_10_1090_mcom_3552 crossref_primary_10_1515_fca_2021_0053 crossref_primary_10_1016_j_cnsns_2024_107830 crossref_primary_10_1007_s10915_020_01250_9 crossref_primary_10_1007_s10915_023_02263_w crossref_primary_10_1088_1361_6420_ad14a0 crossref_primary_10_1137_19M1295088 crossref_primary_10_11648_j_ijtam_20251101_11 crossref_primary_10_1137_20M1356270 crossref_primary_10_1007_s10915_019_01117_8 crossref_primary_10_1016_j_cam_2022_114470 crossref_primary_10_1088_2632_2153_aba8e7 crossref_primary_10_1016_j_camwa_2021_06_010 crossref_primary_10_1007_s42967_025_00521_2 crossref_primary_10_1016_j_jcp_2021_110789 crossref_primary_10_1007_s11075_023_01747_y crossref_primary_10_1007_s42967_024_00406_w crossref_primary_10_3390_fractalfract6110647 crossref_primary_10_1007_s10915_024_02619_w crossref_primary_10_1134_S1995080225605077 crossref_primary_10_3390_ma14195792 crossref_primary_10_3390_fractalfract6080438 crossref_primary_10_1137_23M161450X crossref_primary_10_1007_s10444_025_10221_3 crossref_primary_10_1016_j_apnum_2022_07_016 crossref_primary_10_1007_s12190_025_02552_7 crossref_primary_10_1016_j_aml_2021_107515 crossref_primary_10_1137_23M159531X crossref_primary_10_1515_cmam_2020_0101 crossref_primary_10_1515_fca_2021_0037 crossref_primary_10_1002_mma_7391 crossref_primary_10_1007_s11425_022_2078_4 crossref_primary_10_1016_j_apnum_2024_02_013 crossref_primary_10_1016_j_matcom_2024_11_020 crossref_primary_10_1016_j_cnsns_2023_107099 crossref_primary_10_1088_1361_6420_ac1e7f crossref_primary_10_1007_s10915_020_01375_x crossref_primary_10_1007_s10915_023_02204_7 crossref_primary_10_1007_s11075_021_01205_7 crossref_primary_10_1016_j_camwa_2022_09_028 crossref_primary_10_3390_fractalfract6040206 crossref_primary_10_1002_num_22571 crossref_primary_10_1016_j_matcom_2023_02_007 crossref_primary_10_1016_j_cam_2019_112435 crossref_primary_10_1002_jnm_3233 crossref_primary_10_1007_s12190_021_01522_z crossref_primary_10_1016_j_camwa_2024_11_001 crossref_primary_10_3390_math8081283 crossref_primary_10_1007_s10444_024_10188_7 crossref_primary_10_1093_imanum_draf011 crossref_primary_10_1007_s41478_024_00750_3 crossref_primary_10_1155_2021_9918955 crossref_primary_10_3390_fractalfract6080417 crossref_primary_10_1016_j_amc_2024_128609 crossref_primary_10_1080_00036811_2025_2533956 crossref_primary_10_3390_fractalfract9030167 crossref_primary_10_1007_s10915_020_01218_9 crossref_primary_10_1515_cmam_2021_0053 crossref_primary_10_1007_s10910_025_01718_9 crossref_primary_10_1007_s10915_020_01230_z crossref_primary_10_1016_j_aml_2024_109071 crossref_primary_10_1016_j_apnum_2020_04_002 crossref_primary_10_1007_s10910_024_01693_7 crossref_primary_10_1007_s11075_019_00742_6 crossref_primary_10_1007_s00211_020_01128_w crossref_primary_10_1007_s42967_019_00042_9 crossref_primary_10_1016_j_cnsns_2024_108285 crossref_primary_10_1007_s11075_025_02029_5 crossref_primary_10_1016_j_jcp_2020_109231 crossref_primary_10_1016_j_camwa_2024_03_015 crossref_primary_10_1007_s10915_020_01350_6 crossref_primary_10_1016_j_camwa_2024_01_010 crossref_primary_10_1016_j_cam_2025_116517 crossref_primary_10_1007_s11075_023_01547_4 crossref_primary_10_1063_5_0264522 crossref_primary_10_3390_math13050891 crossref_primary_10_1007_s10915_025_02906_0 crossref_primary_10_3390_fractalfract7090657 crossref_primary_10_1007_s10915_024_02556_8 crossref_primary_10_1080_00207160_2025_2544745 crossref_primary_10_1002_mma_8842 crossref_primary_10_3390_e23010110 crossref_primary_10_1007_s10915_022_01936_2 crossref_primary_10_1016_j_jcp_2025_114261 crossref_primary_10_1016_j_probengmech_2022_103228 crossref_primary_10_1007_s00211_020_01130_2 crossref_primary_10_1016_j_jcp_2021_110221 crossref_primary_10_3390_fractalfract9090557 crossref_primary_10_1007_s10915_022_01812_z crossref_primary_10_1016_j_probengmech_2023_103471 crossref_primary_10_1137_21M1398264 crossref_primary_10_1137_21M1397295 crossref_primary_10_3390_fractalfract6090516 crossref_primary_10_1007_s10915_021_01630_9 crossref_primary_10_1016_j_matcom_2021_02_017 crossref_primary_10_1016_j_apnum_2022_11_020 crossref_primary_10_1515_fca_2021_0080 crossref_primary_10_1002_mma_6772 crossref_primary_10_1007_s10915_021_01527_7 crossref_primary_10_1016_j_jcp_2020_109576 crossref_primary_10_1186_s13662_020_03009_w crossref_primary_10_3390_math11102312 crossref_primary_10_1016_j_apnum_2024_07_003 crossref_primary_10_1088_1361_6420_acef50 crossref_primary_10_1137_22M1494361 crossref_primary_10_1002_num_22401 crossref_primary_10_1137_21M1446708 crossref_primary_10_1016_j_camwa_2024_12_003 crossref_primary_10_1016_j_camwa_2020_04_024 crossref_primary_10_1137_19M1300686 crossref_primary_10_1007_s10915_022_01914_8 crossref_primary_10_1016_j_cam_2023_115122 crossref_primary_10_1007_s12190_025_02634_6 crossref_primary_10_1016_j_matcom_2019_09_021 crossref_primary_10_1088_1361_6420_abb61e crossref_primary_10_3390_fractalfract7040340 crossref_primary_10_1016_j_cam_2024_116191 crossref_primary_10_1007_s10915_021_01495_y crossref_primary_10_1007_s12190_024_02037_z crossref_primary_10_3390_fractalfract7100698 crossref_primary_10_1002_num_22773 crossref_primary_10_1016_j_camwa_2021_01_010 crossref_primary_10_1016_j_physd_2024_134264 |
| Cites_doi | 10.1016/j.jcp.2014.10.016 10.1090/mcom/2960 10.1137/17M1118816 10.1016/j.jcp.2014.02.008 10.1007/s11075-010-9379-8 10.1137/110833294 10.1137/120873984 10.1007/s00211-014-0669-2 10.2478/s13540-014-0203-3 10.1137/140979563 10.1515/cmam-2017-0027 10.1515/cmam-2017-0036 10.1088/0305-4470/37/31/R01 10.1137/15M102664X 10.1016/j.jcp.2007.02.001 10.1023/B:BITN.0000046813.23911.2d 10.1016/j.jcp.2013.06.031 10.1016/S1570-8659(05)80043-2 10.1137/140992278 10.1007/s00211-017-0904-8 10.1090/mcom/3228 10.1103/PhysRevB.12.2455 10.1016/j.jde.2003.12.002 10.1111/j.1365-246X.1967.tb02303.x 10.1093/imanum/dru018 10.1090/S0025-5718-2011-02503-2 10.1016/j.jmaa.2017.11.048 10.1080/01495728008961767 10.1017/S1446181111000617 10.1016/j.camwa.2018.03.003 10.1016/j.jcp.2015.01.025 10.1137/030602666 10.1016/j.jcp.2017.12.035 10.1093/imanum/drx019 10.1088/0266-5611/31/3/035003 10.1515/cmam-2016-0027 10.1515/fca-2016-0048 10.1137/17M1134160 10.1051/m2an/2018029 10.1007/BF01398686 10.1137/17M1131829 10.1016/j.jcp.2014.08.050 10.1016/j.jmaa.2011.04.058 10.1137/130933447 10.1090/S0025-5718-99-01192-8 10.1002/num.20112 10.1016/j.cma.2004.06.006 10.1137/130941900 10.1137/070700280 10.1137/15M1040918 10.1007/s10915-017-0450-7 10.1515/fca-2017-0002 10.1090/S0025-5718-06-01788-1 10.1002/pssb.2221330150 10.1137/18M118414X 10.1017/S1446181116000365 10.1137/16M1070323 10.1029/98WR00214 10.1214/07-AOAS149 10.1137/040605278 10.1007/s00205-016-0969-z 10.1016/j.jmaa.2008.10.018 10.5802/jedp.657 10.1137/0517050 10.1515/cmam-2015-0018 10.1016/j.cma.2014.10.051 10.1007/s00791-018-0289-y 10.1137/16M1082329 10.1016/j.aim.2016.08.046 10.1515/cmam-2017-0026 10.1515/cmam-2012-0006 10.1039/C4CP03465A 10.1142/S0218127412500757 10.1137/16M1089320 10.1137/16M1094257 10.1137/130910865 10.1515/fca-2015-0048 10.1051/m2an/2016017 10.1016/S0370-1573(00)00070-3 10.1016/j.camwa.2015.11.014 10.1016/j.jcp.2015.04.007 10.1515/fca-2017-0058 10.1016/j.jcp.2011.08.020 10.1137/080718942 10.1016/j.apnum.2005.03.003 10.1090/mcom/3304 10.1515/cmam-2017-0037 10.1063/1.528578 10.1090/S0025-5718-1995-1284670-0 10.1090/S0025-5718-96-00677-1 10.1090/mcom/3167 10.5565/PUBLMAT_60116_01 10.1016/0378-4371(92)90566-9 10.1007/s11075-008-9258-8 10.1090/mcom3035 10.1515/fca-2016-0080 10.1016/j.jcp.2013.11.017 10.1137/0719003 10.1137/17M1160318 10.1016/j.jcp.2014.09.031 10.1137/140952107 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. Copyright Elsevier BV Apr 1, 2019 |
| Copyright_xml | – notice: 2018 Elsevier B.V. – notice: Copyright Elsevier BV Apr 1, 2019 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cma.2018.12.011 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| EISSN | 1879-2138 |
| EndPage | 358 |
| ExternalDocumentID | 10_1016_j_cma_2018_12_011 S0045782518306091 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c325t-9b4e8b5150e450fcb567f1e14cd53fa7c709d9d7688dfa1e20b40485482b26543 |
| ISICitedReferencesCount | 157 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456713400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Sun Nov 09 07:08:33 EST 2025 Tue Nov 18 20:49:35 EST 2025 Sat Nov 29 06:16:39 EST 2025 Fri Feb 23 02:20:28 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Finite element method Time-stepping Nonsmooth solution Space–time formulation Error estimates Time-fractional evolution |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-9b4e8b5150e450fcb567f1e14cd53fa7c709d9d7688dfa1e20b40485482b26543 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3775-9155 |
| PQID | 2185041538 |
| PQPubID | 2045269 |
| PageCount | 27 |
| ParticipantIDs | proquest_journals_2185041538 crossref_citationtrail_10_1016_j_cma_2018_12_011 crossref_primary_10_1016_j_cma_2018_12_011 elsevier_sciencedirect_doi_10_1016_j_cma_2018_12_011 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 2019-04-00 20190401 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Thomée (b20) 2006 Ervin, Roop (b118) 2006; 22 Chou, Li (b66) 2000; 69 Kim, Kim, Lim (b53) 2017; 306 Hou, Hasan, Xu (b115) 2018; 18 Yan (b19) 2005; 43 Schneider, Wyss (b49) 1989; 30 Ros-Oton (b24) 2016; 60 Stynes (b35) 2016; 19 Prüss (b48) 1993 Ginoa, Cerbelli, Roman (b3) 1992; 191 Kilbas, Srivastava, Trujillo (b11) 2006 Li, Xu (b112) 2009; 47 Diethelm, Ford, Freed, Luchko (b26) 2005; 194 Jin, Lazarov, Pasciak, Zhou (b34) 2015; 35 Zayernouri, Karniadakis (b120) 2013; 252 Seybold, Hilfer (b30) 2009; 47 Karaa, Pani (b71) 2018; 52 Zhou, Gong (b16) 2016; 71 Mustapha, McLean (b107) 2011; 56 Mustapha (b108) 2015; 130 Eidelman, Kochubei (b39) 2004; 199 Liu, Rundell, Yamamoto (b45) 2016; 19 Metzler, Klafter (b8) 2004; 37 Yuste, Acedo (b81) 2005; 42 Akrivis, Li, Lubich (b37) 2017; 86 Chatzipantelidis, Lazarov, Thomée (b67) 2013; 13 Alikhanov (b105) 2015; 280 McLean (b42) 2010; 52 Chen, Deng (b93) 2014; 52 Jin, Lazarov, Zhou (b57) 2013; 51 Adams, Fournier (b27) 2003 Luchko (b40) 2009; 351 . Liao, Li, Zhang (b77) 2018; 56 Klafter, Sokolov (b10) 2011 Karkulik (b124) 2018; 75 Kovács, Li, Lubich (b36) 2016; 54 Hatano, Hatano (b5) 1998; 34 Metzler, Klafter (b7) 2000; 339 Arendt, Batty, Hieber, Neubrander (b28) 2011 Zhang, Sun, Liao (b75) 2014; 265 Jin, Li, Zhou (b95) 2018; 38 Karniadakis, Hesthaven, Podlubny (b14) 2015; 293 Sakamoto, Yamamoto (b33) 2011; 382 Podlubny (b85) 1999 Oldham, Spanier (b84) 1974 Cao, Zeng, Zhang, Karniadakis (b88) 2016; 38 Jin, Li, Zhou (b32) 2018; 138 Stynes, O’Riordan, Gracia (b76) 2017; 55 Lubich (b80) 2004; 44 Jin, Li, Zhou (b17) 2018 Dimitrov (b94) 2014; 5 B. Li, H. Luo, X. Xie, Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data, 2018. Preprint Huang, Zhang (b114) 2015; 286 Zayernouri, Ainsworth, Karniadakis (b113) 2015; 283 Zhang, Sun (b55) 2011; 230 Karaa (b69) 2018; 56 Quarteroni, Valli (b74) 1994 Fujita, Suzuki (b60) 1991; vol. II Jin, Lazarov, Zhou (b122) 2016; 54 Larsson, Molteni (b123) 2017; 17 Li, Liu (b51) 2018; 50 Jin, Li, Zhou (b90) 2017; 39 Sun, Wu (b96) 2006; 56 Chen, Shen, Wang (b119) 2016; 85 Yan, Khan, Ford (b99) 2018; 56 Jin, Lazarov, Zhou (b97) 2016; 36 Mustapha, Abdallah, Furati (b104) 2014; 52 C. Gal, M. Warma, Fractional-in-time semilinear parabolic equations and applications, 2017. Preprint, available at Mustapha (b73) 2018; 87 Kou (b6) 2008; 2 Bajlekova (b31) 2001 Lv, Xu (b102) 2016; 38 Karaa, Mustapha, Pani (b70) 2018; 74 Du, Gunzburger, Lehoucq, Zhou (b25) 2012; 54 Jin, Lazarov, Thomée, Zhou (b64) 2017; 86 Luskin, Rannacher (b72) 1982; 19 Lubich (b78) 1986; 17 Kwaśnicki (b21) 2017; 20 Le, McLean, Lamichhane (b59) 2017; 59 Yamamoto (b46) 2018; 460 Lin, Xu (b54) 2007; 225 Caputo (b2) 1967; 13 Vergara, Zacher (b52) 2015; 47 Jin, Lazarov, Zhou (b83) 2016; 38 Scher, Montroll (b1) 1975; 12 Jin, Rundell (b18) 2015; 31 M. Salo, The fractional Calderón problem, 2017. Preprint Xing, Yan (b100) 2018; 357 Duan, Jin, Lazarov, Pasciak, Zhou (b121) 2018; 18 Jin, Lazarov, Vabishchevich (b15) 2017; 17 Zeng, Li, Liu, Turner (b82) 2013; 35 Nigmatullin (b4) 1986; 133 Djrbashian (b12) 1993 Baliga, Patankar (b65) 1980; 3 Jin, Lazarov, Pasciak, Rundell (b117) 2015; 84 McLean, Mustapha (b109) 2015; 293 Gorenflo, Luchko, Yamamoto (b50) 2015; 18 McLean, Mustapha (b106) 2009; 52 Gorenflo, Loutchko, Luchko (b29) 2002; 5 Chatzipantelidis, Lazarov, Thomée (b68) 2012; 81 N. Kopteva, Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions, 2017. Preprint M. Fischer, Fast and parallel Runge-Kutta approximation of fractional evolution equations, 2018. Preprint Allen, Caffarelli, Vasseur (b44) 2016; 221 Lubich, Ostermann (b91) 1995; 64 Jin, Lazarov, Pasciak, Zhou (b58) 2013; vol. 8236 Karaa, Mustapha, Pani (b61) 2017; 37 Kochubei (b43) 2014; 17 Lubich (b79) 1988; 52 Gunzburger, Wang (b111) 2019; 16 Sousa (b86) 2012; 22 Jin, Zhou (b98) 2017; 51 Metzler, Jeon, Cherstvy, Barkai (b9) 2014; 16 Gao, Sun, Zhang (b103) 2014; 259 Ford, Yan (b101) 2017; 20 Chen, Xu, Hesthaven (b56) 2015; 293 Chatzipantelidis, Horváth, Thomée (b63) 2015; 15 Bonito, Borthagaray, Nochetto, Otárola, Salgado (b22) 2018 Nakagawa, Sakamoto, Yamamoto (b13) 2010; 2A Jin, Li, Zhou (b38) 2018; 56 Cuesta, Lubich, Palencia (b87) 2006; 75 Lubich, Sloan, Thomée (b89) 1996; 65 Yang, Yan, Ford (b110) 2018; 18 Pskhu (b41) 2009; 73 Scher (10.1016/j.cma.2018.12.011_b1) 1975; 12 Jin (10.1016/j.cma.2018.12.011_b58) 2013; vol. 8236 Yan (10.1016/j.cma.2018.12.011_b99) 2018; 56 Nakagawa (10.1016/j.cma.2018.12.011_b13) 2010; 2A Prüss (10.1016/j.cma.2018.12.011_b48) 1993 Le (10.1016/j.cma.2018.12.011_b59) 2017; 59 Diethelm (10.1016/j.cma.2018.12.011_b26) 2005; 194 Hou (10.1016/j.cma.2018.12.011_b115) 2018; 18 McLean (10.1016/j.cma.2018.12.011_b42) 2010; 52 Karaa (10.1016/j.cma.2018.12.011_b71) 2018; 52 Yang (10.1016/j.cma.2018.12.011_b110) 2018; 18 Bajlekova (10.1016/j.cma.2018.12.011_b31) 2001 10.1016/j.cma.2018.12.011_b92 Fujita (10.1016/j.cma.2018.12.011_b60) 1991; vol. II Quarteroni (10.1016/j.cma.2018.12.011_b74) 1994 Stynes (10.1016/j.cma.2018.12.011_b76) 2017; 55 Jin (10.1016/j.cma.2018.12.011_b17) 2018 Sun (10.1016/j.cma.2018.12.011_b96) 2006; 56 Lubich (10.1016/j.cma.2018.12.011_b91) 1995; 64 Chatzipantelidis (10.1016/j.cma.2018.12.011_b68) 2012; 81 Huang (10.1016/j.cma.2018.12.011_b114) 2015; 286 Zayernouri (10.1016/j.cma.2018.12.011_b113) 2015; 283 Luskin (10.1016/j.cma.2018.12.011_b72) 1982; 19 Jin (10.1016/j.cma.2018.12.011_b117) 2015; 84 Liu (10.1016/j.cma.2018.12.011_b45) 2016; 19 Metzler (10.1016/j.cma.2018.12.011_b7) 2000; 339 Mustapha (10.1016/j.cma.2018.12.011_b104) 2014; 52 Ervin (10.1016/j.cma.2018.12.011_b118) 2006; 22 Gorenflo (10.1016/j.cma.2018.12.011_b50) 2015; 18 Jin (10.1016/j.cma.2018.12.011_b98) 2017; 51 10.1016/j.cma.2018.12.011_b23 Lv (10.1016/j.cma.2018.12.011_b102) 2016; 38 Sousa (10.1016/j.cma.2018.12.011_b86) 2012; 22 Cao (10.1016/j.cma.2018.12.011_b88) 2016; 38 Schneider (10.1016/j.cma.2018.12.011_b49) 1989; 30 Jin (10.1016/j.cma.2018.12.011_b122) 2016; 54 Yan (10.1016/j.cma.2018.12.011_b19) 2005; 43 Lubich (10.1016/j.cma.2018.12.011_b78) 1986; 17 Kochubei (10.1016/j.cma.2018.12.011_b43) 2014; 17 Yuste (10.1016/j.cma.2018.12.011_b81) 2005; 42 Kilbas (10.1016/j.cma.2018.12.011_b11) 2006 Jin (10.1016/j.cma.2018.12.011_b90) 2017; 39 Dimitrov (10.1016/j.cma.2018.12.011_b94) 2014; 5 Jin (10.1016/j.cma.2018.12.011_b64) 2017; 86 Chen (10.1016/j.cma.2018.12.011_b56) 2015; 293 Podlubny (10.1016/j.cma.2018.12.011_b85) 1999 Zayernouri (10.1016/j.cma.2018.12.011_b120) 2013; 252 Baliga (10.1016/j.cma.2018.12.011_b65) 1980; 3 Chatzipantelidis (10.1016/j.cma.2018.12.011_b67) 2013; 13 Eidelman (10.1016/j.cma.2018.12.011_b39) 2004; 199 Allen (10.1016/j.cma.2018.12.011_b44) 2016; 221 McLean (10.1016/j.cma.2018.12.011_b106) 2009; 52 Jin (10.1016/j.cma.2018.12.011_b34) 2015; 35 Lin (10.1016/j.cma.2018.12.011_b54) 2007; 225 Zhang (10.1016/j.cma.2018.12.011_b75) 2014; 265 Pskhu (10.1016/j.cma.2018.12.011_b41) 2009; 73 Chen (10.1016/j.cma.2018.12.011_b93) 2014; 52 Gunzburger (10.1016/j.cma.2018.12.011_b111) 2019; 16 Mustapha (10.1016/j.cma.2018.12.011_b107) 2011; 56 Lubich (10.1016/j.cma.2018.12.011_b79) 1988; 52 10.1016/j.cma.2018.12.011_b47 Gao (10.1016/j.cma.2018.12.011_b103) 2014; 259 Metzler (10.1016/j.cma.2018.12.011_b8) 2004; 37 Cuesta (10.1016/j.cma.2018.12.011_b87) 2006; 75 Stynes (10.1016/j.cma.2018.12.011_b35) 2016; 19 Chou (10.1016/j.cma.2018.12.011_b66) 2000; 69 Jin (10.1016/j.cma.2018.12.011_b15) 2017; 17 Xing (10.1016/j.cma.2018.12.011_b100) 2018; 357 Caputo (10.1016/j.cma.2018.12.011_b2) 1967; 13 Lubich (10.1016/j.cma.2018.12.011_b80) 2004; 44 Akrivis (10.1016/j.cma.2018.12.011_b37) 2017; 86 Kwaśnicki (10.1016/j.cma.2018.12.011_b21) 2017; 20 Zeng (10.1016/j.cma.2018.12.011_b82) 2013; 35 Jin (10.1016/j.cma.2018.12.011_b97) 2016; 36 Karaa (10.1016/j.cma.2018.12.011_b70) 2018; 74 Mustapha (10.1016/j.cma.2018.12.011_b73) 2018; 87 Jin (10.1016/j.cma.2018.12.011_b18) 2015; 31 Duan (10.1016/j.cma.2018.12.011_b121) 2018; 18 Li (10.1016/j.cma.2018.12.011_b51) 2018; 50 Jin (10.1016/j.cma.2018.12.011_b57) 2013; 51 Ford (10.1016/j.cma.2018.12.011_b101) 2017; 20 Jin (10.1016/j.cma.2018.12.011_b95) 2018; 38 Li (10.1016/j.cma.2018.12.011_b112) 2009; 47 Klafter (10.1016/j.cma.2018.12.011_b10) 2011 Liao (10.1016/j.cma.2018.12.011_b77) 2018; 56 10.1016/j.cma.2018.12.011_b116 Karaa (10.1016/j.cma.2018.12.011_b61) 2017; 37 Jin (10.1016/j.cma.2018.12.011_b83) 2016; 38 Kovács (10.1016/j.cma.2018.12.011_b36) 2016; 54 10.1016/j.cma.2018.12.011_b62 Metzler (10.1016/j.cma.2018.12.011_b9) 2014; 16 Bonito (10.1016/j.cma.2018.12.011_b22) 2018 Adams (10.1016/j.cma.2018.12.011_b27) 2003 Ginoa (10.1016/j.cma.2018.12.011_b3) 1992; 191 Hatano (10.1016/j.cma.2018.12.011_b5) 1998; 34 Mustapha (10.1016/j.cma.2018.12.011_b108) 2015; 130 Arendt (10.1016/j.cma.2018.12.011_b28) 2011 Alikhanov (10.1016/j.cma.2018.12.011_b105) 2015; 280 Lubich (10.1016/j.cma.2018.12.011_b89) 1996; 65 Oldham (10.1016/j.cma.2018.12.011_b84) 1974 Seybold (10.1016/j.cma.2018.12.011_b30) 2009; 47 Karaa (10.1016/j.cma.2018.12.011_b69) 2018; 56 Karkulik (10.1016/j.cma.2018.12.011_b124) 2018; 75 Chen (10.1016/j.cma.2018.12.011_b119) 2016; 85 Thomée (10.1016/j.cma.2018.12.011_b20) 2006 Nigmatullin (10.1016/j.cma.2018.12.011_b4) 1986; 133 Larsson (10.1016/j.cma.2018.12.011_b123) 2017; 17 Kou (10.1016/j.cma.2018.12.011_b6) 2008; 2 Ros-Oton (10.1016/j.cma.2018.12.011_b24) 2016; 60 McLean (10.1016/j.cma.2018.12.011_b109) 2015; 293 Djrbashian (10.1016/j.cma.2018.12.011_b12) 1993 Jin (10.1016/j.cma.2018.12.011_b38) 2018; 56 Yamamoto (10.1016/j.cma.2018.12.011_b46) 2018; 460 Gorenflo (10.1016/j.cma.2018.12.011_b29) 2002; 5 Chatzipantelidis (10.1016/j.cma.2018.12.011_b63) 2015; 15 Karniadakis (10.1016/j.cma.2018.12.011_b14) 2015; 293 Du (10.1016/j.cma.2018.12.011_b25) 2012; 54 Zhang (10.1016/j.cma.2018.12.011_b55) 2011; 230 Luchko (10.1016/j.cma.2018.12.011_b40) 2009; 351 Zhou (10.1016/j.cma.2018.12.011_b16) 2016; 71 Sakamoto (10.1016/j.cma.2018.12.011_b33) 2011; 382 Kim (10.1016/j.cma.2018.12.011_b53) 2017; 306 Vergara (10.1016/j.cma.2018.12.011_b52) 2015; 47 Jin (10.1016/j.cma.2018.12.011_b32) 2018; 138 |
| References_xml | – volume: 199 start-page: 211 year: 2004 end-page: 255 ident: b39 article-title: Cauchy problem for fractional diffusion equations publication-title: J. Differential Equations – volume: vol. II start-page: 789 year: 1991 end-page: 928 ident: b60 article-title: Evolution problems publication-title: Handbook of Numerical Analysis – volume: 194 start-page: 743 year: 2005 end-page: 773 ident: b26 article-title: Algorithms for the fractional calculus: a selection of numerical methods publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 19 start-page: 93 year: 1982 end-page: 113 ident: b72 article-title: On the smoothing property of the Galerkin method for parabolic equations publication-title: SIAM J. Numer. Anal. – volume: 357 start-page: 305 year: 2018 end-page: 323 ident: b100 article-title: A higher order numerical method for time fractional partial differential equations with nonsmooth data publication-title: J. Comput. Phys. – volume: 38 start-page: 518 year: 2018 end-page: 541 ident: b95 article-title: An analysis of the Crank–Nicolson method for subdiffusion publication-title: IMA J. Numer. Anal. – start-page: vi+152 year: 2011 ident: b10 article-title: First Steps in Random Walks – volume: 86 start-page: 1527 year: 2017 end-page: 1552 ident: b37 article-title: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations publication-title: Math. Comp. – volume: 293 start-page: 157 year: 2015 end-page: 172 ident: b56 article-title: A multi-domain spectral method for time-fractional differential equations publication-title: J. Comput. Phys. – start-page: xiv+256 year: 1993 ident: b12 article-title: Harmonic Analysis and Boundary Value Problems in the Complex Domain – volume: 252 start-page: 495 year: 2013 end-page: 517 ident: b120 article-title: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation publication-title: J. Comput. Phys. – year: 2018 ident: b22 article-title: Numerical methods for fractional diffusion publication-title: Comput. Vis. Sci. – volume: 5 start-page: 491 year: 2002 end-page: 518 ident: b29 article-title: Computation of the Mittag-Leffler function publication-title: Fract. Calc. Appl. Anal. – volume: 52 start-page: 1418 year: 2014 end-page: 1438 ident: b93 article-title: Fourth order accurate scheme for the space fractional diffusion equations publication-title: SIAM J. Numer. Anal. – year: 2001 ident: b31 article-title: Fractional Evolution Equations in Banach Spaces – volume: 19 start-page: 888 year: 2016 end-page: 906 ident: b45 article-title: Strong maximum principle for fractional diffusion equations and an application to an inverse source problem publication-title: Fract. Calc. Appl. Anal. – volume: 3 start-page: 393 year: 1980 end-page: 409 ident: b65 article-title: A new finite-element formulation for convection-diffusion problems publication-title: Numer. Heat Transfer – volume: 81 start-page: 1 year: 2012 end-page: 20 ident: b68 article-title: Some error estimates for the lumped mass finite element method for a parabolic problem publication-title: Math. Comp. – volume: 55 start-page: 1057 year: 2017 end-page: 1079 ident: b76 article-title: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation publication-title: SIAM J. Numer. Anal. – volume: 19 start-page: 1554 year: 2016 end-page: 1562 ident: b35 article-title: Too much regularity may force too much uniqueness publication-title: Fract. Calc. Appl. Anal. – year: 2011 ident: b28 article-title: Vector-valued Laplace Transforms and Cauchy Problems – volume: 52 start-page: 69 year: 2009 end-page: 88 ident: b106 article-title: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation publication-title: Numer. Algorithms – volume: 280 start-page: 424 year: 2015 end-page: 438 ident: b105 article-title: A new difference scheme for the time fractional diffusion equation publication-title: J. Comput. Phys. – start-page: xvi+543 year: 1994 ident: b74 article-title: Numerical Approximation of Partial Differential Equations – volume: 259 start-page: 33 year: 2014 end-page: 50 ident: b103 article-title: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications publication-title: J. Comput. Phys. – volume: 56 start-page: 1673 year: 2018 end-page: 1692 ident: b69 article-title: Semidiscrete finite element analysis of time fractional parabolic problems: a unified approach publication-title: SIAM J. Numer. Anal. – volume: 35 start-page: A2976 year: 2013 end-page: A3000 ident: b82 article-title: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation publication-title: SIAM J. Sci. Comput. – volume: 64 start-page: 601 year: 1995 end-page: 627 ident: b91 article-title: Runge-Kutta approximation of quasi-linear parabolic equations publication-title: Math. Comp. – volume: 50 start-page: 2867 year: 2018 end-page: 2900 ident: b51 article-title: A generalized definition of Caputo derivatives and its application to fractional ODEs publication-title: SIAM J. Math. Anal. – volume: 16 start-page: 24128 year: 2014 end-page: 24164 ident: b9 article-title: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking publication-title: Phys. Chem. Chem. Phys. – volume: 286 start-page: 118 year: 2015 end-page: 127 ident: b114 article-title: Convergence of a publication-title: J. Comput. Phys. – volume: 47 start-page: 210 year: 2015 end-page: 239 ident: b52 article-title: Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods publication-title: SIAM J. Math. Anal. – volume: 65 start-page: 1 year: 1996 end-page: 17 ident: b89 article-title: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term publication-title: Math. Comp. – start-page: xiv+305 year: 2003 ident: b27 article-title: Sobolev Spaces – start-page: xvi+523 year: 2006 ident: b11 article-title: Theory and Applications of Fractional Differential Equations – volume: 56 start-page: 210 year: 2018 end-page: 227 ident: b99 article-title: An analysis of the modified L1 scheme for time-fractional partial pifferential equations with nonsmooth data publication-title: SIAM J. Numer. Anal. – volume: 30 start-page: 134 year: 1989 end-page: 144 ident: b49 article-title: Fractional diffusion and wave equations publication-title: J. Math. Phys. – volume: 2A start-page: 99 year: 2010 end-page: 108 ident: b13 article-title: Overview to mathematical analysis for fractional diffusion equations—new mathematical aspects motivated by industrial collaboration publication-title: J. Math-for-Ind. – volume: 37 start-page: 945 year: 2017 end-page: 964 ident: b61 article-title: Finite volume element method for two-dimensional fractional subdiffusion problems publication-title: IMA J. Numer. Anal. – volume: 18 start-page: 799 year: 2015 end-page: 820 ident: b50 article-title: Time-fractional diffusion equation in the fractional Sobolev spaces publication-title: Fract. Calc. Appl. Anal. – volume: 18 start-page: 129 year: 2018 end-page: 146 ident: b110 article-title: Some time stepping methods for fractional diffusion problems with nonsmooth data publication-title: Comput. Methods Appl. Math. – volume: 15 start-page: 417 year: 2015 end-page: 437 ident: b63 article-title: On preservation of positivity in some finite element methods for the heat equation publication-title: Comput. Methods Appl. Math. – volume: 56 start-page: 159 year: 2011 end-page: 184 ident: b107 article-title: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation publication-title: Numer. Algorithms – volume: 22 start-page: 558 year: 2006 end-page: 576 ident: b118 article-title: Variational formulation for the stationary fractional advection dispersion equation publication-title: Numer. Methods Part. Diff. Eq. – volume: 56 start-page: 1112 year: 2018 end-page: 1133 ident: b77 article-title: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations publication-title: SIAM J. Numer. Anal. – volume: 225 start-page: 1533 year: 2007 end-page: 1552 ident: b54 article-title: Finite difference/spectral approximations for the time-fractional diffusion equation publication-title: J. Comput. Phys. – volume: 31 start-page: 035003, 40 year: 2015 ident: b18 article-title: A tutorial on inverse problems for anomalous diffusion processes publication-title: Inverse Problems – start-page: xxvi+366 year: 1993 ident: b48 article-title: Evolutionary Integral Equations and Applications – volume: 51 start-page: 445 year: 2013 end-page: 466 ident: b57 article-title: Error estimates for a semidiscrete finite element method for fractional order parabolic equations publication-title: SIAM J. Numer. Anal. – volume: 52 start-page: 129 year: 1988 end-page: 145 ident: b79 article-title: Convolution quadrature and discretized operational calculus. I publication-title: Numer. Math. – volume: 38 start-page: A2699 year: 2016 end-page: A2724 ident: b102 article-title: Error analysis of a high order method for time-fractional diffusion equations publication-title: SIAM J. Sci. Comput. – volume: 460 start-page: 365 year: 2018 end-page: 381 ident: b46 article-title: Weak solutions to non-homogeneous boundary value problems for time-fractional diffusion equations publication-title: J. Math. Anal. Appl. – reference: B. Li, H. Luo, X. Xie, Analysis of a time-stepping scheme for time fractional diffusion problems with nonsmooth data, 2018. Preprint, – volume: 34 start-page: 1027 year: 1998 end-page: 1033 ident: b5 article-title: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles publication-title: Water Resour. Res. – volume: 52 start-page: 773 year: 2018 end-page: 801 ident: b71 article-title: Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data publication-title: ESAIM Math. Model. Numer. Anal. – volume: 38 start-page: A3070 year: 2016 end-page: A3093 ident: b88 article-title: Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions publication-title: SIAM J. Sci. Comput. – volume: 75 start-page: 673 year: 2006 end-page: 696 ident: b87 article-title: Convolution quadrature time discretization of fractional diffusion-wave equations publication-title: Math. Comp. – volume: 20 start-page: 1076 year: 2017 end-page: 1105 ident: b101 article-title: An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data publication-title: Fract. Calc. Appl. Anal. – volume: 60 start-page: 3 year: 2016 end-page: 26 ident: b24 article-title: Nonlocal elliptic equations in bounded domains: a survey publication-title: Publ. Math. – volume: 293 start-page: 1 year: 2015 end-page: 3 ident: b14 article-title: Special issue on “Fractional PDEs: theory, numerics, and applications” [Editorial] publication-title: J. Comput. Phys. – volume: 87 start-page: 2259 year: 2018 end-page: 2272 ident: b73 article-title: FEM for time-fractional diffusion equations, novel optimal error analyses publication-title: Math. Comp. – volume: 71 start-page: 301 year: 2016 end-page: 318 ident: b16 article-title: Finite element approximation of optimal control problems governed by time fractional diffusion equation publication-title: Comput. Math. Appl. – volume: 42 start-page: 1862 year: 2005 end-page: 1874 ident: b81 article-title: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations publication-title: SIAM J. Numer. Anal. – reference: M. Fischer, Fast and parallel Runge-Kutta approximation of fractional evolution equations, 2018. Preprint, – volume: 2 start-page: 501 year: 2008 end-page: 535 ident: b6 article-title: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins publication-title: Ann. Appl. Stat. – volume: 85 start-page: 1603 year: 2016 end-page: 1638 ident: b119 article-title: Generalized Jacobi functions and their applications to fractional differential equations publication-title: Math. Comp. – volume: 38 start-page: A146 year: 2016 end-page: A170 ident: b83 article-title: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data publication-title: SIAM J. Sci. Comput. – volume: 130 start-page: 497 year: 2015 end-page: 516 ident: b108 article-title: Time-stepping discontinuous Galerkin methods for fractional diffusion problems publication-title: Numer. Math. – volume: 17 start-page: 65 year: 2017 end-page: 84 ident: b123 article-title: Numerical solution of parabolic problems based on a weak space-time formulation publication-title: Comput. Methods Appl. Math. – volume: 36 start-page: 197 year: 2016 end-page: 221 ident: b97 article-title: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data publication-title: IMA J. Numer. Anal. – volume: 54 start-page: 481 year: 2016 end-page: 503 ident: b122 article-title: A Petrov-Galerkin finite element method for fractional convection-diffusion equations publication-title: SIAM J. Numer. Anal. – year: 2018 ident: b17 article-title: Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint publication-title: IMA J. Numer. Anal. – volume: 35 start-page: 561 year: 2015 end-page: 582 ident: b34 article-title: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion publication-title: IMA J. Numer. Anal. – volume: 47 start-page: 69 year: 2009 end-page: 88 ident: b30 article-title: Numerical algorithm for calculating the generalized Mittag-Leffler function publication-title: SIAM J. Numer. Anal. – volume: 17 start-page: 704 year: 1986 end-page: 719 ident: b78 article-title: Discretized fractional calculus publication-title: SIAM J. Math. Anal. – volume: 221 start-page: 603 year: 2016 end-page: 630 ident: b44 article-title: A parabolic problem with a fractional time derivative publication-title: Arch. Ration. Mech. Anal. – volume: 18 start-page: 43 year: 2018 end-page: 62 ident: b115 article-title: Müntz spectral methods for the time-fractional diffusion equation publication-title: Comput. Methods Appl. Math. – start-page: xiii+234 year: 1974 ident: b84 article-title: The Fractional Calculus – volume: 56 start-page: 193 year: 2006 end-page: 209 ident: b96 article-title: A fully discrete difference scheme for a diffusion-wave system publication-title: Appl. Numer. Math. – volume: 293 start-page: 201 year: 2015 end-page: 217 ident: b109 article-title: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data publication-title: J. Comput. Phys. – volume: 17 start-page: 643 year: 2017 end-page: 646 ident: b15 article-title: Preface: Numerical analysis of fractional differential equations publication-title: Comput. Methods Appl. Math. – volume: 138 start-page: 101 year: 2018 end-page: 131 ident: b32 article-title: Discrete maximal regularity of time-stepping schemes for fractional evolution equations publication-title: Numer. Math. – volume: 382 start-page: 426 year: 2011 end-page: 447 ident: b33 article-title: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems publication-title: J. Math. Anal. Appl. – volume: 52 start-page: 2512 year: 2014 end-page: 2529 ident: b104 article-title: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations publication-title: SIAM J. Numer. Anal. – start-page: xxiv+340 year: 1999 ident: b85 article-title: Fractional Differential Equations – volume: 18 start-page: 1 year: 2018 end-page: 20 ident: b121 article-title: Space-time Petrov-Galerkin FEM for fractional diffusion problems publication-title: Comput. Methods Appl. Math. – volume: 191 start-page: 449 year: 1992 end-page: 453 ident: b3 article-title: Fractional diffusion equation and relaxation in complex viscoelastic materials publication-title: Physica A – reference: C. Gal, M. Warma, Fractional-in-time semilinear parabolic equations and applications, 2017. Preprint, available at – volume: 339 start-page: 1 year: 2000 end-page: 77 ident: b7 article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach publication-title: Phys. Rep. – volume: 230 start-page: 8713 year: 2011 end-page: 8728 ident: b55 article-title: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation publication-title: J. Comput. Phys. – volume: 44 start-page: 503 year: 2004 end-page: 514 ident: b80 article-title: Convolution quadrature revisited publication-title: BIT – volume: 84 start-page: 2665 year: 2015 end-page: 2700 ident: b117 article-title: Variational formulation of problems involving fractional order differential operators publication-title: Math. Comp. – volume: vol. 8236 start-page: 24 year: 2013 end-page: 37 ident: b58 article-title: Galerkin FEM for fractional order parabolic equations with initial data in publication-title: Numerical Analysis and its Applications – volume: 54 start-page: 667 year: 2012 end-page: 696 ident: b25 article-title: Analysis and approximation of nonlocal diffusion problems with volume constraints publication-title: SIAM Rev. – volume: 43 start-page: 1363 year: 2005 end-page: 1384 ident: b19 article-title: Galerkin finite element methods for stochastic parabolic partial differential equations publication-title: SIAM J. Numer. Anal. – volume: 283 start-page: 1545 year: 2015 end-page: 1569 ident: b113 article-title: A unified Petrov-Galerkin spectral method for fractional PDEs publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 37 start-page: R161 year: 2004 end-page: R208 ident: b8 article-title: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics publication-title: J. Phys. A – volume: 13 start-page: 251 year: 2013 end-page: 279 ident: b67 article-title: Some error estimates for the finite volume element method for a parabolic problem publication-title: Comput. Methods Appl. Math. – volume: 351 start-page: 218 year: 2009 end-page: 223 ident: b40 article-title: Maximum principle for the generalized time-fractional diffusion equation publication-title: J. Math. Anal. Appl. – volume: 56 start-page: 1 year: 2018 end-page: 23 ident: b38 article-title: Numerical analysis of nonlinear subdiffusion equations publication-title: SIAM J. Numer. Anal. – volume: 74 start-page: 519 year: 2018 end-page: 535 ident: b70 article-title: Optimal error analysis of a FEM for fractional diffusion problems by energy arguments publication-title: J. Sci. Comput. – volume: 306 start-page: 123 year: 2017 end-page: 176 ident: b53 article-title: An publication-title: Adv. Math. – volume: 75 start-page: 3929 year: 2018 end-page: 3938 ident: b124 article-title: Variational formulation of time-fractional parabolic equations publication-title: Comput. Math. Appl. – volume: 54 start-page: 3600 year: 2016 end-page: 3624 ident: b36 article-title: A-stable time discretizations preserve maximal parabolic regularity publication-title: SIAM J. Numer. Anal. – start-page: xii+370 year: 2006 ident: b20 article-title: Galerkin Finite Element Methods for Parabolic Problems – volume: 133 start-page: 425 year: 1986 end-page: 430 ident: b4 article-title: The realization of the generalized transfer equation in a medium with fractal geometry publication-title: Phys. Stat. Sol. B – volume: 20 start-page: 7 year: 2017 end-page: 51 ident: b21 article-title: Ten equivalent definitions of the fractional laplace operator publication-title: Fract. Calc. Appl. Anal. – volume: 69 start-page: 103 year: 2000 end-page: 120 ident: b66 article-title: Error estimates in publication-title: Math. Comp. – volume: 17 start-page: 881 year: 2014 end-page: 896 ident: b43 article-title: Asymptotic properties of solutions of the fractional diffusion-wave equation publication-title: Fract. Calc. Appl. Anal. – volume: 86 start-page: 2239 year: 2017 end-page: 2260 ident: b64 article-title: On nonnegativity preservation in finite element methods for subdiffusion equations publication-title: Math. Comp. – volume: 12 start-page: 2455 year: 1975 end-page: 2477 ident: b1 article-title: Anomalous transit-time dispersion in amorphous solids publication-title: Phys. Rev. – volume: 51 start-page: 89 year: 2017 end-page: 113 ident: b98 article-title: An analysis of Galerkin proper orthogonal decomposition for subdiffusion publication-title: ESAIM Math. Model. Numer. Anal. – reference: . – volume: 5 year: 2014 ident: b94 article-title: Numerical approximations for fractional differential equations publication-title: J. Fract. Calc. Appl. – volume: 16 start-page: 225 year: 2019 end-page: 239 ident: b111 article-title: A second-order Crank-Nicolson scheme for time-fractional PDEs publication-title: Int. J. Numer. Anal. & Model. – volume: 52 start-page: 123 year: 2010 end-page: 138 ident: b42 article-title: Regularity of solutions to a time-fractional diffusion equation publication-title: ANZIAM J. – volume: 39 start-page: A3129 year: 2017 end-page: A3152 ident: b90 article-title: Correction of high-order BDF convolution quadrature for fractional evolution equations publication-title: SIAM J. Sci. Comput. – reference: M. Salo, The fractional Calderón problem, 2017. Preprint, – volume: 13 start-page: 529 year: 1967 end-page: 539 ident: b2 article-title: Linear models of dissipation whose publication-title: Geophys. J. Int. – volume: 59 start-page: 61 year: 2017 end-page: 82 ident: b59 article-title: Finite element approximation of a time-fractional diffusion problem for a domain with a re-entrant corner publication-title: ANZIAM J. – reference: N. Kopteva, Error analysis of the L1 method on graded and uniform meshes for a fractional-derivative problem in two and three dimensions, 2017. Preprint, – volume: 265 start-page: 195 year: 2014 end-page: 210 ident: b75 article-title: Finite difference methods for the time fractional diffusion equation on non-uniform meshes publication-title: J. Comput. Phys. – volume: 73 start-page: 141 year: 2009 end-page: 182 ident: b41 article-title: The fundamental solution of a diffusion-wave equation of fractional order publication-title: Izv. Ross. Akad. Nauk Ser. Mat. – volume: 47 start-page: 2108 year: 2009 end-page: 2131 ident: b112 article-title: A space-time spectral method for the time fractional diffusion equation publication-title: SIAM J. Numer. Anal. – volume: 22 start-page: 1250075 year: 2012 ident: b86 article-title: How to approximate the fractional derivative of order publication-title: Internat. J. Bifur. Chaos Appl. Sci. Engrg. – volume: 293 start-page: 157 year: 2015 ident: 10.1016/j.cma.2018.12.011_b56 article-title: A multi-domain spectral method for time-fractional differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.10.016 – volume: 84 start-page: 2665 issue: 296 year: 2015 ident: 10.1016/j.cma.2018.12.011_b117 article-title: Variational formulation of problems involving fractional order differential operators publication-title: Math. Comp. doi: 10.1090/mcom/2960 – volume: 39 start-page: A3129 issue: 6 year: 2017 ident: 10.1016/j.cma.2018.12.011_b90 article-title: Correction of high-order BDF convolution quadrature for fractional evolution equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/17M1118816 – year: 2011 ident: 10.1016/j.cma.2018.12.011_b28 – volume: 265 start-page: 195 year: 2014 ident: 10.1016/j.cma.2018.12.011_b75 article-title: Finite difference methods for the time fractional diffusion equation on non-uniform meshes publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.02.008 – start-page: xiii+234 year: 1974 ident: 10.1016/j.cma.2018.12.011_b84 – volume: 56 start-page: 159 issue: 2 year: 2011 ident: 10.1016/j.cma.2018.12.011_b107 article-title: Piecewise-linear, discontinuous Galerkin method for a fractional diffusion equation publication-title: Numer. Algorithms doi: 10.1007/s11075-010-9379-8 – volume: 54 start-page: 667 issue: 4 year: 2012 ident: 10.1016/j.cma.2018.12.011_b25 article-title: Analysis and approximation of nonlocal diffusion problems with volume constraints publication-title: SIAM Rev. doi: 10.1137/110833294 – volume: 2A start-page: 99 year: 2010 ident: 10.1016/j.cma.2018.12.011_b13 article-title: Overview to mathematical analysis for fractional diffusion equations—new mathematical aspects motivated by industrial collaboration publication-title: J. Math-for-Ind. – volume: 51 start-page: 445 issue: 1 year: 2013 ident: 10.1016/j.cma.2018.12.011_b57 article-title: Error estimates for a semidiscrete finite element method for fractional order parabolic equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/120873984 – volume: 130 start-page: 497 issue: 3 year: 2015 ident: 10.1016/j.cma.2018.12.011_b108 article-title: Time-stepping discontinuous Galerkin methods for fractional diffusion problems publication-title: Numer. Math. doi: 10.1007/s00211-014-0669-2 – volume: 17 start-page: 881 issue: 3 year: 2014 ident: 10.1016/j.cma.2018.12.011_b43 article-title: Asymptotic properties of solutions of the fractional diffusion-wave equation publication-title: Fract. Calc. Appl. Anal. doi: 10.2478/s13540-014-0203-3 – volume: 38 start-page: A146 issue: 1 year: 2016 ident: 10.1016/j.cma.2018.12.011_b83 article-title: Two fully discrete schemes for fractional diffusion and diffusion-wave equations with nonsmooth data publication-title: SIAM J. Sci. Comput. doi: 10.1137/140979563 – volume: 18 start-page: 43 issue: 1 year: 2018 ident: 10.1016/j.cma.2018.12.011_b115 article-title: Müntz spectral methods for the time-fractional diffusion equation publication-title: Comput. Methods Appl. Math. doi: 10.1515/cmam-2017-0027 – start-page: xiv+256 year: 1993 ident: 10.1016/j.cma.2018.12.011_b12 – volume: 17 start-page: 643 issue: 4 year: 2017 ident: 10.1016/j.cma.2018.12.011_b15 article-title: Preface: Numerical analysis of fractional differential equations publication-title: Comput. Methods Appl. Math. doi: 10.1515/cmam-2017-0036 – volume: 37 start-page: R161 issue: 31 year: 2004 ident: 10.1016/j.cma.2018.12.011_b8 article-title: The restaurant at the end of the random walk: recent developments in the description of anomalous transport by fractional dynamics publication-title: J. Phys. A doi: 10.1088/0305-4470/37/31/R01 – volume: 38 start-page: A2699 issue: 5 year: 2016 ident: 10.1016/j.cma.2018.12.011_b102 article-title: Error analysis of a high order method for time-fractional diffusion equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/15M102664X – volume: 225 start-page: 1533 issue: 2 year: 2007 ident: 10.1016/j.cma.2018.12.011_b54 article-title: Finite difference/spectral approximations for the time-fractional diffusion equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.02.001 – volume: 44 start-page: 503 issue: 3 year: 2004 ident: 10.1016/j.cma.2018.12.011_b80 article-title: Convolution quadrature revisited publication-title: BIT doi: 10.1023/B:BITN.0000046813.23911.2d – start-page: xxvi+366 year: 1993 ident: 10.1016/j.cma.2018.12.011_b48 – year: 2018 ident: 10.1016/j.cma.2018.12.011_b17 article-title: Pointwise-in-time error estimates for an optimal control problem with subdiffusion constraint publication-title: IMA J. Numer. Anal. – volume: 252 start-page: 495 year: 2013 ident: 10.1016/j.cma.2018.12.011_b120 article-title: Fractional Sturm-Liouville eigen-problems: theory and numerical approximation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.06.031 – start-page: vi+152 year: 2011 ident: 10.1016/j.cma.2018.12.011_b10 – volume: vol. II start-page: 789 year: 1991 ident: 10.1016/j.cma.2018.12.011_b60 article-title: Evolution problems doi: 10.1016/S1570-8659(05)80043-2 – volume: 54 start-page: 481 issue: 1 year: 2016 ident: 10.1016/j.cma.2018.12.011_b122 article-title: A Petrov-Galerkin finite element method for fractional convection-diffusion equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/140992278 – volume: 138 start-page: 101 issue: 1 year: 2018 ident: 10.1016/j.cma.2018.12.011_b32 article-title: Discrete maximal regularity of time-stepping schemes for fractional evolution equations publication-title: Numer. Math. doi: 10.1007/s00211-017-0904-8 – volume: 86 start-page: 1527 issue: 306 year: 2017 ident: 10.1016/j.cma.2018.12.011_b37 article-title: Combining maximal regularity and energy estimates for time discretizations of quasilinear parabolic equations publication-title: Math. Comp. doi: 10.1090/mcom/3228 – start-page: xvi+523 year: 2006 ident: 10.1016/j.cma.2018.12.011_b11 – volume: 12 start-page: 2455 issue: 6 year: 1975 ident: 10.1016/j.cma.2018.12.011_b1 article-title: Anomalous transit-time dispersion in amorphous solids publication-title: Phys. Rev. doi: 10.1103/PhysRevB.12.2455 – volume: 199 start-page: 211 issue: 2 year: 2004 ident: 10.1016/j.cma.2018.12.011_b39 article-title: Cauchy problem for fractional diffusion equations publication-title: J. Differential Equations doi: 10.1016/j.jde.2003.12.002 – volume: 13 start-page: 529 issue: 5 year: 1967 ident: 10.1016/j.cma.2018.12.011_b2 article-title: Linear models of dissipation whose Q is almost frequency independentII publication-title: Geophys. J. Int. doi: 10.1111/j.1365-246X.1967.tb02303.x – volume: 35 start-page: 561 issue: 2 year: 2015 ident: 10.1016/j.cma.2018.12.011_b34 article-title: Error analysis of semidiscrete finite element methods for inhomogeneous time-fractional diffusion publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/dru018 – volume: 16 start-page: 225 year: 2019 ident: 10.1016/j.cma.2018.12.011_b111 article-title: A second-order Crank-Nicolson scheme for time-fractional PDEs publication-title: Int. J. Numer. Anal. & Model. – volume: 81 start-page: 1 issue: 277 year: 2012 ident: 10.1016/j.cma.2018.12.011_b68 article-title: Some error estimates for the lumped mass finite element method for a parabolic problem publication-title: Math. Comp. doi: 10.1090/S0025-5718-2011-02503-2 – volume: 460 start-page: 365 issue: 1 year: 2018 ident: 10.1016/j.cma.2018.12.011_b46 article-title: Weak solutions to non-homogeneous boundary value problems for time-fractional diffusion equations publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2017.11.048 – volume: 3 start-page: 393 issue: 4 year: 1980 ident: 10.1016/j.cma.2018.12.011_b65 article-title: A new finite-element formulation for convection-diffusion problems publication-title: Numer. Heat Transfer doi: 10.1080/01495728008961767 – volume: 52 start-page: 123 issue: 2 year: 2010 ident: 10.1016/j.cma.2018.12.011_b42 article-title: Regularity of solutions to a time-fractional diffusion equation publication-title: ANZIAM J. doi: 10.1017/S1446181111000617 – volume: 75 start-page: 3929 issue: 11 year: 2018 ident: 10.1016/j.cma.2018.12.011_b124 article-title: Variational formulation of time-fractional parabolic equations publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2018.03.003 – volume: 286 start-page: 118 year: 2015 ident: 10.1016/j.cma.2018.12.011_b114 article-title: Convergence of a p-version/hp-version method for fractional differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.01.025 – volume: 42 start-page: 1862 issue: 5 year: 2005 ident: 10.1016/j.cma.2018.12.011_b81 article-title: An explicit finite difference method and a new von Neumann-type stability analysis for fractional diffusion equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/030602666 – year: 2001 ident: 10.1016/j.cma.2018.12.011_b31 – start-page: xvi+543 year: 1994 ident: 10.1016/j.cma.2018.12.011_b74 – volume: 357 start-page: 305 year: 2018 ident: 10.1016/j.cma.2018.12.011_b100 article-title: A higher order numerical method for time fractional partial differential equations with nonsmooth data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.12.035 – volume: 38 start-page: 518 issue: 1 year: 2018 ident: 10.1016/j.cma.2018.12.011_b95 article-title: An analysis of the Crank–Nicolson method for subdiffusion publication-title: IMA J. Numer. Anal. doi: 10.1093/imanum/drx019 – start-page: xiv+305 year: 2003 ident: 10.1016/j.cma.2018.12.011_b27 – volume: 31 start-page: 035003, 40 issue: 3 year: 2015 ident: 10.1016/j.cma.2018.12.011_b18 article-title: A tutorial on inverse problems for anomalous diffusion processes publication-title: Inverse Problems doi: 10.1088/0266-5611/31/3/035003 – volume: 17 start-page: 65 issue: 1 year: 2017 ident: 10.1016/j.cma.2018.12.011_b123 article-title: Numerical solution of parabolic problems based on a weak space-time formulation publication-title: Comput. Methods Appl. Math. doi: 10.1515/cmam-2016-0027 – volume: 19 start-page: 888 issue: 4 year: 2016 ident: 10.1016/j.cma.2018.12.011_b45 article-title: Strong maximum principle for fractional diffusion equations and an application to an inverse source problem publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2016-0048 – volume: 56 start-page: 1673 issue: 3 year: 2018 ident: 10.1016/j.cma.2018.12.011_b69 article-title: Semidiscrete finite element analysis of time fractional parabolic problems: a unified approach publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M1134160 – volume: 52 start-page: 773 issue: 2 year: 2018 ident: 10.1016/j.cma.2018.12.011_b71 article-title: Error analysis of a FVEM for fractional order evolution equations with nonsmooth initial data publication-title: ESAIM Math. Model. Numer. Anal. doi: 10.1051/m2an/2018029 – volume: 52 start-page: 129 issue: 2 year: 1988 ident: 10.1016/j.cma.2018.12.011_b79 article-title: Convolution quadrature and discretized operational calculus. I publication-title: Numer. Math. doi: 10.1007/BF01398686 – volume: 56 start-page: 1112 issue: 2 year: 2018 ident: 10.1016/j.cma.2018.12.011_b77 article-title: Sharp error estimate of the nonuniform L1 formula for linear reaction-subdiffusion equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/17M1131829 – volume: 293 start-page: 201 year: 2015 ident: 10.1016/j.cma.2018.12.011_b109 article-title: Time-stepping error bounds for fractional diffusion problems with non-smooth initial data publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.08.050 – start-page: xxiv+340 year: 1999 ident: 10.1016/j.cma.2018.12.011_b85 – volume: 382 start-page: 426 issue: 1 year: 2011 ident: 10.1016/j.cma.2018.12.011_b33 article-title: Initial value/boundary value problems for fractional diffusion-wave equations and applications to some inverse problems publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2011.04.058 – volume: 52 start-page: 1418 issue: 3 year: 2014 ident: 10.1016/j.cma.2018.12.011_b93 article-title: Fourth order accurate scheme for the space fractional diffusion equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/130933447 – volume: 69 start-page: 103 issue: 229 year: 2000 ident: 10.1016/j.cma.2018.12.011_b66 article-title: Error estimates in L2,H1 and L∞ in covolume methods for elliptic and parabolic problems: a unified approach publication-title: Math. Comp. doi: 10.1090/S0025-5718-99-01192-8 – volume: 22 start-page: 558 issue: 3 year: 2006 ident: 10.1016/j.cma.2018.12.011_b118 article-title: Variational formulation for the stationary fractional advection dispersion equation publication-title: Numer. Methods Part. Diff. Eq. doi: 10.1002/num.20112 – volume: 194 start-page: 743 issue: 6–8 year: 2005 ident: 10.1016/j.cma.2018.12.011_b26 article-title: Algorithms for the fractional calculus: a selection of numerical methods publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.06.006 – volume: 47 start-page: 210 issue: 1 year: 2015 ident: 10.1016/j.cma.2018.12.011_b52 article-title: Optimal decay estimates for time-fractional and other nonlocal subdiffusion equations via energy methods publication-title: SIAM J. Math. Anal. doi: 10.1137/130941900 – volume: 47 start-page: 69 issue: 1 year: 2009 ident: 10.1016/j.cma.2018.12.011_b30 article-title: Numerical algorithm for calculating the generalized Mittag-Leffler function publication-title: SIAM J. Numer. Anal. doi: 10.1137/070700280 – volume: 54 start-page: 3600 issue: 6 year: 2016 ident: 10.1016/j.cma.2018.12.011_b36 article-title: A-stable time discretizations preserve maximal parabolic regularity publication-title: SIAM J. Numer. Anal. doi: 10.1137/15M1040918 – volume: 74 start-page: 519 issue: 1 year: 2018 ident: 10.1016/j.cma.2018.12.011_b70 article-title: Optimal error analysis of a FEM for fractional diffusion problems by energy arguments publication-title: J. Sci. Comput. doi: 10.1007/s10915-017-0450-7 – volume: 20 start-page: 7 issue: 1 year: 2017 ident: 10.1016/j.cma.2018.12.011_b21 article-title: Ten equivalent definitions of the fractional laplace operator publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2017-0002 – volume: 75 start-page: 673 issue: 254 year: 2006 ident: 10.1016/j.cma.2018.12.011_b87 article-title: Convolution quadrature time discretization of fractional diffusion-wave equations publication-title: Math. Comp. doi: 10.1090/S0025-5718-06-01788-1 – volume: 133 start-page: 425 year: 1986 ident: 10.1016/j.cma.2018.12.011_b4 article-title: The realization of the generalized transfer equation in a medium with fractal geometry publication-title: Phys. Stat. Sol. B doi: 10.1002/pssb.2221330150 – ident: 10.1016/j.cma.2018.12.011_b116 doi: 10.1137/18M118414X – volume: 59 start-page: 61 issue: 1 year: 2017 ident: 10.1016/j.cma.2018.12.011_b59 article-title: Finite element approximation of a time-fractional diffusion problem for a domain with a re-entrant corner publication-title: ANZIAM J. doi: 10.1017/S1446181116000365 – volume: 38 start-page: A3070 issue: 5 year: 2016 ident: 10.1016/j.cma.2018.12.011_b88 article-title: Implicit-explicit difference schemes for nonlinear fractional differential equations with nonsmooth solutions publication-title: SIAM J. Sci. Comput. doi: 10.1137/16M1070323 – volume: 34 start-page: 1027 year: 1998 ident: 10.1016/j.cma.2018.12.011_b5 article-title: Dispersive transport of ions in column experiments: an explanation of long-tailed profiles publication-title: Water Resour. Res. doi: 10.1029/98WR00214 – volume: 2 start-page: 501 issue: 2 year: 2008 ident: 10.1016/j.cma.2018.12.011_b6 article-title: Stochastic modeling in nanoscale biophysics: subdiffusion within proteins publication-title: Ann. Appl. Stat. doi: 10.1214/07-AOAS149 – volume: 43 start-page: 1363 issue: 4 year: 2005 ident: 10.1016/j.cma.2018.12.011_b19 article-title: Galerkin finite element methods for stochastic parabolic partial differential equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/040605278 – volume: 221 start-page: 603 issue: 2 year: 2016 ident: 10.1016/j.cma.2018.12.011_b44 article-title: A parabolic problem with a fractional time derivative publication-title: Arch. Ration. Mech. Anal. doi: 10.1007/s00205-016-0969-z – volume: 351 start-page: 218 issue: 1 year: 2009 ident: 10.1016/j.cma.2018.12.011_b40 article-title: Maximum principle for the generalized time-fractional diffusion equation publication-title: J. Math. Anal. Appl. doi: 10.1016/j.jmaa.2008.10.018 – volume: 73 start-page: 141 issue: 2 year: 2009 ident: 10.1016/j.cma.2018.12.011_b41 article-title: The fundamental solution of a diffusion-wave equation of fractional order publication-title: Izv. Ross. Akad. Nauk Ser. Mat. – ident: 10.1016/j.cma.2018.12.011_b23 doi: 10.5802/jedp.657 – volume: 17 start-page: 704 issue: 3 year: 1986 ident: 10.1016/j.cma.2018.12.011_b78 article-title: Discretized fractional calculus publication-title: SIAM J. Math. Anal. doi: 10.1137/0517050 – volume: 15 start-page: 417 issue: 4 year: 2015 ident: 10.1016/j.cma.2018.12.011_b63 article-title: On preservation of positivity in some finite element methods for the heat equation publication-title: Comput. Methods Appl. Math. doi: 10.1515/cmam-2015-0018 – volume: 283 start-page: 1545 year: 2015 ident: 10.1016/j.cma.2018.12.011_b113 article-title: A unified Petrov-Galerkin spectral method for fractional PDEs publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2014.10.051 – year: 2018 ident: 10.1016/j.cma.2018.12.011_b22 article-title: Numerical methods for fractional diffusion publication-title: Comput. Vis. Sci. doi: 10.1007/s00791-018-0289-y – volume: 55 start-page: 1057 issue: 2 year: 2017 ident: 10.1016/j.cma.2018.12.011_b76 article-title: Error analysis of a finite difference method on graded meshes for a time-fractional diffusion equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1082329 – volume: 5 issue: suppl. 3S year: 2014 ident: 10.1016/j.cma.2018.12.011_b94 article-title: Numerical approximations for fractional differential equations publication-title: J. Fract. Calc. Appl. – volume: 306 start-page: 123 year: 2017 ident: 10.1016/j.cma.2018.12.011_b53 article-title: An Lq(Lp)-theory for the time fractional evolution equations with variable coefficients publication-title: Adv. Math. doi: 10.1016/j.aim.2016.08.046 – volume: 18 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.cma.2018.12.011_b121 article-title: Space-time Petrov-Galerkin FEM for fractional diffusion problems publication-title: Comput. Methods Appl. Math. doi: 10.1515/cmam-2017-0026 – volume: 13 start-page: 251 issue: 3 year: 2013 ident: 10.1016/j.cma.2018.12.011_b67 article-title: Some error estimates for the finite volume element method for a parabolic problem publication-title: Comput. Methods Appl. Math. doi: 10.1515/cmam-2012-0006 – volume: 37 start-page: 945 issue: 2 year: 2017 ident: 10.1016/j.cma.2018.12.011_b61 article-title: Finite volume element method for two-dimensional fractional subdiffusion problems publication-title: IMA J. Numer. Anal. – volume: 16 start-page: 24128 issue: 44 year: 2014 ident: 10.1016/j.cma.2018.12.011_b9 article-title: Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C4CP03465A – volume: 22 start-page: 1250075 issue: 4 year: 2012 ident: 10.1016/j.cma.2018.12.011_b86 article-title: How to approximate the fractional derivative of order 1<α≤2 publication-title: Internat. J. Bifur. Chaos Appl. Sci. Engrg. doi: 10.1142/S0218127412500757 – volume: 56 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.cma.2018.12.011_b38 article-title: Numerical analysis of nonlinear subdiffusion equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1089320 – volume: 56 start-page: 210 issue: 1 year: 2018 ident: 10.1016/j.cma.2018.12.011_b99 article-title: An analysis of the modified L1 scheme for time-fractional partial pifferential equations with nonsmooth data publication-title: SIAM J. Numer. Anal. doi: 10.1137/16M1094257 – volume: 35 start-page: A2976 issue: 6 year: 2013 ident: 10.1016/j.cma.2018.12.011_b82 article-title: The use of finite difference/element approaches for solving the time-fractional subdiffusion equation publication-title: SIAM J. Sci. Comput. doi: 10.1137/130910865 – volume: vol. 8236 start-page: 24 year: 2013 ident: 10.1016/j.cma.2018.12.011_b58 article-title: Galerkin FEM for fractional order parabolic equations with initial data in H−s, 0≤s≤1 – volume: 18 start-page: 799 issue: 3 year: 2015 ident: 10.1016/j.cma.2018.12.011_b50 article-title: Time-fractional diffusion equation in the fractional Sobolev spaces publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2015-0048 – volume: 51 start-page: 89 issue: 1 year: 2017 ident: 10.1016/j.cma.2018.12.011_b98 article-title: An analysis of Galerkin proper orthogonal decomposition for subdiffusion publication-title: ESAIM Math. Model. Numer. Anal. doi: 10.1051/m2an/2016017 – volume: 339 start-page: 1 issue: 1 year: 2000 ident: 10.1016/j.cma.2018.12.011_b7 article-title: The random walk’s guide to anomalous diffusion: a fractional dynamics approach publication-title: Phys. Rep. doi: 10.1016/S0370-1573(00)00070-3 – volume: 71 start-page: 301 issue: 1 year: 2016 ident: 10.1016/j.cma.2018.12.011_b16 article-title: Finite element approximation of optimal control problems governed by time fractional diffusion equation publication-title: Comput. Math. Appl. doi: 10.1016/j.camwa.2015.11.014 – volume: 293 start-page: 1 year: 2015 ident: 10.1016/j.cma.2018.12.011_b14 article-title: Special issue on “Fractional PDEs: theory, numerics, and applications” [Editorial] publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.04.007 – volume: 20 start-page: 1076 issue: 5 year: 2017 ident: 10.1016/j.cma.2018.12.011_b101 article-title: An approach to construct higher order time discretisation schemes for time fractional partial differential equations with nonsmooth data publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2017-0058 – volume: 230 start-page: 8713 issue: 24 year: 2011 ident: 10.1016/j.cma.2018.12.011_b55 article-title: Alternating direction implicit schemes for the two-dimensional fractional sub-diffusion equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2011.08.020 – volume: 47 start-page: 2108 issue: 3 year: 2009 ident: 10.1016/j.cma.2018.12.011_b112 article-title: A space-time spectral method for the time fractional diffusion equation publication-title: SIAM J. Numer. Anal. doi: 10.1137/080718942 – ident: 10.1016/j.cma.2018.12.011_b62 – volume: 56 start-page: 193 issue: 2 year: 2006 ident: 10.1016/j.cma.2018.12.011_b96 article-title: A fully discrete difference scheme for a diffusion-wave system publication-title: Appl. Numer. Math. doi: 10.1016/j.apnum.2005.03.003 – volume: 87 start-page: 2259 issue: 313 year: 2018 ident: 10.1016/j.cma.2018.12.011_b73 article-title: FEM for time-fractional diffusion equations, novel optimal error analyses publication-title: Math. Comp. doi: 10.1090/mcom/3304 – volume: 18 start-page: 129 issue: 1 year: 2018 ident: 10.1016/j.cma.2018.12.011_b110 article-title: Some time stepping methods for fractional diffusion problems with nonsmooth data publication-title: Comput. Methods Appl. Math. doi: 10.1515/cmam-2017-0037 – volume: 30 start-page: 134 issue: 1 year: 1989 ident: 10.1016/j.cma.2018.12.011_b49 article-title: Fractional diffusion and wave equations publication-title: J. Math. Phys. doi: 10.1063/1.528578 – volume: 64 start-page: 601 issue: 210 year: 1995 ident: 10.1016/j.cma.2018.12.011_b91 article-title: Runge-Kutta approximation of quasi-linear parabolic equations publication-title: Math. Comp. doi: 10.1090/S0025-5718-1995-1284670-0 – volume: 65 start-page: 1 issue: 213 year: 1996 ident: 10.1016/j.cma.2018.12.011_b89 article-title: Nonsmooth data error estimates for approximations of an evolution equation with a positive-type memory term publication-title: Math. Comp. doi: 10.1090/S0025-5718-96-00677-1 – volume: 86 start-page: 2239 issue: 307 year: 2017 ident: 10.1016/j.cma.2018.12.011_b64 article-title: On nonnegativity preservation in finite element methods for subdiffusion equations publication-title: Math. Comp. doi: 10.1090/mcom/3167 – volume: 60 start-page: 3 issue: 1 year: 2016 ident: 10.1016/j.cma.2018.12.011_b24 article-title: Nonlocal elliptic equations in bounded domains: a survey publication-title: Publ. Math. doi: 10.5565/PUBLMAT_60116_01 – volume: 191 start-page: 449 issue: 1–4 year: 1992 ident: 10.1016/j.cma.2018.12.011_b3 article-title: Fractional diffusion equation and relaxation in complex viscoelastic materials publication-title: Physica A doi: 10.1016/0378-4371(92)90566-9 – volume: 52 start-page: 69 issue: 1 year: 2009 ident: 10.1016/j.cma.2018.12.011_b106 article-title: Convergence analysis of a discontinuous Galerkin method for a sub-diffusion equation publication-title: Numer. Algorithms doi: 10.1007/s11075-008-9258-8 – volume: 85 start-page: 1603 issue: 300 year: 2016 ident: 10.1016/j.cma.2018.12.011_b119 article-title: Generalized Jacobi functions and their applications to fractional differential equations publication-title: Math. Comp. doi: 10.1090/mcom3035 – volume: 19 start-page: 1554 issue: 6 year: 2016 ident: 10.1016/j.cma.2018.12.011_b35 article-title: Too much regularity may force too much uniqueness publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2016-0080 – volume: 259 start-page: 33 year: 2014 ident: 10.1016/j.cma.2018.12.011_b103 article-title: A new fractional numerical differentiation formula to approximate the Caputo fractional derivative and its applications publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.11.017 – volume: 36 start-page: 197 issue: 1 year: 2016 ident: 10.1016/j.cma.2018.12.011_b97 article-title: An analysis of the L1 scheme for the subdiffusion equation with nonsmooth data publication-title: IMA J. Numer. Anal. – ident: 10.1016/j.cma.2018.12.011_b92 – volume: 5 start-page: 491 issue: 4 year: 2002 ident: 10.1016/j.cma.2018.12.011_b29 article-title: Computation of the Mittag-Leffler function Eα,β(z) and its derivative publication-title: Fract. Calc. Appl. Anal. – volume: 19 start-page: 93 issue: 1 year: 1982 ident: 10.1016/j.cma.2018.12.011_b72 article-title: On the smoothing property of the Galerkin method for parabolic equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/0719003 – start-page: xii+370 year: 2006 ident: 10.1016/j.cma.2018.12.011_b20 – volume: 50 start-page: 2867 issue: 3 year: 2018 ident: 10.1016/j.cma.2018.12.011_b51 article-title: A generalized definition of Caputo derivatives and its application to fractional ODEs publication-title: SIAM J. Math. Anal. doi: 10.1137/17M1160318 – ident: 10.1016/j.cma.2018.12.011_b47 – volume: 280 start-page: 424 year: 2015 ident: 10.1016/j.cma.2018.12.011_b105 article-title: A new difference scheme for the time fractional diffusion equation publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.09.031 – volume: 52 start-page: 2512 issue: 5 year: 2014 ident: 10.1016/j.cma.2018.12.011_b104 article-title: A discontinuous Petrov-Galerkin method for time-fractional diffusion equations publication-title: SIAM J. Numer. Anal. doi: 10.1137/140952107 |
| SSID | ssj0000812 |
| Score | 2.6456976 |
| Snippet | Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α∈(0,1) in time,... Over the past few decades, there has been substantial interest in evolution equations that involve a fractional-order derivative of order α ∈(0,1) in time,... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 332 |
| SubjectTerms | Computer simulation Convolution Error estimates Evolution Finite element method Formulations Galerkin method Inverse problems Mathematical analysis Mathematical models Nonsmooth solution Numerical analysis Numerical methods Optimal control Space–time formulation Time-fractional evolution Time-stepping |
| Title | Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview |
| URI | https://dx.doi.org/10.1016/j.cma.2018.12.011 https://www.proquest.com/docview/2185041538 |
| Volume | 346 |
| WOSCitedRecordID | wos000456713400016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLdKxwEOAwaIjYF8QByojOI4XhxuFeoEqCocuqk3y0nckalNu35pcOFf5zl23FBEBQcuUZTUdeTfz8_Pz-8DoVdxmjARKE1UoHMSpZEm4kynhAd5pNKU51nlbXHZjwcDMRolX1qtH3UszGYSl6W4vU3m_xVqeAZgm9DZf4Db_yk8gHsAHa4AO1z_CvjB2h7CTFx16KX1JCymmowXNowB3umN-4iOvlk7d7jKJlvC3XQG-HWM86gNXIc9sym-0THunv4ooU5v4MpC-N6KsqOcajvVJq64zgOtt6kPvd-OqxavyqtV4X2D1He1mG0q8NU3YNVsa92eravTlK9F01pBk4aTS2VC82E0l02pHHECmgpvSmUWNeUqs0bQ3-S9NT1cv82qHFJUVKZdJ71_ya09-CzPL_p9OeyNhq_nN8SUHTPH864Gyx10EMY8EW100P3YG33aLuaC2oTz7hPrg_HKRXCn1z-pNjuLfKW5DB-iQ7flwF1LlUeopcsj9MBtP7AT7ssjdL-Rm_IxUp5H2CGLgUd4h0fY8wh7HmHDI-x5hA2P3uEudizCNYueoIvz3vD9B-LqcZCMhXxFEpjJIgUFONARD8ZZys_iMdU0ynLOxiqGaZ3kSQ4bWJGPFdVhkEawQMCeOExDE8P8FLWhc_0MYdB7GacZU8YcQCmDFkmac61YGGQ0UscoqIdSZi5ZvamZMpG1V-K1hNGXZvQlDSWM_jF645vMbaaWfT-OanykUzWtCimBWfuandZYSjfllxKUZG4SXTBxsv_1c3RvOyVOUXu1WOsX6G62WRXLxUvHvJ97EKrU |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+methods+for+time-fractional+evolution+equations+with+nonsmooth+data%3A+A+concise+overview&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Jin%2C+Bangti&rft.au=Lazarov%2C+Raytcho&rft.au=Zhou%2C+Zhi&rft.date=2019-04-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=346&rft.spage=332&rft_id=info:doi/10.1016%2Fj.cma.2018.12.011&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |