Variational system identification of the partial differential equations governing microstructure evolution in materials: Inference over sparse and spatially unrelated data

Pattern formation is a widely observed phenomenon in diverse fields including materials physics, developmental biology and ecology, among many others. The physics underlying the patterns is specific to the mechanisms, and is encoded by partial differential equations (PDEs). With the aim of discoveri...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 377; p. 113706
Main Authors: Wang, Z., Huan, X., Garikipati, K.
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 15.04.2021
Elsevier BV
Subjects:
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Pattern formation is a widely observed phenomenon in diverse fields including materials physics, developmental biology and ecology, among many others. The physics underlying the patterns is specific to the mechanisms, and is encoded by partial differential equations (PDEs). With the aim of discovering hidden physics, we have previously presented a variational approach to identifying such systems of PDEs in the face of noisy data at varying fidelities (Computer Methods in Applied Mechanics and Engineering, 356:44–74, 2019). Here, we extend our variational system identification methods to address the challenges presented by image data on microstructures in materials physics. PDEs are formally posed as initial and boundary value problems over combinations of time intervals and spatial domains whose evolution is either fixed or can be tracked. However, the vast majority of microscopy techniques for evolving microstructure in a given material system deliver micrographs of pattern evolution over domains that bear no relation with each other at different time instants. The temporal resolution can rarely capture the fastest time scales that dominate the early dynamics, and noise abounds. Furthermore, data for evolution of the same phenomenon in a material system may well be obtained from different physical specimens. Against this backdrop of spatially unrelated, sparse and multi-source data, we exploit the variational framework to make judicious choices of weighting functions and identify PDE operators from the dynamics. A consistency condition arises for parsimonious inference of a minimal set of the spatial operators at steady state. It is complemented by a confirmation test that provides a sharp condition for acceptance of the inferred operators. The entire framework is demonstrated on synthetic data that reflect the characteristics of the experimental material microscopy images. •Our study focuses on inferring the equations that govern pattern formation.•We use a variational approach to system identification.•Our approach works with spatially unrelated, sparse and multi-source data.•We introduce a Confirmation Test of Consistency with Operator Suppression.•Synthetic data are used reflecting the characteristics of experimental images.
AbstractList Pattern formation is a widely observed phenomenon in diverse fields including materials physics, developmental biology and ecology, among many others. The physics underlying the patterns is specific to the mechanisms, and is encoded by partial differential equations (PDEs). With the aim of discovering hidden physics, we have previously presented a variational approach to identifying such systems of PDEs in the face of noisy data at varying fidelities (Computer Methods in Applied Mechanics and Engineering, 356:44–74, 2019). Here, we extend our variational system identification methods to address the challenges presented by image data on microstructures in materials physics. PDEs are formally posed as initial and boundary value problems over combinations of time intervals and spatial domains whose evolution is either fixed or can be tracked. However, the vast majority of microscopy techniques for evolving microstructure in a given material system deliver micrographs of pattern evolution over domains that bear no relation with each other at different time instants. The temporal resolution can rarely capture the fastest time scales that dominate the early dynamics, and noise abounds. Furthermore, data for evolution of the same phenomenon in a material system may well be obtained from different physical specimens. Against this backdrop of spatially unrelated, sparse and multi-source data, we exploit the variational framework to make judicious choices of weighting functions and identify PDE operators from the dynamics. A consistency condition arises for parsimonious inference of a minimal set of the spatial operators at steady state. It is complemented by a confirmation test that provides a sharp condition for acceptance of the inferred operators. The entire framework is demonstrated on synthetic data that reflect the characteristics of the experimental material microscopy images. •Our study focuses on inferring the equations that govern pattern formation.•We use a variational approach to system identification.•Our approach works with spatially unrelated, sparse and multi-source data.•We introduce a Confirmation Test of Consistency with Operator Suppression.•Synthetic data are used reflecting the characteristics of experimental images.
Pattern formation is a widely observed phenomenon in diverse fields including materials physics, developmental biology and ecology, among many others. The physics underlying the patterns is specific to the mechanisms, and is encoded by partial differential equations (PDEs). With the aim of discovering hidden physics, we have previously presented a variational approach to identifying such systems of PDEs in the face of noisy data at varying fidelities (Computer Methods in Applied Mechanics and Engineering, 356:44–74, 2019). Here, we extend our variational system identification methods to address the challenges presented by image data on microstructures in materials physics. PDEs are formally posed as initial and boundary value problems over combinations of time intervals and spatial domains whose evolution is either fixed or can be tracked. However, the vast majority of microscopy techniques for evolving microstructure in a given material system deliver micrographs of pattern evolution over domains that bear no relation with each other at different time instants. The temporal resolution can rarely capture the fastest time scales that dominate the early dynamics, and noise abounds. Furthermore, data for evolution of the same phenomenon in a material system may well be obtained from different physical specimens. Against this backdrop of spatially unrelated, sparse and multi-source data, we exploit the variational framework to make judicious choices of weighting functions and identify PDE operators from the dynamics. A consistency condition arises for parsimonious inference of a minimal set of the spatial operators at steady state. It is complemented by a confirmation test that provides a sharp condition for acceptance of the inferred operators. The entire framework is demonstrated on synthetic data that reflect the characteristics of the experimental material microscopy images.
ArticleNumber 113706
Author Wang, Z.
Huan, X.
Garikipati, K.
Author_xml – sequence: 1
  givenname: Z.
  surname: Wang
  fullname: Wang, Z.
  organization: Department of Mechanical Engineering, University of Michigan, United States of America
– sequence: 2
  givenname: X.
  surname: Huan
  fullname: Huan, X.
  organization: Department of Mechanical Engineering, Michigan Institute for Computational Discovery & Engineering, University of Michigan, United States of America
– sequence: 3
  givenname: K.
  surname: Garikipati
  fullname: Garikipati, K.
  email: krishna@umich.edu
  organization: Departments of Mechanical Engineering, and Mathematics, Michigan Institute for Computational Discovery & Engineering, University of Michigan, United States of America
BookMark eNp9kc1u3CAUhVGVSp2kfYDukLr2lB9j7HZVRf2JFCmbqFuE4ZIysmECeKR5pr5ksKerLsLmAjrfubr3XKOrEAMg9JGSPSW0-3zYm1nvGWF0TymXpHuDdrSXQ8Mo76_QjpBWNLJn4h26zvlA6ukp26G_v3XyuvgY9ITzOReYsbcQinfebP84Olz-AD7qVHwVWe8cpFVRH_C8bKKMn-IJUvDhCc_epJhLWkxZEmA4xWnZjHzAsy5Q-035C74Lm40BvJI4V_8MWAe7Xlfz6YyXkGCqiMVWF_0evXUVhQ__6g16_PH98fZXc__w8-72231jOBOlGQRpbc-oYa2AcWRDLW4woxwHTckoieTd6KRpNbWyG0zfA3ei5ZYLI_qO36BPF9tjis8L5KIOcUl1P1kxQTvWEj7QqpIX1TpsTuCU8WXbRUnaT4oStQajDqoGo9Zg1CWYStL_yGPys07nV5mvFwbq3CcPSWXj1-VZn8AUZaN_hX4BesStDQ
CitedBy_id crossref_primary_10_3390_bioengineering10020269
crossref_primary_10_1016_j_cpc_2025_109582
crossref_primary_10_1002_nme_7509
crossref_primary_10_1007_s11831_021_09643_1
crossref_primary_10_1038_s42005_024_01521_z
crossref_primary_10_1016_j_jcp_2021_110525
crossref_primary_10_1080_00224065_2023_2260018
crossref_primary_10_1016_j_jmps_2021_104474
crossref_primary_10_1038_s41598_024_64730_0
crossref_primary_10_1016_j_compchemeng_2023_108320
crossref_primary_10_1016_j_ymssp_2023_110147
crossref_primary_10_3389_fsysb_2024_1333760
crossref_primary_10_1093_imanum_drae086
crossref_primary_10_1016_j_cma_2021_114399
crossref_primary_10_1016_j_cma_2022_115248
crossref_primary_10_1088_1361_6501_acabdd
crossref_primary_10_1002_nme_7475
crossref_primary_10_1016_j_commatsci_2022_111493
Cites_doi 10.1103/PhysRevE.79.031908
10.1016/j.tree.2007.10.013
10.1007/s00285-008-0215-x
10.1016/0001-6160(79)90196-2
10.1126/sciadv.1602614
10.1109/TMBMC.2016.2633265
10.1098/rsfs.2011.0113
10.1109/TIT.2005.862083
10.1021/acs.jpcc.6b09775
10.1007/s00466-013-0958-0
10.1016/j.jcp.2018.10.045
10.1142/S0218202510004313
10.1016/j.jcp.2015.07.002
10.1016/j.jtbi.2014.11.024
10.1006/bulm.1998.0093
10.1016/j.cma.2019.07.007
10.1073/pnas.1517384113
10.1103/PhysRevE.79.031926
10.1103/RevModPhys.48.571
10.1109/TIT.2006.871582
10.1098/rspa.2017.0009
10.1063/1.1744102
10.1073/pnas.1620045114
10.1088/0951-7715/23/1/R01
10.1088/1478-3975/8/5/055011
10.1007/BF00289234
10.1103/PhysRevE.101.010203
10.1002/cnm.2552
10.1016/j.taml.2020.01.028
10.1016/j.jmps.2016.11.008
10.1890/0012-9658(2001)082[0050:VPFISA]2.0.CO;2
10.1016/j.jtbi.2008.03.027
10.1016/j.jmps.2016.11.013
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Apr 15, 2021
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Apr 15, 2021
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2021.113706
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2021_113706
S0045782521000426
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
AGCQF
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-9504d821c245ebb2945ef9cb7b9a10b70736bf7c4a1d769c88e3f543d35c5863
ISICitedReferencesCount 21
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000657581100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Sun Sep 07 03:53:37 EDT 2025
Sat Nov 29 07:26:25 EST 2025
Tue Nov 18 20:51:24 EST 2025
Fri Feb 23 02:47:07 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Pattern formation
Incomplete data
Inverse problems
System identification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-9504d821c245ebb2945ef9cb7b9a10b70736bf7c4a1d769c88e3f543d35c5863
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2516240391
PQPubID 2045269
ParticipantIDs proquest_journals_2516240391
crossref_citationtrail_10_1016_j_cma_2021_113706
crossref_primary_10_1016_j_cma_2021_113706
elsevier_sciencedirect_doi_10_1016_j_cma_2021_113706
PublicationCentury 2000
PublicationDate 2021-04-15
PublicationDateYYYYMMDD 2021-04-15
PublicationDate_xml – month: 04
  year: 2021
  text: 2021-04-15
  day: 15
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2021
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Wise, Lowengrub, Frieboes, Cristini (b15) 2008; 253
Brooks, Gelman, Jones, Meng (b25) 2011
Messenger, Bortz (b36) 2020
Lowengrub, Rätz, Voigt (b18) 2009; 79
Garikipati (b14) 2017; 99
Turing (b5) 1952; 237
Wang, Wu, Garikipati, Huan (b31) 2020; 10
Rietkerk, van de Koppel (b24) 2008; 23
Rudy, Brunton, Proctor, Kutz (b29) 2017; 3
Vilanova, Colominas, Gomez (b20) 2014; 53
Brunton, Proctor, Kutz (b26) 2016; 113
Korvasová, Gaffney, Maini, Ferreira, Klika (b13) 2015; 367
Teichert, Rudraraju, Garikipati (b3) 2017; 99
Rudraraju, Van der Ven, Garikipati (b2) 2016; 2
Oden, Hawkins, Prudhomme (b21) 2010; 20
Schmidt, Vallabhajosyula, Jenkins, Hood, Soni, Wikswo, Lipson (b44) 2011; 8
Cottrell, Hughes, Bazilevs (b37) 2009
Allen, Cahn (b45) 1979; 27
Barrio, Varea, Aragon (b9) 1999; 61
Mangan, Kutz, Brunton, Proctor (b41) 2017; 473
Maini, Woolley, Baker, Gaffney, Seirin Lee (b11) 2012; 2
Messenger, Bortz (b35) 2020
Cahn, Hilliard (b4) 1958; 28
Xu, Vilanova, Gomez (b22) 2016; 11
Candès, Romberg, Tao (b38) 2006; 52
Gierer, Meinhardt (b6) 1972; 12
Donoho (b39) 2006; 52
James, Witten, Hastie, Tibshirani (b40) 2013
Murray (b7) 1981; 295
Cristini, Li, Lowengrub, Wise (b16) 2009; 58
HilleRisLambers, Rietkerk, van den Bosch, Prins, de Kroon (b23) 2001; 82
Reinbold, Gurevich, Grigoriev (b34) 2020; 101
Barrio, Baker, Vaughan, Tribuzy, de Carvalho, Bassanezi, Maini (b10) 2009; 79
Yair, Talmon, Coifman, Kevrekidis (b33) 2017; 114
Lowengrub, Frieboes, Jin, Chuang, Li, Macklin, Cristini (b17) 2010; 23
Mangan, Brunton, Proctor, Kutz (b28) 2016; 2
Schnakenberg (b42) 1976; 48
Jiang, Rudraraju, Roy, Van der Ven, Garikipati, Falk (b1) 2016; 120
Vilanova, Colominas, Gomez (b19) 2013; 29
Wang, Huan, Garikipati (b27) 2019; 356
Raissi, Perdikaris, Karniadakis (b30) 2019; 378
Atkinson, Wang, Subber, Khan, Hawi, Ghanem (b32) 2019
Spill, Guerrero, Alarcon, Maini, Byrne (b12) 2015; 299
Schmidt, Lipson (b43) 2009; 03
Dillon, Maini, Othmer (b8) 1994; 32
Schmidt (10.1016/j.cma.2021.113706_b43) 2009; 03
Schmidt (10.1016/j.cma.2021.113706_b44) 2011; 8
Cahn (10.1016/j.cma.2021.113706_b4) 1958; 28
Lowengrub (10.1016/j.cma.2021.113706_b18) 2009; 79
Schnakenberg (10.1016/j.cma.2021.113706_b42) 1976; 48
Dillon (10.1016/j.cma.2021.113706_b8) 1994; 32
Xu (10.1016/j.cma.2021.113706_b22) 2016; 11
HilleRisLambers (10.1016/j.cma.2021.113706_b23) 2001; 82
Korvasová (10.1016/j.cma.2021.113706_b13) 2015; 367
Wise (10.1016/j.cma.2021.113706_b15) 2008; 253
Garikipati (10.1016/j.cma.2021.113706_b14) 2017; 99
Mangan (10.1016/j.cma.2021.113706_b28) 2016; 2
Cottrell (10.1016/j.cma.2021.113706_b37) 2009
Allen (10.1016/j.cma.2021.113706_b45) 1979; 27
Rudraraju (10.1016/j.cma.2021.113706_b2) 2016; 2
Atkinson (10.1016/j.cma.2021.113706_b32) 2019
Yair (10.1016/j.cma.2021.113706_b33) 2017; 114
Brooks (10.1016/j.cma.2021.113706_b25) 2011
Mangan (10.1016/j.cma.2021.113706_b41) 2017; 473
Teichert (10.1016/j.cma.2021.113706_b3) 2017; 99
Murray (10.1016/j.cma.2021.113706_b7) 1981; 295
Cristini (10.1016/j.cma.2021.113706_b16) 2009; 58
Oden (10.1016/j.cma.2021.113706_b21) 2010; 20
Messenger (10.1016/j.cma.2021.113706_b36) 2020
Vilanova (10.1016/j.cma.2021.113706_b19) 2013; 29
Barrio (10.1016/j.cma.2021.113706_b9) 1999; 61
Brunton (10.1016/j.cma.2021.113706_b26) 2016; 113
Rudy (10.1016/j.cma.2021.113706_b29) 2017; 3
Lowengrub (10.1016/j.cma.2021.113706_b17) 2010; 23
Vilanova (10.1016/j.cma.2021.113706_b20) 2014; 53
Turing (10.1016/j.cma.2021.113706_b5) 1952; 237
Spill (10.1016/j.cma.2021.113706_b12) 2015; 299
Wang (10.1016/j.cma.2021.113706_b27) 2019; 356
Donoho (10.1016/j.cma.2021.113706_b39) 2006; 52
James (10.1016/j.cma.2021.113706_b40) 2013
Reinbold (10.1016/j.cma.2021.113706_b34) 2020; 101
Gierer (10.1016/j.cma.2021.113706_b6) 1972; 12
Raissi (10.1016/j.cma.2021.113706_b30) 2019; 378
Barrio (10.1016/j.cma.2021.113706_b10) 2009; 79
Wang (10.1016/j.cma.2021.113706_b31) 2020; 10
Jiang (10.1016/j.cma.2021.113706_b1) 2016; 120
Maini (10.1016/j.cma.2021.113706_b11) 2012; 2
Candès (10.1016/j.cma.2021.113706_b38) 2006; 52
Rietkerk (10.1016/j.cma.2021.113706_b24) 2008; 23
Messenger (10.1016/j.cma.2021.113706_b35) 2020
References_xml – volume: 53
  year: 2014
  ident: b20
  article-title: Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis
  publication-title: Comput. Mech.
– volume: 61
  year: 1999
  ident: b9
  article-title: A two-dimensional numerical study of spatial pattern formation in interacting turing systems
  publication-title: Bull. Math. Biol.
– volume: 79
  year: 2009
  ident: b18
  article-title: Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission
  publication-title: Phys. Rev. E
– volume: 99
  year: 2017
  ident: b14
  article-title: Perspectives on the mathematics of biological patterning and morphogenesis
  publication-title: J. Mech. Phys. Solids
– volume: 3
  year: 2017
  ident: b29
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
– volume: 48
  year: 1976
  ident: b42
  article-title: Network theory of microscopic and macroscopic behavior of master equation systems
  publication-title: Rev. Modern Phys.
– volume: 20
  year: 2010
  ident: b21
  article-title: General diffuse-interface theories and an approach to predictive tumor growth modeling
  publication-title: Math. Models Methods Appl. Sci.
– year: 2019
  ident: b32
  article-title: Data-driven discovery of free-form governing differential equations
  publication-title: Second Workshop on Machine Learning and the Physical Sciences
– year: 2020
  ident: b35
  article-title: Weak sindy: Galerkin-based data-driven model selection
– volume: 11
  year: 2016
  ident: b22
  article-title: A mathematical model coupling tumor growth and angiogenesis
  publication-title: PLoS ONE
– volume: 82
  start-page: 50
  year: 2001
  end-page: 61
  ident: b23
  article-title: Vegetation pattern formation in semi-arid grazing systems
  publication-title: Ecol.
– volume: 113
  year: 2016
  ident: b26
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
– volume: 299
  year: 2015
  ident: b12
  article-title: Hybrid approaches for multiple-species stochastic reaction–diffusion models
  publication-title: J. Comput. Phys.
– volume: 101
  year: 2020
  ident: b34
  article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics
  publication-title: Phys. Rev. E
– volume: 03
  year: 2009
  ident: b43
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
– volume: 2
  year: 2016
  ident: b2
  article-title: Mechano-chemical spinodal decomposition: A phenomenological theory of phase transformations in multi-component crystalline solids
  publication-title: Nat. Comput. Mater.
– volume: 28
  year: 1958
  ident: b4
  article-title: Free energy of a nonuniform system. i interfacial energy
  publication-title: J. Chem. Phys.
– year: 2009
  ident: b37
  article-title: Isogeometric Analysis: Toward Integration of Cad and Fea
– volume: 23
  start-page: 169
  year: 2008
  end-page: 175
  ident: b24
  article-title: Regular pattern formation in real ecosystems
  publication-title: Trends Ecol. Evol.
– volume: 58
  year: 2009
  ident: b16
  article-title: Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching
  publication-title: J. Math. Biol.
– volume: 52
  start-page: 489
  year: 2006
  end-page: 509
  ident: b38
  article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inform. Theory
– volume: 120
  year: 2016
  ident: b1
  article-title: Multi-physics simulations of lithiation-induced stress in litio electrode particles
  publication-title: J. Phys. Chem. C
– volume: 32
  year: 1994
  ident: b8
  article-title: Pattern formation in generalized turing systems i: Steady-state patterns in systems with mixed boundary conditions
  publication-title: J. Math. Biol.
– volume: 10
  start-page: 188
  year: 2020
  ident: b31
  article-title: A perspective on regression and bayesian approaches for system identification of pattern formation dynamics
  publication-title: Theoret. Appl. Mech. Lett.
– volume: 12
  year: 1972
  ident: b6
  article-title: A theory of biological pattern formation
  publication-title: Kybernetik
– volume: 356
  start-page: 44
  year: 2019
  end-page: 74
  ident: b27
  article-title: Variational system identification of the partial differential equations governing the physics of pattern-formation: Inference under varying fidelity and noise
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 2011
  ident: b25
  article-title: Handbook of Markov Chain Monte Carlo
– volume: 29
  year: 2013
  ident: b19
  article-title: Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis
  publication-title: Numer. Methods Biomed. Eng.
– volume: 114
  start-page: E7865
  year: 2017
  end-page: E7874
  ident: b33
  article-title: Reconstruction of normal forms by learning informed observation geometries from data
  publication-title: Proc. Natl. Acad. Sci.
– volume: 27
  year: 1979
  ident: b45
  article-title: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening
  publication-title: Acta Metall.
– volume: 367
  year: 2015
  ident: b13
  article-title: Investigating the turing conditions for diffusion-driven instability in the presence of a binding immobile substrate
  publication-title: J. Theoret. Biol.
– volume: 8
  year: 2011
  ident: b44
  article-title: Automated refinement and inference of analytical models for metabolic networks
  publication-title: Phys. Biol.
– year: 2020
  ident: b36
  article-title: Weak sindy for partial differential equations
– volume: 473
  year: 2017
  ident: b41
  article-title: Model selection for dynamical systems via sparse regression and information criteria
  publication-title: Proc. R. Soc. A
– volume: 253
  year: 2008
  ident: b15
  article-title: Three-dimensional multispecies nonlinear tumor growth–model and numerical method
  publication-title: J. Theoret. Biol.
– volume: 378
  year: 2019
  ident: b30
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 79
  year: 2009
  ident: b10
  article-title: Modeling the skin pattern of fishes
  publication-title: Phys. Rev. E
– volume: 99
  year: 2017
  ident: b3
  article-title: A variational treatment of material configurations with application to interface motion and microstructural evolution
  publication-title: J. Mech. Phys. Solids
– volume: 237
  year: 1952
  ident: b5
  article-title: The chemical basis of morphogenesis
  publication-title: Phil. Trans. R. Soc. Lond. Ser. B
– volume: 295
  year: 1981
  ident: b7
  article-title: On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings
  publication-title: Phil. Trans. R. Soc. Lond. Ser. B
– volume: 2
  start-page: 487
  year: 2012
  end-page: 496
  ident: b11
  article-title: Turing’s model for biological pattern formation and the robustness problem
  publication-title: Interface Focus
– volume: 2
  year: 2016
  ident: b28
  article-title: Inferring biological networks by sparse identification of nonlinear dynamics
  publication-title: IEEE Trans. Mol. Biol. Multi-Scale Commun.
– volume: 23
  year: 2010
  ident: b17
  article-title: Nonlinear modelling of cancer: bridging the gap between cells and tumours
  publication-title: Nonlinearity
– volume: 52
  start-page: 1289
  year: 2006
  end-page: 1306
  ident: b39
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory
– year: 2013
  ident: b40
  article-title: An Introduction to Statistical Learning
– volume: 79
  year: 2009
  ident: 10.1016/j.cma.2021.113706_b10
  article-title: Modeling the skin pattern of fishes
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.031908
– volume: 23
  start-page: 169
  year: 2008
  ident: 10.1016/j.cma.2021.113706_b24
  article-title: Regular pattern formation in real ecosystems
  publication-title: Trends Ecol. Evol.
  doi: 10.1016/j.tree.2007.10.013
– year: 2011
  ident: 10.1016/j.cma.2021.113706_b25
– volume: 58
  year: 2009
  ident: 10.1016/j.cma.2021.113706_b16
  article-title: Nonlinear simulations of solid tumor growth using a mixture model: invasion and branching
  publication-title: J. Math. Biol.
  doi: 10.1007/s00285-008-0215-x
– volume: 27
  year: 1979
  ident: 10.1016/j.cma.2021.113706_b45
  article-title: A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening
  publication-title: Acta Metall.
  doi: 10.1016/0001-6160(79)90196-2
– volume: 3
  year: 2017
  ident: 10.1016/j.cma.2021.113706_b29
  article-title: Data-driven discovery of partial differential equations
  publication-title: Sci. Adv.
  doi: 10.1126/sciadv.1602614
– volume: 2
  year: 2016
  ident: 10.1016/j.cma.2021.113706_b28
  article-title: Inferring biological networks by sparse identification of nonlinear dynamics
  publication-title: IEEE Trans. Mol. Biol. Multi-Scale Commun.
  doi: 10.1109/TMBMC.2016.2633265
– volume: 2
  start-page: 487
  issue: 4
  year: 2012
  ident: 10.1016/j.cma.2021.113706_b11
  article-title: Turing’s model for biological pattern formation and the robustness problem
  publication-title: Interface Focus
  doi: 10.1098/rsfs.2011.0113
– volume: 52
  start-page: 489
  issn: 0018-9448
  issue: 2
  year: 2006
  ident: 10.1016/j.cma.2021.113706_b38
  article-title: Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2005.862083
– volume: 32
  year: 1994
  ident: 10.1016/j.cma.2021.113706_b8
  article-title: Pattern formation in generalized turing systems i: Steady-state patterns in systems with mixed boundary conditions
  publication-title: J. Math. Biol.
– year: 2020
  ident: 10.1016/j.cma.2021.113706_b35
– volume: 03
  year: 2009
  ident: 10.1016/j.cma.2021.113706_b43
  article-title: Distilling free-form natural laws from experimental data
  publication-title: Science
– volume: 120
  year: 2016
  ident: 10.1016/j.cma.2021.113706_b1
  article-title: Multi-physics simulations of lithiation-induced stress in litio electrode particles
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b09775
– volume: 53
  year: 2014
  ident: 10.1016/j.cma.2021.113706_b20
  article-title: Coupling of discrete random walks and continuous modeling for three-dimensional tumor-induced angiogenesis
  publication-title: Comput. Mech.
  doi: 10.1007/s00466-013-0958-0
– year: 2020
  ident: 10.1016/j.cma.2021.113706_b36
– volume: 378
  year: 2019
  ident: 10.1016/j.cma.2021.113706_b30
  article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 20
  year: 2010
  ident: 10.1016/j.cma.2021.113706_b21
  article-title: General diffuse-interface theories and an approach to predictive tumor growth modeling
  publication-title: Math. Models Methods Appl. Sci.
  doi: 10.1142/S0218202510004313
– volume: 299
  year: 2015
  ident: 10.1016/j.cma.2021.113706_b12
  article-title: Hybrid approaches for multiple-species stochastic reaction–diffusion models
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.07.002
– year: 2019
  ident: 10.1016/j.cma.2021.113706_b32
  article-title: Data-driven discovery of free-form governing differential equations
– volume: 367
  year: 2015
  ident: 10.1016/j.cma.2021.113706_b13
  article-title: Investigating the turing conditions for diffusion-driven instability in the presence of a binding immobile substrate
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2014.11.024
– volume: 61
  year: 1999
  ident: 10.1016/j.cma.2021.113706_b9
  article-title: A two-dimensional numerical study of spatial pattern formation in interacting turing systems
  publication-title: Bull. Math. Biol.
  doi: 10.1006/bulm.1998.0093
– volume: 356
  start-page: 44
  issn: 0045-7825
  year: 2019
  ident: 10.1016/j.cma.2021.113706_b27
  article-title: Variational system identification of the partial differential equations governing the physics of pattern-formation: Inference under varying fidelity and noise
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.07.007
– volume: 113
  year: 2016
  ident: 10.1016/j.cma.2021.113706_b26
  article-title: Discovering governing equations from data by sparse identification of nonlinear dynamical systems
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1517384113
– volume: 79
  year: 2009
  ident: 10.1016/j.cma.2021.113706_b18
  article-title: Phase-field modeling of the dynamics of multicomponent vesicles: Spinodal decomposition, coarsening, budding, and fission
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.79.031926
– volume: 48
  year: 1976
  ident: 10.1016/j.cma.2021.113706_b42
  article-title: Network theory of microscopic and macroscopic behavior of master equation systems
  publication-title: Rev. Modern Phys.
  doi: 10.1103/RevModPhys.48.571
– volume: 52
  start-page: 1289
  issn: 00189448
  issue: 4
  year: 2006
  ident: 10.1016/j.cma.2021.113706_b39
  article-title: Compressed sensing
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.2006.871582
– volume: 473
  issue: 2204
  year: 2017
  ident: 10.1016/j.cma.2021.113706_b41
  article-title: Model selection for dynamical systems via sparse regression and information criteria
  publication-title: Proc. R. Soc. A
  doi: 10.1098/rspa.2017.0009
– volume: 28
  year: 1958
  ident: 10.1016/j.cma.2021.113706_b4
  article-title: Free energy of a nonuniform system. i interfacial energy
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1744102
– volume: 295
  year: 1981
  ident: 10.1016/j.cma.2021.113706_b7
  article-title: On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings
  publication-title: Phil. Trans. R. Soc. Lond. Ser. B
– volume: 114
  start-page: E7865
  issue: 38
  year: 2017
  ident: 10.1016/j.cma.2021.113706_b33
  article-title: Reconstruction of normal forms by learning informed observation geometries from data
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1620045114
– volume: 23
  year: 2010
  ident: 10.1016/j.cma.2021.113706_b17
  article-title: Nonlinear modelling of cancer: bridging the gap between cells and tumours
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/23/1/R01
– year: 2009
  ident: 10.1016/j.cma.2021.113706_b37
– volume: 8
  year: 2011
  ident: 10.1016/j.cma.2021.113706_b44
  article-title: Automated refinement and inference of analytical models for metabolic networks
  publication-title: Phys. Biol.
  doi: 10.1088/1478-3975/8/5/055011
– volume: 12
  year: 1972
  ident: 10.1016/j.cma.2021.113706_b6
  article-title: A theory of biological pattern formation
  publication-title: Kybernetik
  doi: 10.1007/BF00289234
– volume: 101
  year: 2020
  ident: 10.1016/j.cma.2021.113706_b34
  article-title: Using noisy or incomplete data to discover models of spatiotemporal dynamics
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.101.010203
– volume: 237
  year: 1952
  ident: 10.1016/j.cma.2021.113706_b5
  article-title: The chemical basis of morphogenesis
  publication-title: Phil. Trans. R. Soc. Lond. Ser. B
– volume: 29
  year: 2013
  ident: 10.1016/j.cma.2021.113706_b19
  article-title: Capillary networks in tumor angiogenesis: From discrete endothelial cells to phase-field averaged descriptions via isogeometric analysis
  publication-title: Numer. Methods Biomed. Eng.
  doi: 10.1002/cnm.2552
– volume: 10
  start-page: 188
  issn: 2095-0349
  issue: 3
  year: 2020
  ident: 10.1016/j.cma.2021.113706_b31
  article-title: A perspective on regression and bayesian approaches for system identification of pattern formation dynamics
  publication-title: Theoret. Appl. Mech. Lett.
  doi: 10.1016/j.taml.2020.01.028
– volume: 11
  year: 2016
  ident: 10.1016/j.cma.2021.113706_b22
  article-title: A mathematical model coupling tumor growth and angiogenesis
  publication-title: PLoS ONE
– volume: 2
  year: 2016
  ident: 10.1016/j.cma.2021.113706_b2
  article-title: Mechano-chemical spinodal decomposition: A phenomenological theory of phase transformations in multi-component crystalline solids
  publication-title: Nat. Comput. Mater.
– volume: 99
  year: 2017
  ident: 10.1016/j.cma.2021.113706_b3
  article-title: A variational treatment of material configurations with application to interface motion and microstructural evolution
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2016.11.008
– volume: 82
  start-page: 50
  year: 2001
  ident: 10.1016/j.cma.2021.113706_b23
  article-title: Vegetation pattern formation in semi-arid grazing systems
  publication-title: Ecol.
  doi: 10.1890/0012-9658(2001)082[0050:VPFISA]2.0.CO;2
– year: 2013
  ident: 10.1016/j.cma.2021.113706_b40
– volume: 253
  year: 2008
  ident: 10.1016/j.cma.2021.113706_b15
  article-title: Three-dimensional multispecies nonlinear tumor growth–model and numerical method
  publication-title: J. Theoret. Biol.
  doi: 10.1016/j.jtbi.2008.03.027
– volume: 99
  year: 2017
  ident: 10.1016/j.cma.2021.113706_b14
  article-title: Perspectives on the mathematics of biological patterning and morphogenesis
  publication-title: J. Mech. Phys. Solids
  doi: 10.1016/j.jmps.2016.11.013
SSID ssj0000812
Score 2.4916255
Snippet Pattern formation is a widely observed phenomenon in diverse fields including materials physics, developmental biology and ecology, among many others. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 113706
SubjectTerms Acceptance
Boundary value problems
Developmental biology
Domains
Evolution
Identification methods
Incomplete data
Inference
Inverse problems
Mathematical analysis
Microscopy
Microstructure
Operators (mathematics)
Partial differential equations
Pattern formation
Photomicrographs
Physics
System identification
Temporal resolution
Weighting functions
Title Variational system identification of the partial differential equations governing microstructure evolution in materials: Inference over sparse and spatially unrelated data
URI https://dx.doi.org/10.1016/j.cma.2021.113706
https://www.proquest.com/docview/2516240391
Volume 377
WOSCitedRecordID wos000657581100020&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FFCRY8AggCgXdBWJBZOTXxB52FUpFURRYhCpiMxqPJ1VK6qZ1G5Vv4h_4Nu48PE6rEsGCTR5OJnFyjmfO3Cchr_FaFioUZZAzSoO0ZCrIpcoCMYuEpBIXfWGQHmXjcT6dsi-dzq8mF2a1yKoqv7xky_8KNR5DsHXq7D_A7T8UD-BjBB1vEXa8_SvgD3D321j4bJ3m_rx0MUFeH5oEKT3Y-GhsjxTzRJ1euOC4Q9OFV1sSjnXQni00q90NauXOX9tKUPDaH6VNC_tN9mBfj-3jZHVWW_dErQO3xWLxo39RmfQZ1LkuLa4tlOAaTLiu1iZQVziRfKx0hnJTUVq1RRRbh4CdtL61PLWm3amPMML_5bsJIG-tu87cEUfac2MTPq0NzufhHKxP6ykNUOrQ9Wk9ce1h7MQc3bhcWMvF0TtpSlDFke5wk4U3lOYef-Z7X0cjPhlOJ2-Wp4HuWqa9-66Fyy2yFWeU5V2ytbs_nH5qtUAe2Xr17gQbv7qJMLz2rX9SRtc0ghE-k4fkvtuxwK5l2iPSUVWPPHC7F3BrQ90j99ZKW_bIHRNaLOvH5OcaIcESEq4SEk5mgIQER0hYJyR4QoInJFwlJHhCwrwCT8j34OkIeiRYOgISCDwdwdMRNB2fkMnecPLhY-BahAQyiel5wGiYlnkcyTilqihihnczJousYCIKiwwXsEExy2QqojIbMJnnKpnRNCkTKmk-SJ6SbnVSqWcEULkmIhODEkVrmqq4YLi5QHXMmIrKVNBtEjbocOnK5-suLgvexEkecQSUa0C5BXSbvPVDlrZ2zKY3pw3k3IlfK2o5knXTsJ2GHtxNQjXHPctA19lk0fPNL78gd9trbId0ETj1ktyWq_N5ffbKkfk32V_jlA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Variational+system+identification+of+the+partial+differential+equations+governing+microstructure+evolution+in+materials%3A+Inference+over+sparse+and+spatially+unrelated+data&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Wang%2C+Z&rft.au=Huan%2C+X&rft.au=Garikipati%2C+K&rft.date=2021-04-15&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=377&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2021.113706&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon