A bio-inspired semi-active vibration isolator with variable-stiffness dielectric elastomer: Design and modeling

•A bio-inspired semi-active vibration isolator is proposed with dielectric elastomers used as the variable stiffness element.•An analytical model for the dielectric elastomer stiffness is developed and validated by the experimental data.•The parametric dependence of the dielectric elastomer stiffnes...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of sound and vibration Ročník 485; s. 115592
Hlavní autori: Zhao, Yunhua, Meng, Guang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier Ltd 27.10.2020
Elsevier Science Ltd
Predmet:
ISSN:0022-460X, 1095-8568
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •A bio-inspired semi-active vibration isolator is proposed with dielectric elastomers used as the variable stiffness element.•An analytical model for the dielectric elastomer stiffness is developed and validated by the experimental data.•The parametric dependence of the dielectric elastomer stiffness is analyzed to provide guidance for a compact device with large range in stiffness This paper proposes a bio-inspired semi-active vibration isolator with the dielectric elastomer based variable stiffness element for the vibration suppression of the free-floating spacecraft. A theoretical model for the dielectric elastomer stiffness is developed and validated by the experimental data. The parametric dependence of the mechanical stiffness on the applied voltage, pre-stretch of the elastomer and dielectric material properties is analyzed. The approximate analytical solutions are obtained employing the harmonic balance method and confirmed by the numerical simulation of the original full governing equations. The root-mean-square values of the alternating components of the capture mechanism displacement and satellite platform displacement under the harmonic excitation (3 Hz) respectively decrease by 39.7% and 66.1% with the voltage of 4.0 kV. In the presence of the double-tone (3 Hz mixed with 7 Hz) external force, vibration attenuation of 40.5% and 66.4% in comparison with the responses at zero voltage, are achieved respectively for the capture mechanism and satellite platform. Compared to the classical linear-structure based vibration isolator, the presented bio-inspired isolator shows enhanced vibration isolation performance. The results demonstrate the effectiveness of the proposed system for adjustable stiffness based semi-active vibration control.
AbstractList This paper proposes a bio-inspired semi-active vibration isolator with the dielectric elastomer based variable stiffness element for the vibration suppression of the free-floating spacecraft. A theoretical model for the dielectric elastomer stiffness is developed and validated by the experimental data. The parametric dependence of the mechanical stiffness on the applied voltage, pre-stretch of the elastomer and dielectric material properties is analyzed. The approximate analytical solutions are obtained employing the harmonic balance method and confirmed by the numerical simulation of the original full governing equations. The root-mean-square values of the alternating components of the capture mechanism displacement and satellite platform displacement under the harmonic excitation (3 Hz) respectively decrease by 39.7% and 66.1% with the voltage of 4.0 kV. In the presence of the double-tone (3 Hz mixed with 7 Hz) external force, vibration attenuation of 40.5% and 66.4% in comparison with the responses at zero voltage, are achieved respectively for the capture mechanism and satellite platform. Compared to the classical linear-structure based vibration isolator, the presented bio-inspired isolator shows enhanced vibration isolation performance. The results demonstrate the effectiveness of the proposed system for adjustable stiffness based semi-active vibration control.
•A bio-inspired semi-active vibration isolator is proposed with dielectric elastomers used as the variable stiffness element.•An analytical model for the dielectric elastomer stiffness is developed and validated by the experimental data.•The parametric dependence of the dielectric elastomer stiffness is analyzed to provide guidance for a compact device with large range in stiffness This paper proposes a bio-inspired semi-active vibration isolator with the dielectric elastomer based variable stiffness element for the vibration suppression of the free-floating spacecraft. A theoretical model for the dielectric elastomer stiffness is developed and validated by the experimental data. The parametric dependence of the mechanical stiffness on the applied voltage, pre-stretch of the elastomer and dielectric material properties is analyzed. The approximate analytical solutions are obtained employing the harmonic balance method and confirmed by the numerical simulation of the original full governing equations. The root-mean-square values of the alternating components of the capture mechanism displacement and satellite platform displacement under the harmonic excitation (3 Hz) respectively decrease by 39.7% and 66.1% with the voltage of 4.0 kV. In the presence of the double-tone (3 Hz mixed with 7 Hz) external force, vibration attenuation of 40.5% and 66.4% in comparison with the responses at zero voltage, are achieved respectively for the capture mechanism and satellite platform. Compared to the classical linear-structure based vibration isolator, the presented bio-inspired isolator shows enhanced vibration isolation performance. The results demonstrate the effectiveness of the proposed system for adjustable stiffness based semi-active vibration control.
ArticleNumber 115592
Author Zhao, Yunhua
Meng, Guang
Author_xml – sequence: 1
  givenname: Yunhua
  surname: Zhao
  fullname: Zhao, Yunhua
  email: yh_zhao@sjtu.edu.cn
– sequence: 2
  givenname: Guang
  surname: Meng
  fullname: Meng, Guang
BookMark eNp9kE1r3DAQhkVJobtJf0Bvgp691Yct2e0pbJImEOglhd6ELI3TMV5pI2ld8u_jdHPKYU_DwPvM8D5rchZiAEK-cLbhjKtv42bM80Ywsey8aTrxgaw465qqbVR7RlaMCVHViv35RNY5j4yxrpb1isRL2mOsMOQ9JvA0ww4r6wrOQGfsky0YA8UcJ1tiov-w_KWzTWj7CapccBgC5Ew9wgSuJHQUJptL3EH6Tq8g42OgNni6ix4mDI8X5ONgpwyf3-Y5-X1z_bC9re5__bzbXt5XToqmVO2gtRUNl5orpWutZW-llhacH3zPmLSaQceFZp101vfKOcv7VjovW-WVlOfk6_HuPsWnA-RixnhIYXlpRK1qrhcteknpY8qlmHOCwTgs_yuXZHEynJlXu2Y0i13zatcc7S4kf0fuE-5sej7J_DgysBSfEZLJDiE48It6V4yPeIJ-Aae2lio
CitedBy_id crossref_primary_10_1177_10775463221088653
crossref_primary_10_1016_j_ijmecsci_2023_108481
crossref_primary_10_1007_s11071_024_09334_z
crossref_primary_10_3390_axioms12050500
crossref_primary_10_1016_j_ijsolstr_2025_113345
crossref_primary_10_1016_j_tws_2023_110818
crossref_primary_10_3390_app122211387
crossref_primary_10_1016_j_ijmecsci_2025_110283
crossref_primary_10_1002_adfm_202301581
crossref_primary_10_1016_j_ymssp_2021_108651
crossref_primary_10_1016_j_ymssp_2023_110466
crossref_primary_10_1007_s11071_025_11234_9
crossref_primary_10_1038_s44172_025_00486_3
crossref_primary_10_1016_j_ast_2024_109163
crossref_primary_10_1007_s42417_022_00460_9
crossref_primary_10_1016_j_ijmecsci_2023_108675
crossref_primary_10_1016_j_ijmecsci_2025_110307
crossref_primary_10_3390_mi15060808
crossref_primary_10_1007_s11071_023_08943_4
crossref_primary_10_1016_j_ymssp_2022_109492
crossref_primary_10_1088_1361_665X_ad952e
crossref_primary_10_1007_s10409_024_23501_x
crossref_primary_10_1016_j_ymssp_2022_108955
crossref_primary_10_3390_machines10090813
crossref_primary_10_1016_j_mechmachtheory_2025_106153
crossref_primary_10_1088_1361_665X_ada7af
crossref_primary_10_1016_j_ymssp_2025_112878
crossref_primary_10_1016_j_istruc_2024_106790
crossref_primary_10_1016_j_jsv_2024_118339
crossref_primary_10_1007_s10483_024_3087_6
crossref_primary_10_1007_s11071_020_05988_7
crossref_primary_10_1088_1361_665X_acc825
crossref_primary_10_1016_j_oceaneng_2024_117707
crossref_primary_10_1016_j_sna_2023_114414
crossref_primary_10_1016_j_soildyn_2023_108082
Cites_doi 10.1016/0005-1098(96)00065-9
10.1088/1361-665X/aabb6c
10.1006/jsvi.1999.2755
10.1088/1361-665X/aa67cb
10.1016/j.jsv.2015.10.024
10.1063/1.4720181
10.4028/www.scientific.net/AST.61.192
10.1117/12.475072
10.1088/0964-1726/24/8/085021
10.1016/S0894-9166(11)60004-9
10.1088/1748-3190/12/1/011003
10.1016/j.jsv.2017.06.007
10.4028/www.scientific.net/MSF.940.101
10.1109/TMECH.2016.2586484
10.1016/j.ymssp.2019.106367
10.1109/MRA.2009.933629
10.1016/j.ymssp.2017.08.040
10.1126/science.287.5454.836
10.1088/1748-3190/10/5/056015
10.1016/j.jsv.2015.02.005
10.1109/TMECH.2008.915825
10.1088/0964-1726/23/11/115008
10.1073/pnas.1815053116
10.1016/j.ymssp.2014.10.007
10.1016/j.ymssp.2011.06.004
10.1002/adfm.201804328
10.1016/j.jsv.2007.12.019
10.1016/j.paerosci.2014.03.002
10.1016/j.ymssp.2017.12.015
ContentType Journal Article
Copyright 2020
Copyright Elsevier Science Ltd. Oct 27, 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier Science Ltd. Oct 27, 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.jsv.2020.115592
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1095-8568
ExternalDocumentID 10_1016_j_jsv_2020_115592
S0022460X20304235
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
E.L
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JJJVA
KOM
LG5
M24
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSQ
SST
SSZ
T5K
TN5
XPP
ZMT
~G-
29L
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHPGS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
H~9
IHE
NDZJH
R2-
SEW
SMS
SPG
T9H
VOH
WUQ
ZY4
~HD
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c325t-8f77a2513716674773ba373aecdfdb003a70e9127093cadb6cca1b83cd386d633
ISICitedReferencesCount 37
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000576674900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-460X
IngestDate Sun Nov 30 05:32:40 EST 2025
Sat Nov 29 07:29:34 EST 2025
Tue Nov 18 21:50:32 EST 2025
Fri Feb 23 02:47:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Bio-inspired system
Dielectric elastomer
Variable stiffness
Vibration isolation
Semi-active control
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-8f77a2513716674773ba373aecdfdb003a70e9127093cadb6cca1b83cd386d633
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2464175687
PQPubID 2047461
ParticipantIDs proquest_journals_2464175687
crossref_citationtrail_10_1016_j_jsv_2020_115592
crossref_primary_10_1016_j_jsv_2020_115592
elsevier_sciencedirect_doi_10_1016_j_jsv_2020_115592
PublicationCentury 2000
PublicationDate 2020-10-27
PublicationDateYYYYMMDD 2020-10-27
PublicationDate_xml – month: 10
  year: 2020
  text: 2020-10-27
  day: 27
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of sound and vibration
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Flores-Abad, Ma, Pham, Ulrich (bib0001) 2014; 68
Zhou, Wang, Xu, Bishop (bib0004) 2015; 346
Sarban, Jones, Mace, Rustighi (bib0024) 2011; 25
Nguyen, Komatsuzaki, Iwata, Asanuma (bib0015) 2018; 101
Rajamani, Grissom, Rahn, Zhang (bib0029) 2008; 13
Ham, Sugar, Vanderborght, Hollander, Lefeber (bib0008) 2009; 16
Sun, Yang, Li, Deng, Du, Alici (bib0006) 2015; 24
Zhao, Hussain, Duduta, Vogt, Wood, Clarke (bib0031) 2018; 28
Kovacic, Brennan, Waters (bib0003) 2008; 315
Davis, Lesieutre (bib0013) 2000; 232
Kornbluh, Pelrine, Pei, Heydt, Stanford, Oh, Eckerle (bib0016) 2002
Tesi, Abed, Genesio, Wang (bib0035) 1996; 32
Gu, Zhu, Zhu, Zhu (bib0019) 2017; 12
Suo (bib0032) 2010; 23
Huang, Lu, Zhu, Clarke, Suo (bib0030) 2012; 100
Anderson, Fumo, Erwin (bib0005) 2000; 4
Liu, Jing, Daley, Li (bib0002) 2015; 56–57
Min, Dahlmann, Sattel (bib0007) 2017; 405
Zhao, Guo, Wu, Meng, Zhang (bib0026) 2019; 134
Dastoor, Cutkosky (bib0022) 2012
Zhao, Gao, He, Zhang (bib0034) 2018; 940
Pelrine (bib0020) 2008
Wu, Lan (bib0009) 2016; 363
Hollander, Sugar, Herring (bib0010) 2005
Duduta, Hajiesmaili, Zhao, Wood, Clarke (bib0017) 2019; 116
Kawamura, Yamamoto, Ishida, Ogata, Nakayama, Tabata, Sugiyama (bib0012) 2002; 1
Greiner-Petter, Tan, Sattel (bib0014) 2014; 23
Wu, Jing, Bian, Li, Allen (bib0027) 2015; 10
Galloway, Clark, Koditschek (bib0011) 2009
Orita, Cutkosky (bib0023) 2016; 21
Dai, Jing, Wang, Yue, Yuan (bib0028) 2018; 105
Pelrine, Kornbluh (bib0021) 2008; 61
Zhao, Li, Zhang, Yan, Peng, Meng (bib0033) 2018; 27
Pelrine, Kornbluh, Pei, Joseph (bib0018) 2000; 287
Kaal, Bartel, Herold (bib0025) 2017; 26
Hollander (10.1016/j.jsv.2020.115592_bib0010) 2005
Galloway (10.1016/j.jsv.2020.115592_bib0011) 2009
Dastoor (10.1016/j.jsv.2020.115592_bib0022) 2012
Kornbluh (10.1016/j.jsv.2020.115592_bib0016) 2002
Ham (10.1016/j.jsv.2020.115592_bib0008) 2009; 16
Kaal (10.1016/j.jsv.2020.115592_bib0025) 2017; 26
Zhao (10.1016/j.jsv.2020.115592_bib0026) 2019; 134
Dai (10.1016/j.jsv.2020.115592_bib0028) 2018; 105
Pelrine (10.1016/j.jsv.2020.115592_bib0020) 2008
Huang (10.1016/j.jsv.2020.115592_bib0030) 2012; 100
Min (10.1016/j.jsv.2020.115592_bib0007) 2017; 405
Anderson (10.1016/j.jsv.2020.115592_bib0005) 2000; 4
Flores-Abad (10.1016/j.jsv.2020.115592_bib0001) 2014; 68
Gu (10.1016/j.jsv.2020.115592_bib0019) 2017; 12
Rajamani (10.1016/j.jsv.2020.115592_bib0029) 2008; 13
Wu (10.1016/j.jsv.2020.115592_bib0009) 2016; 363
Pelrine (10.1016/j.jsv.2020.115592_bib0018) 2000; 287
Zhao (10.1016/j.jsv.2020.115592_bib0031) 2018; 28
Liu (10.1016/j.jsv.2020.115592_bib0002) 2015; 56–57
Sun (10.1016/j.jsv.2020.115592_bib0006) 2015; 24
Kawamura (10.1016/j.jsv.2020.115592_bib0012) 2002; 1
Orita (10.1016/j.jsv.2020.115592_bib0023) 2016; 21
Greiner-Petter (10.1016/j.jsv.2020.115592_bib0014) 2014; 23
Pelrine (10.1016/j.jsv.2020.115592_bib0021) 2008; 61
Tesi (10.1016/j.jsv.2020.115592_bib0035) 1996; 32
Davis (10.1016/j.jsv.2020.115592_bib0013) 2000; 232
Zhao (10.1016/j.jsv.2020.115592_bib0033) 2018; 27
Suo (10.1016/j.jsv.2020.115592_bib0032) 2010; 23
Kovacic (10.1016/j.jsv.2020.115592_bib0003) 2008; 315
Wu (10.1016/j.jsv.2020.115592_bib0027) 2015; 10
Sarban (10.1016/j.jsv.2020.115592_bib0024) 2011; 25
Nguyen (10.1016/j.jsv.2020.115592_bib0015) 2018; 101
Zhou (10.1016/j.jsv.2020.115592_bib0004) 2015; 346
Zhao (10.1016/j.jsv.2020.115592_sbref0034) 2018; 940
Duduta (10.1016/j.jsv.2020.115592_bib0017) 2019; 116
References_xml – volume: 16
  start-page: 81
  year: 2009
  end-page: 94
  ident: bib0008
  article-title: Compliant actuator designs
  publication-title: IEEE Robot. Autom. Mag.
– volume: 134
  year: 2019
  ident: bib0026
  article-title: Design and experimental validation of an annular dielectric elastomer actuator for active vibration isolation
  publication-title: Mech. Syst. Signal Process.
– volume: 100
  year: 2012
  ident: bib0030
  article-title: Large, uni-directional actuation in dielectric elastomers achieved by fiber stiffening
  publication-title: Appl. Phys. Lett.
– volume: 26
  year: 2017
  ident: bib0025
  article-title: Active vibration isolation with a dielectric elastomer stack actuator
  publication-title: Smart Mater. Struct.
– volume: 25
  start-page: 2879
  year: 2011
  end-page: 2891
  ident: bib0024
  article-title: A tubular dielectric elastomer actuator: fabrication, characterization and active vibration isolation
  publication-title: Mech. Syst. Signal Process.
– year: 2002
  ident: bib0016
  article-title: Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures
  publication-title: Proc.SPIE
– volume: 23
  start-page: 549
  year: 2010
  end-page: 578
  ident: bib0032
  article-title: Theory of dielectric elastomers
  publication-title: Acta Mech. Solida Sin.
– volume: 101
  start-page: 449
  year: 2018
  end-page: 466
  ident: bib0015
  article-title: Modeling and semi-active fuzzy control of magnetorheological elastomer-based isolator for seismic response reduction
  publication-title: Mech. Syst. Signal Process.
– start-page: 3745
  year: 2012
  end-page: 3750
  ident: bib0022
  article-title: Design of dielectric electroactive polymers for a compact and scalable variable stiffness device
  publication-title: IEEE Int. Conf. Robot. Autom.
– volume: 32
  start-page: 1255
  year: 1996
  end-page: 1271
  ident: bib0035
  article-title: Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics
  publication-title: Automatica
– volume: 405
  start-page: 234
  year: 2017
  end-page: 250
  ident: bib0007
  article-title: A concept for semi-active vibration control with a serial-stiffness-switch system
  publication-title: J. Sound Vib.
– volume: 1
  start-page: 248
  year: 2002
  end-page: 253
  ident: bib0012
  article-title: Development of passive elements with variable mechanical impedance for wearable robots,
  publication-title: Proc. IEEE Int. Conf. Robot. Autom.
– volume: 116
  year: 2019
  ident: bib0017
  article-title: Realizing the potential of dielectric elastomer artificial muscles
  publication-title: Proc. Natl. Acad. Sci.
– volume: 13
  start-page: 117
  year: 2008
  end-page: 124
  ident: bib0029
  article-title: Wound roll dielectric elastomer actuators: fabrication, analysis, and experiments
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 56–57
  start-page: 55
  year: 2015
  end-page: 80
  ident: bib0002
  article-title: Recent advances in micro-vibration isolation
  publication-title: Mech. Syst. Signal Process.
– start-page: 113
  year: 2005
  end-page: 118
  ident: bib0010
  article-title: Adjustable robotic tendon using a Jack Spring
  publication-title: Proc. of Intl. Conf. on Rehabilitation Robotics (IEEE-ICORR)
– start-page: 141
  year: 2008
  end-page: 145
  ident: bib0020
– volume: 940
  start-page: 101
  year: 2018
  end-page: 108
  ident: bib0034
  article-title: Design, fabrication and analysis of a novel membrane dielectric elastomer in-plane actuator
  publication-title: Mater. Sci. Forum
– volume: 315
  start-page: 700
  year: 2008
  end-page: 711
  ident: bib0003
  article-title: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic
  publication-title: J. Sound Vib.
– volume: 10
  start-page: 56015
  year: 2015
  ident: bib0027
  article-title: Vibration isolation by exploring bio-inspired structural nonlinearity
  publication-title: Bioinspir. Biomim.
– volume: 12
  year: 2017
  ident: bib0019
  article-title: A survey on dielectric elastomer actuators for soft robots
  publication-title: Bioinspir. Biomim.
– volume: 346
  start-page: 53
  year: 2015
  end-page: 69
  ident: bib0004
  article-title: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms
  publication-title: J. Sound Vib.
– volume: 105
  start-page: 214
  year: 2018
  end-page: 240
  ident: bib0028
  article-title: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system
  publication-title: Mech. Syst. Signal Process.
– volume: 4
  start-page: 299
  year: 2000
  end-page: 313
  ident: bib0005
  article-title: Satellite ultraquiet isolation technology experiment (SUITE)
  publication-title: IEEE Aerosp. Conf. Proc.
– volume: 28
  year: 2018
  ident: bib0031
  article-title: Compact dielectric elastomer linear actuators
  publication-title: Adv. Funct. Mater.
– volume: 68
  start-page: 1
  year: 2014
  end-page: 26
  ident: bib0001
  article-title: A review of space robotics technologies for on-orbit servicing
  publication-title: Prog. Aerosp. Sci.
– volume: 21
  start-page: 2836
  year: 2016
  end-page: 2846
  ident: bib0023
  article-title: Scalable electroactive polymer for variable stiffness suspensions
  publication-title: IEEE/ASME Trans. Mechatron.
– volume: 363
  start-page: 18
  year: 2016
  end-page: 32
  ident: bib0009
  article-title: A wide-range variable stiffness mechanism for semi-active vibration systems
  publication-title: J. Sound Vib.
– start-page: 215
  year: 2009
  end-page: 222
  ident: bib0011
  article-title: Design of a tunable stiffness composite leg for dynamic locomotion
  publication-title: Proc. of Intl. Design Engineering Technical Conf. (ASME-IDETC/CIE)
– volume: 287
  year: 2000
  ident: bib0018
  article-title: High-speed electrically actuated elastomers with strain greater than 100%
  publication-title: Science
– volume: 23
  year: 2014
  ident: bib0014
  article-title: A semi-active magnetorheological fluid mechanism with variable stiffness and damping
  publication-title: Smart Mater. Struct.
– volume: 232
  start-page: 601
  year: 2000
  end-page: 617
  ident: bib0013
  article-title: An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness
  publication-title: J. Sound Vib.
– volume: 61
  start-page: 192
  year: 2008
  end-page: 201
  ident: bib0021
  article-title: Variable-stiffness–mode dielectric elastomer devices
  publication-title: Adv. Sci. Technol.
– volume: 24
  year: 2015
  ident: bib0006
  article-title: Development of a novel variable stiffness and damping magnetorheological fluid damper
  publication-title: Smart Mater. Struct.
– volume: 27
  year: 2018
  ident: bib0033
  article-title: Performance improvement of planar dielectric elastomer actuators by magnetic modulating mechanism
  publication-title: Smart Mater. Struct.
– volume: 32
  start-page: 1255
  year: 1996
  ident: 10.1016/j.jsv.2020.115592_bib0035
  article-title: Harmonic balance analysis of period-doubling bifurcations with implications for control of nonlinear dynamics
  publication-title: Automatica
  doi: 10.1016/0005-1098(96)00065-9
– volume: 27
  year: 2018
  ident: 10.1016/j.jsv.2020.115592_bib0033
  article-title: Performance improvement of planar dielectric elastomer actuators by magnetic modulating mechanism
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aabb6c
– volume: 232
  start-page: 601
  year: 2000
  ident: 10.1016/j.jsv.2020.115592_bib0013
  article-title: An actively tuned solid-state vibration absorber using capacitive shunting of piezoelectric stiffness
  publication-title: J. Sound Vib.
  doi: 10.1006/jsvi.1999.2755
– volume: 26
  year: 2017
  ident: 10.1016/j.jsv.2020.115592_bib0025
  article-title: Active vibration isolation with a dielectric elastomer stack actuator
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/aa67cb
– volume: 363
  start-page: 18
  year: 2016
  ident: 10.1016/j.jsv.2020.115592_bib0009
  article-title: A wide-range variable stiffness mechanism for semi-active vibration systems
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.10.024
– volume: 100
  year: 2012
  ident: 10.1016/j.jsv.2020.115592_bib0030
  article-title: Large, uni-directional actuation in dielectric elastomers achieved by fiber stiffening
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4720181
– start-page: 141
  year: 2008
  ident: 10.1016/j.jsv.2020.115592_bib0020
– volume: 1
  start-page: 248
  year: 2002
  ident: 10.1016/j.jsv.2020.115592_bib0012
  article-title: Development of passive elements with variable mechanical impedance for wearable robots,
– volume: 61
  start-page: 192
  year: 2008
  ident: 10.1016/j.jsv.2020.115592_bib0021
  article-title: Variable-stiffness–mode dielectric elastomer devices
  publication-title: Adv. Sci. Technol.
  doi: 10.4028/www.scientific.net/AST.61.192
– year: 2002
  ident: 10.1016/j.jsv.2020.115592_bib0016
  article-title: Electroelastomers: applications of dielectric elastomer transducers for actuation, generation, and smart structures
  doi: 10.1117/12.475072
– volume: 24
  year: 2015
  ident: 10.1016/j.jsv.2020.115592_bib0006
  article-title: Development of a novel variable stiffness and damping magnetorheological fluid damper
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/24/8/085021
– start-page: 113
  year: 2005
  ident: 10.1016/j.jsv.2020.115592_bib0010
  article-title: Adjustable robotic tendon using a Jack Spring
– volume: 23
  start-page: 549
  year: 2010
  ident: 10.1016/j.jsv.2020.115592_bib0032
  article-title: Theory of dielectric elastomers
  publication-title: Acta Mech. Solida Sin.
  doi: 10.1016/S0894-9166(11)60004-9
– volume: 12
  year: 2017
  ident: 10.1016/j.jsv.2020.115592_bib0019
  article-title: A survey on dielectric elastomer actuators for soft robots
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/12/1/011003
– volume: 405
  start-page: 234
  year: 2017
  ident: 10.1016/j.jsv.2020.115592_bib0007
  article-title: A concept for semi-active vibration control with a serial-stiffness-switch system
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.06.007
– volume: 940
  start-page: 101
  year: 2018
  ident: 10.1016/j.jsv.2020.115592_sbref0034
  article-title: Design, fabrication and analysis of a novel membrane dielectric elastomer in-plane actuator
  publication-title: Mater. Sci. Forum
  doi: 10.4028/www.scientific.net/MSF.940.101
– volume: 21
  start-page: 2836
  year: 2016
  ident: 10.1016/j.jsv.2020.115592_bib0023
  article-title: Scalable electroactive polymer for variable stiffness suspensions
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2016.2586484
– volume: 134
  year: 2019
  ident: 10.1016/j.jsv.2020.115592_bib0026
  article-title: Design and experimental validation of an annular dielectric elastomer actuator for active vibration isolation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.106367
– volume: 16
  start-page: 81
  year: 2009
  ident: 10.1016/j.jsv.2020.115592_bib0008
  article-title: Compliant actuator designs
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2009.933629
– volume: 101
  start-page: 449
  year: 2018
  ident: 10.1016/j.jsv.2020.115592_bib0015
  article-title: Modeling and semi-active fuzzy control of magnetorheological elastomer-based isolator for seismic response reduction
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.08.040
– volume: 287
  year: 2000
  ident: 10.1016/j.jsv.2020.115592_bib0018
  article-title: High-speed electrically actuated elastomers with strain greater than 100%
  publication-title: Science
  doi: 10.1126/science.287.5454.836
– volume: 10
  start-page: 56015
  year: 2015
  ident: 10.1016/j.jsv.2020.115592_bib0027
  article-title: Vibration isolation by exploring bio-inspired structural nonlinearity
  publication-title: Bioinspir. Biomim.
  doi: 10.1088/1748-3190/10/5/056015
– volume: 346
  start-page: 53
  year: 2015
  ident: 10.1016/j.jsv.2020.115592_bib0004
  article-title: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.02.005
– volume: 13
  start-page: 117
  year: 2008
  ident: 10.1016/j.jsv.2020.115592_bib0029
  article-title: Wound roll dielectric elastomer actuators: fabrication, analysis, and experiments
  publication-title: IEEE/ASME Trans. Mechatron.
  doi: 10.1109/TMECH.2008.915825
– volume: 23
  year: 2014
  ident: 10.1016/j.jsv.2020.115592_bib0014
  article-title: A semi-active magnetorheological fluid mechanism with variable stiffness and damping
  publication-title: Smart Mater. Struct.
  doi: 10.1088/0964-1726/23/11/115008
– start-page: 3745
  year: 2012
  ident: 10.1016/j.jsv.2020.115592_bib0022
  article-title: Design of dielectric electroactive polymers for a compact and scalable variable stiffness device
– volume: 116
  year: 2019
  ident: 10.1016/j.jsv.2020.115592_bib0017
  article-title: Realizing the potential of dielectric elastomer artificial muscles
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1815053116
– volume: 56–57
  start-page: 55
  year: 2015
  ident: 10.1016/j.jsv.2020.115592_bib0002
  article-title: Recent advances in micro-vibration isolation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2014.10.007
– volume: 25
  start-page: 2879
  year: 2011
  ident: 10.1016/j.jsv.2020.115592_bib0024
  article-title: A tubular dielectric elastomer actuator: fabrication, characterization and active vibration isolation
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2011.06.004
– volume: 28
  year: 2018
  ident: 10.1016/j.jsv.2020.115592_bib0031
  article-title: Compact dielectric elastomer linear actuators
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201804328
– volume: 4
  start-page: 299
  year: 2000
  ident: 10.1016/j.jsv.2020.115592_bib0005
  article-title: Satellite ultraquiet isolation technology experiment (SUITE)
– volume: 315
  start-page: 700
  year: 2008
  ident: 10.1016/j.jsv.2020.115592_bib0003
  article-title: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.12.019
– volume: 68
  start-page: 1
  year: 2014
  ident: 10.1016/j.jsv.2020.115592_bib0001
  article-title: A review of space robotics technologies for on-orbit servicing
  publication-title: Prog. Aerosp. Sci.
  doi: 10.1016/j.paerosci.2014.03.002
– volume: 105
  start-page: 214
  year: 2018
  ident: 10.1016/j.jsv.2020.115592_bib0028
  article-title: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.12.015
– start-page: 215
  year: 2009
  ident: 10.1016/j.jsv.2020.115592_bib0011
  article-title: Design of a tunable stiffness composite leg for dynamic locomotion
SSID ssj0009434
Score 2.5161834
Snippet •A bio-inspired semi-active vibration isolator is proposed with dielectric elastomers used as the variable stiffness element.•An analytical model for the...
This paper proposes a bio-inspired semi-active vibration isolator with the dielectric elastomer based variable stiffness element for the vibration suppression...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115592
SubjectTerms Active control
Attenuation
Bio-inspired system
Biomimetics
Dielectric elastomer
Dielectric properties
Elastomers
Electric potential
Exact solutions
Harmonic balance method
Harmonic excitation
Material properties
Mathematical models
Mean square errors
Semi-active control
Semiactive vibration isolators
Spacecraft recovery
Stiffness
Variable stiffness
Vibration
Vibration analysis
Vibration control
Vibration isolation
Vibration isolators
Voltage
Title A bio-inspired semi-active vibration isolator with variable-stiffness dielectric elastomer: Design and modeling
URI https://dx.doi.org/10.1016/j.jsv.2020.115592
https://www.proquest.com/docview/2464175687
Volume 485
WOSCitedRecordID wos000576674900003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1095-8568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009434
  issn: 0022-460X
  databaseCode: AIEXJ
  dateStart: 19950107
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKBhIXxKfYGMgHxIHKUxundsItQp0AVYVDh8LJsmNXpBppt7TVxF_Psx0n1QYVHLhEVZoPy--X3_vwe34IvY4UBb9CGgIOkCIxVTGRPNIkGRrQN1pz40IXXyd8Ok3yPP3S6_0MtTDbC15VyfV1uvqvooZzIGxbOvsP4m4fCifgNwgdjiB2OP6V4LO-KpekrOwSOliTtflREulYrb-1vrHPboQxWHfbx2G34DDbEioC3_t87shPl75BTln0DRjY66XtskIz4Ceb8eGWHFwTnaD5btu3tW3Y5C5sX7sTpXYR2m-b6vum1Qs2wdaF6TeyeWgTjQDXE2jcF_f7EFkokwnM1OUmhdKBmA1yr3w844KNR5KR760TKDlORjukOvwt1fuow-J0UW9P7UiA_ME7ijq9Ftbyp5_F2flkImbjfPZmdUlsxzG7Mt-0X7mDDiM-SoERD7OP4_xTt2VzTOOw17wddFgTd9mBN976J6vmhn53RsvsIXrQSANnHiWPUM9Uj9E9l_Vb1E_QMsO7WME7WMGt0HDACrZYwbexgjus4BYr77BHCgYA4ICUp-j8bDx7_4E0HThIQaPRmiRzziVYwBS8agaOJ6dKUk6lKfRcW4Ug-cCkNnkhpYXUigEfDFVCC00Tphmlz9BBtazMc4SZoUyCbyuHWsVzI5VOCgXuMlWRjphiR2gQZlAUzfb0tkvKhQh5iAsBky7spAs_6UfobXvLyu_Nsu_iOIhFNMalNxoFAGrfbSdBhKL5yGsRxSwGs5sl_Hj_3y_Q_e4jOUEH66uNeYnuFtt1WV-9agD3Cxy8pks
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+bio-inspired+semi-active+vibration+isolator+with+variable-stiffness+dielectric+elastomer%3A+Design+and+modeling&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Zhao%2C+Yunhua&rft.au=Meng%2C+Guang&rft.date=2020-10-27&rft.pub=Elsevier+Science+Ltd&rft.issn=0022-460X&rft.eissn=1095-8568&rft.volume=485&rft.spage=1&rft_id=info:doi/10.1016%2Fj.jsv.2020.115592&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon