A data-driven methodology for the automated configuration of online algorithms

With the goal of devising algorithms for decision support in operational tasks, we introduce a new methodology for the automated configuration of algorithms for combinatorial online optimization problems. The procedure draws upon available instance data and is capable of recognizing data patterns wh...

Full description

Saved in:
Bibliographic Details
Published in:Decision Support Systems Vol. 137; p. 113343
Main Authors: Dunke, Fabian, Nickel, Stefan
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.10.2020
Elsevier Sequoia S.A
Subjects:
ISSN:0167-9236, 1873-5797
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract With the goal of devising algorithms for decision support in operational tasks, we introduce a new methodology for the automated configuration of algorithms for combinatorial online optimization problems. The procedure draws upon available instance data and is capable of recognizing data patterns which prove beneficial to the overall outcome. Since online optimization requires repetitive decision making without complete future information, no online algorithm can be optimal for every instance and it is reasonable to restrict attention to rule-based algorithms. We consider such algorithms in the form of procedures which derive their decisions using a threshold value. Threshold values are computed by evaluating a mathematical term (threshold value expression) composed of the available instance data elements. The goal then consists of determining the structure of the threshold value expression leading to the best algorithm performance. To this end, we employ a simulated annealing scheme returning the most favorable term composition given the available instance data. The resulting methodology can be implemented as part of data-driven decision support systems in order to facilitate knowledge-based decision making. Decision rules are generated in an automated fashion once historical input data is provided. The methodology is successfully instantiated in a series of computational experiments for three classes of combinatorial online optimization problems (scheduling, packing, lot sizing). Results show that automatically configured online algorithms are even capable of substantially outperforming well-known online algorithms in respective problem settings. We attribute this effect to the methodology's capability of integrating instance data into the process of algorithm configuration. •We develop a methodology for the automated data-driven generation of online algorithms.•The procedure configures algorithms based on available instance data.•Data is processed in threshold value expressions representing decision rules.•Numerical experiments demonstrate the methodology's benefits.Obtained algorithms can be implemented in data-driven decision support systems.
AbstractList With the goal of devising algorithms for decision support in operational tasks, we introduce a new methodology for the automated configuration of algorithms for combinatorial online optimization problems. The procedure draws upon available instance data and is capable of recognizing data patterns which prove beneficial to the overall outcome. Since online optimization requires repetitive decision making without complete future information, no online algorithm can be optimal for every instance and it is reasonable to restrict attention to rule-based algorithms. We consider such algorithms in the form of procedures which derive their decisions using a threshold value. Threshold values are computed by evaluating a mathematical term (threshold value expression) composed of the available instance data elements. The goal then consists of determining the structure of the threshold value expression leading to the best algorithm performance. To this end, we employ a simulated annealing scheme returning the most favorable term composition given the available instance data. The resulting methodology can be implemented as part of data-driven decision support systems in order to facilitate knowledge-based decision making. Decision rules are generated in an automated fashion once historical input data is provided. The methodology is successfully instantiated in a series of computational experiments for three classes of combinatorial online optimization problems (scheduling, packing, lot sizing). Results show that automatically configured online algorithms are even capable of substantially outperforming well-known online algorithms in respective problem settings. We attribute this effect to the methodology's capability of integrating instance data into the process of algorithm configuration.
With the goal of devising algorithms for decision support in operational tasks, we introduce a new methodology for the automated configuration of algorithms for combinatorial online optimization problems. The procedure draws upon available instance data and is capable of recognizing data patterns which prove beneficial to the overall outcome. Since online optimization requires repetitive decision making without complete future information, no online algorithm can be optimal for every instance and it is reasonable to restrict attention to rule-based algorithms. We consider such algorithms in the form of procedures which derive their decisions using a threshold value. Threshold values are computed by evaluating a mathematical term (threshold value expression) composed of the available instance data elements. The goal then consists of determining the structure of the threshold value expression leading to the best algorithm performance. To this end, we employ a simulated annealing scheme returning the most favorable term composition given the available instance data. The resulting methodology can be implemented as part of data-driven decision support systems in order to facilitate knowledge-based decision making. Decision rules are generated in an automated fashion once historical input data is provided. The methodology is successfully instantiated in a series of computational experiments for three classes of combinatorial online optimization problems (scheduling, packing, lot sizing). Results show that automatically configured online algorithms are even capable of substantially outperforming well-known online algorithms in respective problem settings. We attribute this effect to the methodology's capability of integrating instance data into the process of algorithm configuration. •We develop a methodology for the automated data-driven generation of online algorithms.•The procedure configures algorithms based on available instance data.•Data is processed in threshold value expressions representing decision rules.•Numerical experiments demonstrate the methodology's benefits.Obtained algorithms can be implemented in data-driven decision support systems.
ArticleNumber 113343
Author Dunke, Fabian
Nickel, Stefan
Author_xml – sequence: 1
  givenname: Fabian
  orcidid: 0000-0002-4805-9576
  surname: Dunke
  fullname: Dunke, Fabian
  email: fabian.dunke@kit.edu
– sequence: 2
  givenname: Stefan
  surname: Nickel
  fullname: Nickel, Stefan
  email: stefan.nickel@kit.edu
BookMark eNp9kEtLAzEUhYNUsFV_gLsB11PzmCQzuCrFFxTd6DqkebQp06QmmUL_val15aKry4XznXvPmYCRD94AcIfgFEHEHjZTndIUQ1x2REhDLsAYtZzUlHd8BMZFw-sOE3YFJiltIGSEt2wM3meVllnWOrq98dXW5HXQoQ-rQ2VDrPLaVHLIYSuz0ZUK3rrVEGV2wVfBVsH3zhdFvwrR5fU23YBLK_tkbv_mNfh6fvqcv9aLj5e3-WxRK4JprruW44YyTCxtWqr4EjLFrNa0_N7ilkNtl7Sz2OJGNqYlTHPCOokUpA0lipNrcH_y3cXwPZiUxSYM0ZeTohhDihhEsKjQSaViSCkaK3bRbWU8CATFsTaxEaU2caxNnGorDP_HKJd_A-coXX-WfDyRpgTfOxNFUs54ZbSLRmWhgztD_wCPxohl
CitedBy_id crossref_primary_10_2478_amns_2024_3386
crossref_primary_10_3390_f13050759
crossref_primary_10_1109_ACCESS_2021_3119145
crossref_primary_10_1111_itor_13305
crossref_primary_10_3390_sym14071301
crossref_primary_10_1016_j_cie_2021_107816
crossref_primary_10_1080_00207543_2024_2359044
Cites_doi 10.1007/0-306-48056-5_10
10.1109/TEVC.2015.2429314
10.1007/978-1-84800-070-4_7
10.1023/A:1018952112615
10.1162/evco_a_00242
10.1126/science.220.4598.671
10.1287/opre.1080.0662
10.1137/S0097539796299540
10.1287/moor.13.2.295
10.1016/j.orp.2015.03.001
10.1145/937503.937505
10.1007/s10479-018-3122-6
10.1016/j.orl.2010.09.010
10.1016/0166-218X(87)90037-0
10.1287/ijoc.13.2.138.10517
10.1016/0304-3975(94)90150-3
10.1007/978-3-540-48713-5_2
10.1007/s00453-001-0041-7
10.1016/j.ejor.2016.12.047
10.1007/s00453-014-9884-6
10.1016/S0927-0507(05)80107-0
10.1016/j.disopt.2007.09.004
10.1007/s00450-011-0149-1
10.1016/j.dss.2012.08.017
10.1007/BF02136830
10.1007/978-3-319-91086-4_1
10.1016/j.dss.2005.05.030
10.1147/sj.71.0030
10.1016/S0167-6377(98)00019-4
10.1016/j.omega.2015.10.009
10.1016/0021-9991(90)90201-B
10.1007/s10100-016-0455-6
10.1007/s10479-015-2019-x
10.1080/10580530801941124
10.1016/j.ejor.2019.07.073
10.1016/j.ejor.2006.01.049
10.1057/jors.2013.71
10.1016/S0065-2458(08)60520-3
10.1007/BF02283607
10.1287/mnsc.5.1.89
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier Sequoia S.A. Oct 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier Sequoia S.A. Oct 2020
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.dss.2020.113343
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Business
EISSN 1873-5797
ExternalDocumentID 10_1016_j_dss_2020_113343
S0167923620300981
GroupedDBID --K
--M
-~X
.~1
1B1
457
8P~
ABXDB
ACNCT
ADEZE
AEKER
ALMA_UNASSIGNED_HOLDINGS
BLXMC
FDB
FNPLU
J1W
KOM
OAUVE
PC.
Q38
SDF
SDG
SDP
SEW
SPC
SSD
SSL
SSV
T5K
TN5
AAYXX
CITATION
.DC
0R~
13V
1RT
1~.
1~5
4.4
4G.
5GY
5VS
7-5
71M
7SC
8FD
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABIVO
ABJNI
ABMAC
ABMVD
ABUCO
ACDAQ
ACGFO
ACGFS
ACGOD
ACHRH
ACIWK
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
AEBSH
AEFWE
AEIPS
AENEX
AEUPX
AFPUW
AFTJW
AGCQF
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BKOJK
BKOMP
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
FIRID
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
JQ2
L7M
LG9
LY1
L~C
L~D
M41
MO0
MS~
N9A
O-L
O9-
OZT
P-8
P-9
P2P
PQQKQ
ROL
SBC
SDS
SES
SPCBC
SSB
SSZ
TAE
U5U
UNMZH
XPP
ZMT
~G-
ID FETCH-LOGICAL-c325t-987245623f5485c7b06c6fdd511382870dfb59f2f24a4e836d7369a1c05453c73
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000564542000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-9236
IngestDate Wed Aug 13 06:10:20 EDT 2025
Sat Nov 29 07:25:48 EST 2025
Tue Nov 18 21:22:28 EST 2025
Fri Feb 23 02:48:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Online optimization
Lean decision making
Automated decision making
Automated algorithm configuration
Simulated annealing
Data-driven optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-987245623f5485c7b06c6fdd511382870dfb59f2f24a4e836d7369a1c05453c73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4805-9576
PQID 2450516010
PQPubID 46291
ParticipantIDs proquest_journals_2450516010
crossref_primary_10_1016_j_dss_2020_113343
crossref_citationtrail_10_1016_j_dss_2020_113343
elsevier_sciencedirect_doi_10_1016_j_dss_2020_113343
PublicationCentury 2000
PublicationDate October 2020
2020-10-00
20201001
PublicationDateYYYYMMDD 2020-10-01
PublicationDate_xml – month: 10
  year: 2020
  text: October 2020
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Decision Support Systems
PublicationYear 2020
Publisher Elsevier B.V
Elsevier Sequoia S.A
Publisher_xml – name: Elsevier B.V
– name: Elsevier Sequoia S.A
References Fu (bb0175) 1994; 53
Kotthoff (bb0125) 2016
Blot, Pernet, Jourdan, Kessaci-Marmion, Hoos (bb0135) 2017
J. H. Drake, A. Kheiri, E. Özcan and E. K. Burke, Recent advances in selection hyper-heuristics, Eur. J. Oper. Res.
Dueck, Scheuer (bb0200) 1990; 90
Rice (bb0110) 1976; 15
Dunke, Nickel (bb0075) 2020
C. W. Holsapple, Decisions and knowledge, in: Handbook on Decision Support Systems 1: Basic Themes, Pages 21–53, Springer, 2008, doi
Silver, Pyke, Peterson (bb0300) 1998
Burke, Hyde, Kendall, Woodward (bb0160) 2007
(bb0030) 1998
Johnson (bb0260) 1973
Wagner, Whitin (bb0280) 1958; 5
Arkin, Silverberg (bb0230) 1987; 18
Heisig (bb0285) 2002
Blum, Roli (bb0205) 2003; 35
Koutsoupias, Papadimitriou (bb0060) 2000; 30
Kerschke, Hoos, Neumann, Trautmann (bb0120) 2018; 27
Van den Heuvel, Wagelmans (bb0305) 2010; 58
Branke, Nguyen, Pickardt, Zhang (bb0150) 2016; 20
Vapnik (bb0220) 2000
Silver, Meal (bb0015) 1973; 14
Epstein, van Stee (bb0055) 2007; 4
Sgall (bb0275) 2014
.
Dunke (bb0335) 2014
Csirik, Woeginger (bb0265) 1998
Borodin, El-Yaniv (bb0040) 2005
Dunke, Nickel (bb0070) 2017; 25
Garey, Johnson (bb0250) 1979
Grötschel, Krumke, Rambau, Winter, Zimmermann (bb0035) 2001
Bes, Sethi (bb0095) 1988; 13
D. Henderson, S. H. Jacobson and A. W. Johnson, The theory and practice of simulated annealing, in: Handbook of Metaheuristics, Pages 287–319, Springer, 2003, doi
Burke, Gendreau, Hyde, Kendall, Ochoa, Özcan, Qu (bb0140) 2013; 64
DeMatteis (bb0295) 1968; 7
Dunke, Nickel (bb0080) 2016; 63
Wegener (bb0320) 2005
Seiden (bb0240) 1998; 22
Ghiani, Laporte, Musmanno (bb0085) 2004
Fu, Andradottir, Carson, Glover, Harrell, Ho, Kelly, Robinson (bb0180) 2000; 1
Pushak, Hoos (bb0130) 2018
Juan, Faulin, Grasman, Rabe, Figueira (bb0185) 2015; 2
Ahlroth, Schumacher, Haanpää (bb0310) 2010; 38
Marsland (bb0215) 2014
Goldberg (bb0195) 1989
Burke, Hyde, Kendall (bb0155) 2006
Blom, Krumke, De Paepe, Stougie (bb0050) 2001; 13
Amaran, Sahinidis, Sharda, Bury (bb0165) 2016; 240
H. Schwarz, L. Kotthoff, H. Hoos, W. Fichtner and V. Bertsch, Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems, Ann. Oper. Res. doi
S. S. Skiena, Combinatorial search and heuristic methods, in: The Algorithm Design Manual, Pages 230–272, Springer, 2008, doi
Boyar, Irani, Larsen (bb0045) 2015; 72
Woeginger (bb0235) 1994; 130
Power (bb0020) 2008; 25
Valério de Carvalho (bb0255) 1999; 86
D. Delahaye, S. Chaimatanan and M. Mongeau, Simulated annealing: From basics to applications, in: Handbook of Metaheuristics, Pages 1–35, Springer, 2019, doi
Powell, Jaillet, Odoni (bb0100) 1995
Csirik, Johnson (bb0270) 2001; 31
Mohri, Rostamizadeh, Talwalkar (bb0210) 2012
Fleischmann, Meyr, Wagner (bb0105) 2015
Power, Sharda (bb0005) 2007; 43
Kovalyov, Ng, Cheng (bb0225) 2007; 178
Sethi, Sorger (bb0090) 1991; 29
Groff (bb0290) 1979; 20
Gosavi (bb0170) 2015
Hopf, Thielen, Wendt (bb0245) 2017; 260
Kirkpatrick, Gelatt, Vecchi (bb0190) 1983; 220
Hiller, Vredeveld (bb0065) 2012; 27
Popovi, Hackney, Coelho, Jakli (bb0010) 2012; 54
Fleischmann (10.1016/j.dss.2020.113343_bb0105) 2015
Arkin (10.1016/j.dss.2020.113343_bb0230) 1987; 18
Ghiani (10.1016/j.dss.2020.113343_bb0085) 2004
Burke (10.1016/j.dss.2020.113343_bb0160) 2007
Gosavi (10.1016/j.dss.2020.113343_bb0170) 2015
10.1016/j.dss.2020.113343_bb0315
10.1016/j.dss.2020.113343_bb0115
Amaran (10.1016/j.dss.2020.113343_bb0165) 2016; 240
Ahlroth (10.1016/j.dss.2020.113343_bb0310) 2010; 38
Hiller (10.1016/j.dss.2020.113343_bb0065) 2012; 27
Silver (10.1016/j.dss.2020.113343_bb0300) 1998
Dunke (10.1016/j.dss.2020.113343_bb0075) 2020
Boyar (10.1016/j.dss.2020.113343_bb0045) 2015; 72
Valério de Carvalho (10.1016/j.dss.2020.113343_bb0255) 1999; 86
Popovi (10.1016/j.dss.2020.113343_bb0010) 2012; 54
Marsland (10.1016/j.dss.2020.113343_bb0215) 2014
Fu (10.1016/j.dss.2020.113343_bb0180) 2000; 1
Kerschke (10.1016/j.dss.2020.113343_bb0120) 2018; 27
10.1016/j.dss.2020.113343_bb0025
Sgall (10.1016/j.dss.2020.113343_bb0275) 2014
Dunke (10.1016/j.dss.2020.113343_bb0335) 2014
10.1016/j.dss.2020.113343_bb0145
Dunke (10.1016/j.dss.2020.113343_bb0070) 2017; 25
Van den Heuvel (10.1016/j.dss.2020.113343_bb0305) 2010; 58
Wegener (10.1016/j.dss.2020.113343_bb0320) 2005
Blom (10.1016/j.dss.2020.113343_bb0050) 2001; 13
Csirik (10.1016/j.dss.2020.113343_bb0270) 2001; 31
Borodin (10.1016/j.dss.2020.113343_bb0040) 2005
Burke (10.1016/j.dss.2020.113343_bb0140) 2013; 64
Groff (10.1016/j.dss.2020.113343_bb0290) 1979; 20
Power (10.1016/j.dss.2020.113343_bb0005) 2007; 43
Dunke (10.1016/j.dss.2020.113343_bb0080) 2016; 63
Powell (10.1016/j.dss.2020.113343_bb0100) 1995
Blot (10.1016/j.dss.2020.113343_bb0135) 2017
Mohri (10.1016/j.dss.2020.113343_bb0210) 2012
Seiden (10.1016/j.dss.2020.113343_bb0240) 1998; 22
Goldberg (10.1016/j.dss.2020.113343_bb0195) 1989
Kovalyov (10.1016/j.dss.2020.113343_bb0225) 2007; 178
Hopf (10.1016/j.dss.2020.113343_bb0245) 2017; 260
Koutsoupias (10.1016/j.dss.2020.113343_bb0060) 2000; 30
Blum (10.1016/j.dss.2020.113343_bb0205) 2003; 35
10.1016/j.dss.2020.113343_bb0330
Burke (10.1016/j.dss.2020.113343_bb0155) 2006
Fu (10.1016/j.dss.2020.113343_bb0175) 1994; 53
(10.1016/j.dss.2020.113343_bb0030) 1998
Vapnik (10.1016/j.dss.2020.113343_bb0220) 2000
Woeginger (10.1016/j.dss.2020.113343_bb0235) 1994; 130
Bes (10.1016/j.dss.2020.113343_bb0095) 1988; 13
Kirkpatrick (10.1016/j.dss.2020.113343_bb0190) 1983; 220
Kotthoff (10.1016/j.dss.2020.113343_bb0125) 2016
DeMatteis (10.1016/j.dss.2020.113343_bb0295) 1968; 7
Juan (10.1016/j.dss.2020.113343_bb0185) 2015; 2
Silver (10.1016/j.dss.2020.113343_bb0015) 1973; 14
Garey (10.1016/j.dss.2020.113343_bb0250) 1979
Heisig (10.1016/j.dss.2020.113343_bb0285) 2002
Epstein (10.1016/j.dss.2020.113343_bb0055) 2007; 4
Csirik (10.1016/j.dss.2020.113343_bb0265) 1998
Dueck (10.1016/j.dss.2020.113343_bb0200) 1990; 90
10.1016/j.dss.2020.113343_bb0325
Grötschel (10.1016/j.dss.2020.113343_bb0035) 2001
Wagner (10.1016/j.dss.2020.113343_bb0280) 1958; 5
Sethi (10.1016/j.dss.2020.113343_bb0090) 1991; 29
Rice (10.1016/j.dss.2020.113343_bb0110) 1976; 15
Branke (10.1016/j.dss.2020.113343_bb0150) 2016; 20
Johnson (10.1016/j.dss.2020.113343_bb0260) 1973
Power (10.1016/j.dss.2020.113343_bb0020) 2008; 25
Pushak (10.1016/j.dss.2020.113343_bb0130) 2018
References_xml – start-page: 679
  year: 2001
  end-page: 704
  ident: bb0035
  article-title: Combinatorial online optimization in real time
  publication-title: Online Optimization of Large Scale Systems
– year: 2015
  ident: bb0170
  article-title: Simulation-Based Optimization: Parametric Optimization Techniques and Reinforcement Learning, Operations Research/Computer Science Interfaces Series
– volume: 58
  start-page: 59
  year: 2010
  end-page: 67
  ident: bb0305
  article-title: Worst-case analysis for a general class of online lot-sizing heuristics
  publication-title: Oper. Res.
– year: 2014
  ident: bb0215
  article-title: Machine Learning: An Algorithmic Perspective
– volume: 130
  start-page: 5
  year: 1994
  end-page: 16
  ident: bb0235
  article-title: On-line scheduling of jobs with fixed start and end times
  publication-title: Theor. Comput. Sci.
– volume: 22
  start-page: 171
  year: 1998
  end-page: 177
  ident: bb0240
  article-title: Randomized online interval scheduling
  publication-title: Oper. Res. Lett.
– year: 2000
  ident: bb0220
  article-title: The Nature of Statistical Learning Theory, Statistics for Engineering and Information Science
– reference: D. Delahaye, S. Chaimatanan and M. Mongeau, Simulated annealing: From basics to applications, in: Handbook of Metaheuristics, Pages 1–35, Springer, 2019, doi:
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: bb0190
  article-title: Optimization by simulated annealing
  publication-title: Science
– volume: 54
  start-page: 729
  year: 2012
  end-page: 739
  ident: bb0010
  article-title: Towards business intelligence systems success: Effects of maturity and culture on analytical decision making
  publication-title: Decis. Support. Syst.
– volume: 1
  start-page: 610
  year: 2000
  end-page: 616
  ident: bb0180
  article-title: Integrating optimization and simulation: research and practice
  publication-title: Winter Simul. Conf. Proceed.
– volume: 18
  start-page: 1
  year: 1987
  end-page: 8
  ident: bb0230
  article-title: Scheduling jobs with fixed start and end times
  publication-title: Discret. Appl. Math.
– volume: 29
  start-page: 387
  year: 1991
  end-page: 415
  ident: bb0090
  article-title: A theory of rolling horizon decision making
  publication-title: Ann. Oper. Res.
– volume: 25
  start-page: 831
  year: 2017
  end-page: 858
  ident: bb0070
  article-title: Evaluating the quality of online optimization algorithms by discrete event simulation
  publication-title: CEJOR
– start-page: 589
  year: 2005
  end-page: 601
  ident: bb0320
  article-title: Simulated annealing beats metropolis in combinatorial optimization
  publication-title: International Colloquium on Automata, Languages, and Programming
– volume: 2
  start-page: 62
  year: 2015
  end-page: 72
  ident: bb0185
  article-title: A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems
  publication-title: Operat. Res. Perspect.
– reference: C. W. Holsapple, Decisions and knowledge, in: Handbook on Decision Support Systems 1: Basic Themes, Pages 21–53, Springer, 2008, doi:
– reference: D. Henderson, S. H. Jacobson and A. W. Johnson, The theory and practice of simulated annealing, in: Handbook of Metaheuristics, Pages 287–319, Springer, 2003, doi:
– year: 2020
  ident: bb0075
  article-title: Online Optimization with Gradual Look-Ahead, Operational Research Article
– year: 2004
  ident: bb0085
  article-title: Introduction to Logistics Systems Planning and Control
– volume: 30
  start-page: 300
  year: 2000
  end-page: 317
  ident: bb0060
  article-title: Beyond competitive analysis
  publication-title: SIAM J. Comput.
– start-page: 271
  year: 2018
  end-page: 283
  ident: bb0130
  article-title: Algorithm configuration landscapes
  publication-title: Parallel Problem Solving from Nature – PPSN XV
– volume: 20
  start-page: 110
  year: 2016
  end-page: 124
  ident: bb0150
  article-title: Automated design of production scheduling heuristics: a review
  publication-title: IEEE Trans. Evol. Comput.
– volume: 25
  start-page: 149
  year: 2008
  end-page: 154
  ident: bb0020
  article-title: Understanding data-driven decision support systems
  publication-title: Inf. Syst. Manag.
– year: 2005
  ident: bb0040
  article-title: Online Computation and Competitive Analysis
– volume: 31
  start-page: 115
  year: 2001
  end-page: 138
  ident: bb0270
  article-title: Bounded space on-line bin packing: best is better than first
  publication-title: Algorithmica
– start-page: 71
  year: 2015
  end-page: 95
  ident: bb0105
  article-title: Advanced planning
  publication-title: Supply Chain Management and Advanced Planning: Concepts, Models, Software, and Case Studies
– year: 2012
  ident: bb0210
  article-title: Foundations of Machine Learning, Adaptive Computation and Machine Learning
– volume: 178
  start-page: 331
  year: 2007
  end-page: 342
  ident: bb0225
  article-title: Fixed interval scheduling: models, applications, computational complexity and algorithms
  publication-title: Eur. J. Oper. Res.
– year: 2002
  ident: bb0285
  article-title: Planning Stability in Material Requirements Planning Systems
– start-page: 61
  year: 2017
  end-page: 76
  ident: bb0135
  article-title: Automatically configuring multi-objective local search using multi-objective optimisation
  publication-title: Evolutionary Multi-Criterion Optimization
– volume: 27
  start-page: 189
  year: 2012
  end-page: 196
  ident: bb0065
  article-title: Probabilistic alternatives for competitive analysis
  publication-title: Comput. Sci. Res. Dev.
– volume: 240
  start-page: 351
  year: 2016
  end-page: 380
  ident: bb0165
  article-title: Simulation optimization: a review of algorithms and applications
  publication-title: Ann. Oper. Res.
– volume: 20
  start-page: 47
  year: 1979
  end-page: 53
  ident: bb0290
  article-title: A lot sizing rule for time-phased component demand
  publication-title: Prod. Invent. Manag.
– year: 2014
  ident: bb0335
  article-title: Online Optimization with Lookahead
– year: 1998
  ident: bb0030
  publication-title: Online Algorithms: The State of the Art
– volume: 72
  start-page: 969
  year: 2015
  end-page: 994
  ident: bb0045
  article-title: A comparison of performance measures for online algorithms
  publication-title: Algorithmica
– volume: 13
  start-page: 295
  year: 1988
  end-page: 310
  ident: bb0095
  article-title: Concepts of forecast and decision horizons: applications to dynamic stochastic optimization problems
  publication-title: Math. Oper. Res.
– volume: 86
  start-page: 629
  year: 1999
  end-page: 659
  ident: bb0255
  article-title: Exact solution of bin-packing problems using column generation and branch-and-bound
  publication-title: Ann. Oper. Res.
– volume: 13
  start-page: 138
  year: 2001
  end-page: 148
  ident: bb0050
  article-title: The online tsp against fair adversaries
  publication-title: INFORMS J. Comput.
– volume: 7
  start-page: 30
  year: 1968
  end-page: 38
  ident: bb0295
  article-title: An economic lot-sizing technique: the part-period algorithm
  publication-title: IBM Syst. J.
– year: 1998
  ident: bb0300
  article-title: Inventory Management and Production Planning and Scheduling
– year: 1989
  ident: bb0195
  article-title: Genetic Algorithms in Search, Optimization and Machine Learning
– volume: 260
  start-page: 468
  year: 2017
  end-page: 481
  ident: bb0245
  article-title: Competitive algorithms for multistage online scheduling
  publication-title: Eur. J. Oper. Res.
– volume: 5
  start-page: 89
  year: 1958
  end-page: 96
  ident: bb0280
  article-title: Dynamic version of the economic lot size model
  publication-title: Manag. Sci.
– reference: J. H. Drake, A. Kheiri, E. Özcan and E. K. Burke, Recent advances in selection hyper-heuristics, Eur. J. Oper. Res.
– volume: 4
  start-page: 322
  year: 2007
  end-page: 333
  ident: bb0055
  article-title: Online bin packing with resource augmentation
  publication-title: Discret. Optim.
– year: 1979
  ident: bb0250
  article-title: Computers and Intractability: A Guide to the Theory of NP-Completeness
– volume: 53
  start-page: 199
  year: 1994
  end-page: 247
  ident: bb0175
  article-title: Optimization via simulation: a review
  publication-title: Ann. Oper. Res.
– start-page: 147
  year: 1998
  end-page: 177
  ident: bb0265
  article-title: On-line packing and covering problems
  publication-title: Online Algorithms: The State of the Art
– reference: S. S. Skiena, Combinatorial search and heuristic methods, in: The Algorithm Design Manual, Pages 230–272, Springer, 2008, doi:
– volume: 63
  start-page: 134
  year: 2016
  end-page: 153
  ident: bb0080
  article-title: A general modeling approach to online optimization with lookahead
  publication-title: Omega
– volume: 27
  start-page: 3
  year: 2018
  end-page: 45
  ident: bb0120
  article-title: Automated algorithm selection: survey and perspectives
  publication-title: Evol. Comput.
– start-page: 860
  year: 2006
  end-page: 869
  ident: bb0155
  article-title: Evolving bin packing heuristics with genetic programming
  publication-title: Parallel Problem Solving from Nature - PPSN IX
– volume: 64
  start-page: 1695
  year: 2013
  end-page: 1724
  ident: bb0140
  article-title: Hyper-heuristics: a survey of the state of the art
  publication-title: J. Oper. Res. Soc.
– start-page: 149
  year: 2016
  end-page: 190
  ident: bb0125
  article-title: Algorithm selection for combinatorial search problems: A survey
  publication-title: Data Mining and Constraint Programming: Foundations of a Cross-Disciplinary Approach
– volume: 90
  start-page: 161
  year: 1990
  end-page: 175
  ident: bb0200
  article-title: Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing
  publication-title: J. Comput. Phys.
– volume: 35
  start-page: 268
  year: 2003
  end-page: 308
  ident: bb0205
  article-title: Metaheuristics in combinatorial optimization: overview and conceptual comparison
  publication-title: ACM Comput. Surv.
– start-page: 362
  year: 2014
  end-page: 372
  ident: bb0275
  article-title: Online bin packing: Old algorithms and new results
  publication-title: Language, Life, Limits: 10th Conference on Computability in Europe, Proceedings
– volume: 14
  start-page: 64
  year: 1973
  end-page: 74
  ident: bb0015
  article-title: A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment
  publication-title: Prod. Invent. Manag.
– start-page: 141
  year: 1995
  end-page: 295
  ident: bb0100
  article-title: Stochastic and dynamic networks and routing
  publication-title: Network Routing, volume 8 of
– reference: .
– start-page: 1559
  year: 2007
  end-page: 1565
  ident: bb0160
  article-title: Automatic heuristic generation with genetic programming: Evolving a jack-of-all-trades or a master of one
  publication-title: Proceedings of the 9th Annual Conference on Genetic and Evolutionary Computation, GECCO ‘07, ACM
– volume: 43
  start-page: 1044
  year: 2007
  end-page: 1061
  ident: bb0005
  article-title: Model-driven decision support systems: concepts and research directions
  publication-title: Decis. Support. Syst.
– year: 1973
  ident: bb0260
  article-title: Near-Optimal Bin Packing Algorithms
– reference: H. Schwarz, L. Kotthoff, H. Hoos, W. Fichtner and V. Bertsch, Improving the computational efficiency of stochastic programs using automated algorithm configuration: an application to decentralized energy systems, Ann. Oper. Res. doi:
– volume: 38
  start-page: 522
  year: 2010
  end-page: 526
  ident: bb0310
  article-title: On the power of lookahead in online lot-sizing
  publication-title: Oper. Res. Lett.
– volume: 15
  start-page: 65
  year: 1976
  end-page: 118
  ident: bb0110
  article-title: The algorithm selection problem
  publication-title: Adv. Comput.
– ident: 10.1016/j.dss.2020.113343_bb0325
  doi: 10.1007/0-306-48056-5_10
– volume: 20
  start-page: 110
  issue: 1
  year: 2016
  ident: 10.1016/j.dss.2020.113343_bb0150
  article-title: Automated design of production scheduling heuristics: a review
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2015.2429314
– ident: 10.1016/j.dss.2020.113343_bb0315
  doi: 10.1007/978-1-84800-070-4_7
– volume: 86
  start-page: 629
  year: 1999
  ident: 10.1016/j.dss.2020.113343_bb0255
  article-title: Exact solution of bin-packing problems using column generation and branch-and-bound
  publication-title: Ann. Oper. Res.
  doi: 10.1023/A:1018952112615
– year: 1989
  ident: 10.1016/j.dss.2020.113343_bb0195
– year: 1998
  ident: 10.1016/j.dss.2020.113343_bb0300
– volume: 27
  start-page: 3
  issue: 1
  year: 2018
  ident: 10.1016/j.dss.2020.113343_bb0120
  article-title: Automated algorithm selection: survey and perspectives
  publication-title: Evol. Comput.
  doi: 10.1162/evco_a_00242
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.dss.2020.113343_bb0190
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– start-page: 362
  year: 2014
  ident: 10.1016/j.dss.2020.113343_bb0275
  article-title: Online bin packing: Old algorithms and new results
– start-page: 589
  year: 2005
  ident: 10.1016/j.dss.2020.113343_bb0320
  article-title: Simulated annealing beats metropolis in combinatorial optimization
– start-page: 147
  year: 1998
  ident: 10.1016/j.dss.2020.113343_bb0265
  article-title: On-line packing and covering problems
– volume: 58
  start-page: 59
  issue: 1
  year: 2010
  ident: 10.1016/j.dss.2020.113343_bb0305
  article-title: Worst-case analysis for a general class of online lot-sizing heuristics
  publication-title: Oper. Res.
  doi: 10.1287/opre.1080.0662
– start-page: 71
  year: 2015
  ident: 10.1016/j.dss.2020.113343_bb0105
  article-title: Advanced planning
– year: 2002
  ident: 10.1016/j.dss.2020.113343_bb0285
– volume: 30
  start-page: 300
  issue: 1
  year: 2000
  ident: 10.1016/j.dss.2020.113343_bb0060
  article-title: Beyond competitive analysis
  publication-title: SIAM J. Comput.
  doi: 10.1137/S0097539796299540
– volume: 13
  start-page: 295
  issue: 2
  year: 1988
  ident: 10.1016/j.dss.2020.113343_bb0095
  article-title: Concepts of forecast and decision horizons: applications to dynamic stochastic optimization problems
  publication-title: Math. Oper. Res.
  doi: 10.1287/moor.13.2.295
– volume: 2
  start-page: 62
  year: 2015
  ident: 10.1016/j.dss.2020.113343_bb0185
  article-title: A review of simheuristics: extending metaheuristics to deal with stochastic combinatorial optimization problems
  publication-title: Operat. Res. Perspect.
  doi: 10.1016/j.orp.2015.03.001
– year: 2014
  ident: 10.1016/j.dss.2020.113343_bb0335
– start-page: 149
  year: 2016
  ident: 10.1016/j.dss.2020.113343_bb0125
  article-title: Algorithm selection for combinatorial search problems: A survey
– volume: 35
  start-page: 268
  issue: 3
  year: 2003
  ident: 10.1016/j.dss.2020.113343_bb0205
  article-title: Metaheuristics in combinatorial optimization: overview and conceptual comparison
  publication-title: ACM Comput. Surv.
  doi: 10.1145/937503.937505
– ident: 10.1016/j.dss.2020.113343_bb0115
  doi: 10.1007/s10479-018-3122-6
– volume: 20
  start-page: 47
  issue: 1
  year: 1979
  ident: 10.1016/j.dss.2020.113343_bb0290
  article-title: A lot sizing rule for time-phased component demand
  publication-title: Prod. Invent. Manag.
– volume: 38
  start-page: 522
  issue: 6
  year: 2010
  ident: 10.1016/j.dss.2020.113343_bb0310
  article-title: On the power of lookahead in online lot-sizing
  publication-title: Oper. Res. Lett.
  doi: 10.1016/j.orl.2010.09.010
– volume: 18
  start-page: 1
  issue: 1
  year: 1987
  ident: 10.1016/j.dss.2020.113343_bb0230
  article-title: Scheduling jobs with fixed start and end times
  publication-title: Discret. Appl. Math.
  doi: 10.1016/0166-218X(87)90037-0
– volume: 13
  start-page: 138
  issue: 2
  year: 2001
  ident: 10.1016/j.dss.2020.113343_bb0050
  article-title: The online tsp against fair adversaries
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.13.2.138.10517
– volume: 130
  start-page: 5
  issue: 1
  year: 1994
  ident: 10.1016/j.dss.2020.113343_bb0235
  article-title: On-line scheduling of jobs with fixed start and end times
  publication-title: Theor. Comput. Sci.
  doi: 10.1016/0304-3975(94)90150-3
– ident: 10.1016/j.dss.2020.113343_bb0025
  doi: 10.1007/978-3-540-48713-5_2
– volume: 31
  start-page: 115
  issue: 2
  year: 2001
  ident: 10.1016/j.dss.2020.113343_bb0270
  article-title: Bounded space on-line bin packing: best is better than first
  publication-title: Algorithmica
  doi: 10.1007/s00453-001-0041-7
– year: 2014
  ident: 10.1016/j.dss.2020.113343_bb0215
– volume: 260
  start-page: 468
  issue: 2
  year: 2017
  ident: 10.1016/j.dss.2020.113343_bb0245
  article-title: Competitive algorithms for multistage online scheduling
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2016.12.047
– volume: 72
  start-page: 969
  issue: 4
  year: 2015
  ident: 10.1016/j.dss.2020.113343_bb0045
  article-title: A comparison of performance measures for online algorithms
  publication-title: Algorithmica
  doi: 10.1007/s00453-014-9884-6
– start-page: 141
  year: 1995
  ident: 10.1016/j.dss.2020.113343_bb0100
  article-title: Stochastic and dynamic networks and routing
  doi: 10.1016/S0927-0507(05)80107-0
– start-page: 1559
  year: 2007
  ident: 10.1016/j.dss.2020.113343_bb0160
  article-title: Automatic heuristic generation with genetic programming: Evolving a jack-of-all-trades or a master of one
– volume: 4
  start-page: 322
  issue: 3–4
  year: 2007
  ident: 10.1016/j.dss.2020.113343_bb0055
  article-title: Online bin packing with resource augmentation
  publication-title: Discret. Optim.
  doi: 10.1016/j.disopt.2007.09.004
– volume: 27
  start-page: 189
  issue: 3
  year: 2012
  ident: 10.1016/j.dss.2020.113343_bb0065
  article-title: Probabilistic alternatives for competitive analysis
  publication-title: Comput. Sci. Res. Dev.
  doi: 10.1007/s00450-011-0149-1
– volume: 54
  start-page: 729
  issue: 1
  year: 2012
  ident: 10.1016/j.dss.2020.113343_bb0010
  article-title: Towards business intelligence systems success: Effects of maturity and culture on analytical decision making
  publication-title: Decis. Support. Syst.
  doi: 10.1016/j.dss.2012.08.017
– volume: 53
  start-page: 199
  issue: 1
  year: 1994
  ident: 10.1016/j.dss.2020.113343_bb0175
  article-title: Optimization via simulation: a review
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02136830
– ident: 10.1016/j.dss.2020.113343_bb0330
  doi: 10.1007/978-3-319-91086-4_1
– volume: 14
  start-page: 64
  issue: 2
  year: 1973
  ident: 10.1016/j.dss.2020.113343_bb0015
  article-title: A heuristic for selecting lot size quantities for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment
  publication-title: Prod. Invent. Manag.
– year: 2005
  ident: 10.1016/j.dss.2020.113343_bb0040
– volume: 43
  start-page: 1044
  issue: 3
  year: 2007
  ident: 10.1016/j.dss.2020.113343_bb0005
  article-title: Model-driven decision support systems: concepts and research directions
  publication-title: Decis. Support. Syst.
  doi: 10.1016/j.dss.2005.05.030
– year: 2012
  ident: 10.1016/j.dss.2020.113343_bb0210
– volume: 7
  start-page: 30
  issue: 1
  year: 1968
  ident: 10.1016/j.dss.2020.113343_bb0295
  article-title: An economic lot-sizing technique: the part-period algorithm
  publication-title: IBM Syst. J.
  doi: 10.1147/sj.71.0030
– volume: 22
  start-page: 171
  issue: 4–5
  year: 1998
  ident: 10.1016/j.dss.2020.113343_bb0240
  article-title: Randomized online interval scheduling
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(98)00019-4
– year: 1979
  ident: 10.1016/j.dss.2020.113343_bb0250
– volume: 63
  start-page: 134
  year: 2016
  ident: 10.1016/j.dss.2020.113343_bb0080
  article-title: A general modeling approach to online optimization with lookahead
  publication-title: Omega
  doi: 10.1016/j.omega.2015.10.009
– volume: 90
  start-page: 161
  issue: 1
  year: 1990
  ident: 10.1016/j.dss.2020.113343_bb0200
  article-title: Threshold accepting: a general purpose optimization algorithm appearing superior to simulated annealing
  publication-title: J. Comput. Phys.
  doi: 10.1016/0021-9991(90)90201-B
– start-page: 271
  year: 2018
  ident: 10.1016/j.dss.2020.113343_bb0130
  article-title: Algorithm configuration landscapes
– start-page: 860
  year: 2006
  ident: 10.1016/j.dss.2020.113343_bb0155
  article-title: Evolving bin packing heuristics with genetic programming
– year: 2000
  ident: 10.1016/j.dss.2020.113343_bb0220
– year: 2015
  ident: 10.1016/j.dss.2020.113343_bb0170
– volume: 25
  start-page: 831
  issue: 4
  year: 2017
  ident: 10.1016/j.dss.2020.113343_bb0070
  article-title: Evaluating the quality of online optimization algorithms by discrete event simulation
  publication-title: CEJOR
  doi: 10.1007/s10100-016-0455-6
– year: 2020
  ident: 10.1016/j.dss.2020.113343_bb0075
– volume: 240
  start-page: 351
  issue: 1
  year: 2016
  ident: 10.1016/j.dss.2020.113343_bb0165
  article-title: Simulation optimization: a review of algorithms and applications
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-015-2019-x
– year: 2004
  ident: 10.1016/j.dss.2020.113343_bb0085
– start-page: 679
  year: 2001
  ident: 10.1016/j.dss.2020.113343_bb0035
  article-title: Combinatorial online optimization in real time
– volume: 25
  start-page: 149
  issue: 2
  year: 2008
  ident: 10.1016/j.dss.2020.113343_bb0020
  article-title: Understanding data-driven decision support systems
  publication-title: Inf. Syst. Manag.
  doi: 10.1080/10580530801941124
– volume: 1
  start-page: 610
  year: 2000
  ident: 10.1016/j.dss.2020.113343_bb0180
  article-title: Integrating optimization and simulation: research and practice
  publication-title: Winter Simul. Conf. Proceed.
– ident: 10.1016/j.dss.2020.113343_bb0145
  doi: 10.1016/j.ejor.2019.07.073
– start-page: 61
  year: 2017
  ident: 10.1016/j.dss.2020.113343_bb0135
  article-title: Automatically configuring multi-objective local search using multi-objective optimisation
– volume: 178
  start-page: 331
  issue: 2
  year: 2007
  ident: 10.1016/j.dss.2020.113343_bb0225
  article-title: Fixed interval scheduling: models, applications, computational complexity and algorithms
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.01.049
– volume: 64
  start-page: 1695
  issue: 12
  year: 2013
  ident: 10.1016/j.dss.2020.113343_bb0140
  article-title: Hyper-heuristics: a survey of the state of the art
  publication-title: J. Oper. Res. Soc.
  doi: 10.1057/jors.2013.71
– volume: 15
  start-page: 65
  issue: C
  year: 1976
  ident: 10.1016/j.dss.2020.113343_bb0110
  article-title: The algorithm selection problem
  publication-title: Adv. Comput.
  doi: 10.1016/S0065-2458(08)60520-3
– year: 1973
  ident: 10.1016/j.dss.2020.113343_bb0260
– volume: 29
  start-page: 387
  issue: 1
  year: 1991
  ident: 10.1016/j.dss.2020.113343_bb0090
  article-title: A theory of rolling horizon decision making
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02283607
– volume: 5
  start-page: 89
  issue: 1
  year: 1958
  ident: 10.1016/j.dss.2020.113343_bb0280
  article-title: Dynamic version of the economic lot size model
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.5.1.89
– year: 1998
  ident: 10.1016/j.dss.2020.113343_bb0030
SSID ssj0063786
ssj0006130
Score 2.3661475
Snippet With the goal of devising algorithms for decision support in operational tasks, we introduce a new methodology for the automated configuration of algorithms...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113343
SubjectTerms Algorithms
Automated algorithm configuration
Automated decision making
Automation
Combinatorial analysis
Configurations
Data-driven optimization
Decision making
Decision support systems
Lean decision making
Lot sizing
Methodology
Online optimization
Optimization
Pattern recognition
Simulated annealing
Title A data-driven methodology for the automated configuration of online algorithms
URI https://dx.doi.org/10.1016/j.dss.2020.113343
https://www.proquest.com/docview/2450516010
Volume 137
WOSCitedRecordID wos000564542000010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5797
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006130
  issn: 0167-9236
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1dT4MwFG38ivHF-Bk_pumDTy4YaGmBx0Vn1IfFRE32RqC0Ol2YYcz4872lBbcZjT74QrYOGsYpt-eWyzkInTDKQ0mqVZssc_xEa0AyIh0iROiHypOKispsIuj1wn4_urU2d-PKTiDI8_D9PXr9V6ihDcDWr87-Ae6mU2iAzwA6bAF22P4K-E5bV306WaHjmHWINkJLdUVhMilHQFSlfqEtV4PHSdHwRiOc0U6Gj6NiUD5ZKXNLXi-sH09bW4ECbZ-ROzdk2JT6XCbp1KiDwfZiagHuSqlsu11ogKyyLllr1h4hpgIf5DPB00i22PDnQcZrVJe-RGazSPB8lo21SDqpzGTsvrMq2HOzU1MzWJejPcfQRay7iE0Xi2iZBCyCkLbcue72b5qJ2KRG5gunQeX62fyJ-gl3Ves3d1LfcZS52bqiIPcbaN3mDrhjMN9ECzLfQqv1qwvbqNfBU9DjKegxQI8BetxAj2egxyOFDfT4E_od9HDZvT-_cqxfhiMoYaUThYF-jE2ogjSUiSB1ueAqy4BTU-1r4GYqZZEiiviJL0PKs4DyKPEE0HZGRUB30VI-yuUewiSRKuUScv-U-14qEgj7QknmKuWmLA33kVtfoVhYMXntaTKMv4VpH502h7waJZWfdvbryx5bKmgoXgzj6afDWjVEsb0l4XcfWL6nFx4O_nIKh2jt8y5ooaWymMgjtCLeysG4OLZj7QNz-4Z1
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+data-driven+methodology+for+the+automated+configuration+of+online+algorithms&rft.jtitle=Decision+Support+Systems&rft.au=Dunke%2C+Fabian&rft.au=Nickel%2C+Stefan&rft.date=2020-10-01&rft.issn=0167-9236&rft.volume=137&rft.spage=113343&rft_id=info:doi/10.1016%2Fj.dss.2020.113343&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_dss_2020_113343
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-9236&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-9236&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-9236&client=summon