A new multivariable grey prediction model with structure compatibility

A new multivariable grey prediction model was proposed by adding a dependent variable lag term, a linear correction term and a random disturbance term to the traditional GM(1,N) model. It was theoretically proved that the new model can be completely compatible with the mainstream single variable and...

Full description

Saved in:
Bibliographic Details
Published in:Applied Mathematical Modelling Vol. 75; p. 385
Main Authors: Zeng, Bo, Duan, Huiming, Zhou, Yufeng
Format: Journal Article
Language:English
Published: New York Elsevier BV 01.11.2019
Subjects:
ISSN:1088-8691, 0307-904X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A new multivariable grey prediction model was proposed by adding a dependent variable lag term, a linear correction term and a random disturbance term to the traditional GM(1,N) model. It was theoretically proved that the new model can be completely compatible with the mainstream single variable and multivariable grey prediction models by adjusting and changing the model's parameters. To test the performance of the new model, three case studies were performed. The simulation and prediction results of the new model were compared with those of other grey prediction models. Results showed that the new model had evidently superior performance to other grey models, which confirms that the structure design of the new model is more reasonable than those of the other existing grey prediction models.
AbstractList A new multivariable grey prediction model was proposed by adding a dependent variable lag term, a linear correction term and a random disturbance term to the traditional GM(1,N) model. It was theoretically proved that the new model can be completely compatible with the mainstream single variable and multivariable grey prediction models by adjusting and changing the model's parameters. To test the performance of the new model, three case studies were performed. The simulation and prediction results of the new model were compared with those of other grey prediction models. Results showed that the new model had evidently superior performance to other grey models, which confirms that the structure design of the new model is more reasonable than those of the other existing grey prediction models.
Author Duan, Huiming
Zeng, Bo
Zhou, Yufeng
Author_xml – sequence: 1
  givenname: Bo
  surname: Zeng
  fullname: Zeng, Bo
– sequence: 2
  givenname: Huiming
  surname: Duan
  fullname: Duan, Huiming
– sequence: 3
  givenname: Yufeng
  surname: Zhou
  fullname: Zhou, Yufeng
BookMark eNotjctKAzEUQINUsK1-gLuA6xlvkplMsizFWqHgRsFdyeOOZpiXmYylf29BV2dx4JwVWfRDj4TcM8gZMPnY5Gbscg5M51DmUBRXZAkCqkxD8bEgSwZKZUpqdkNW09QAMK4kLMluQ3s80W5uU_gxMRjbIv2MeKZjRB9cCkNPu8FjS08hfdEpxdmlOSJ1QzeaFGxoQzrfkuvatBPe_XNN3ndPb9t9dnh9ftluDpkTvEyZMjUzlfSFt1A6K1AbLVxpvbbM6IrhRVqnjfUcQVWmNmVRAgJnljOJSqzJw193jMP3jFM6NsMc-8vyyLmWsuAcQPwCxTJRxA
CitedBy_id crossref_primary_10_1016_j_jclepro_2020_120793
crossref_primary_10_1108_GS_03_2021_0039
crossref_primary_10_1016_j_apm_2021_04_016
crossref_primary_10_1016_j_jclepro_2021_127500
crossref_primary_10_1016_j_cnsns_2025_108773
crossref_primary_10_1016_j_knosys_2021_107363
crossref_primary_10_1109_ACCESS_2022_3163309
crossref_primary_10_3934_math_2025853
crossref_primary_10_1108_GS_03_2020_0031
crossref_primary_10_1016_j_apm_2024_04_025
crossref_primary_10_1080_03610918_2020_1788588
crossref_primary_10_1155_2021_5558623
crossref_primary_10_1016_j_apm_2019_11_032
crossref_primary_10_1016_j_engappai_2023_107068
crossref_primary_10_1108_GS_02_2020_0025
crossref_primary_10_1016_j_isatra_2021_03_024
crossref_primary_10_1080_10095020_2023_2292578
crossref_primary_10_1016_j_energy_2021_122786
crossref_primary_10_1109_ACCESS_2020_2995974
crossref_primary_10_1016_j_scitotenv_2023_163383
crossref_primary_10_1108_GS_10_2021_0159
crossref_primary_10_3390_su16219383
crossref_primary_10_1016_j_heliyon_2022_e12138
crossref_primary_10_1109_ACCESS_2019_2926337
crossref_primary_10_1371_journal_pone_0221333
crossref_primary_10_1016_j_engappai_2023_106777
crossref_primary_10_1155_2020_1406978
crossref_primary_10_1016_j_cie_2023_109278
crossref_primary_10_1016_j_engappai_2022_105661
crossref_primary_10_1016_j_isatra_2019_07_009
crossref_primary_10_1016_j_egyr_2022_10_344
crossref_primary_10_1016_j_jenvman_2024_121005
crossref_primary_10_1007_s40747_022_00803_9
crossref_primary_10_1155_2020_8673965
crossref_primary_10_1007_s40314_021_01448_z
crossref_primary_10_1155_2022_5241737
crossref_primary_10_3390_machines13080664
crossref_primary_10_1016_j_jclepro_2019_118573
crossref_primary_10_1016_j_apm_2022_04_031
crossref_primary_10_36543_kauiibfd_2021_033
crossref_primary_10_1016_j_compbiomed_2022_105256
crossref_primary_10_1016_j_energy_2023_127664
crossref_primary_10_1371_journal_pone_0225362
crossref_primary_10_1109_ACCESS_2020_3001194
crossref_primary_10_17093_alphanumeric_1144398
crossref_primary_10_1016_j_apm_2020_06_020
crossref_primary_10_1016_j_eswa_2024_124130
crossref_primary_10_1007_s11071_023_08296_y
crossref_primary_10_1016_j_asoc_2020_106555
crossref_primary_10_1155_2021_9200560
crossref_primary_10_3390_fractalfract9070422
crossref_primary_10_1016_j_apm_2024_115830
crossref_primary_10_1016_j_energy_2021_119952
crossref_primary_10_1016_j_engappai_2022_105773
crossref_primary_10_1016_j_cie_2021_107888
crossref_primary_10_1016_j_egyr_2022_03_166
crossref_primary_10_1108_MAEM_03_2024_0005
crossref_primary_10_1108_GS_07_2022_0072
crossref_primary_10_1016_j_cnsns_2025_108636
crossref_primary_10_1016_j_energy_2021_122441
crossref_primary_10_1016_j_chaos_2021_111657
crossref_primary_10_1016_j_scs_2020_102611
crossref_primary_10_1108_GS_06_2022_0066
crossref_primary_10_1007_s11356_020_09572_9
crossref_primary_10_1016_j_chaos_2021_110969
crossref_primary_10_1016_j_chaos_2021_110968
crossref_primary_10_1007_s10668_025_06033_6
crossref_primary_10_1007_s11356_022_19805_8
crossref_primary_10_1016_j_chaos_2023_113767
crossref_primary_10_1016_j_egyr_2022_09_038
crossref_primary_10_1109_ACCESS_2020_3036644
crossref_primary_10_1155_2019_9623878
crossref_primary_10_3390_ma16041390
crossref_primary_10_1016_j_matcom_2023_02_008
crossref_primary_10_1016_j_matcom_2025_06_022
crossref_primary_10_1002_ese3_1164
crossref_primary_10_1016_j_eswa_2022_116691
crossref_primary_10_1016_j_scitotenv_2019_135321
crossref_primary_10_1016_j_puhe_2021_09_025
crossref_primary_10_1007_s11356_020_09435_3
crossref_primary_10_1155_2021_7725125
crossref_primary_10_1016_j_engappai_2019_103350
crossref_primary_10_1016_j_knosys_2024_111581
crossref_primary_10_1016_j_eswa_2022_118115
crossref_primary_10_1155_2019_1510257
crossref_primary_10_3233_JIFS_210871
crossref_primary_10_1016_j_scitotenv_2019_135447
crossref_primary_10_1109_TPWRD_2022_3168552
crossref_primary_10_1155_2020_6614570
crossref_primary_10_1016_j_engappai_2021_104261
crossref_primary_10_1016_j_cie_2023_109189
crossref_primary_10_1108_BIJ_12_2023_0856
crossref_primary_10_1108_GS_06_2022_0059
crossref_primary_10_1007_s40314_024_03013_w
crossref_primary_10_1155_2019_1731262
crossref_primary_10_1155_2020_4170804
crossref_primary_10_3390_su11215921
crossref_primary_10_1016_j_cnsns_2020_105617
crossref_primary_10_1016_j_engappai_2020_104148
crossref_primary_10_1007_s00500_020_04799_7
crossref_primary_10_1155_2020_6514236
crossref_primary_10_1016_j_cnsns_2021_105696
crossref_primary_10_1016_j_energy_2022_124093
crossref_primary_10_3390_su11143832
crossref_primary_10_1007_s11069_020_04476_w
crossref_primary_10_1007_s00521_019_04364_w
crossref_primary_10_1108_GS_08_2024_0104
crossref_primary_10_1016_j_engfailanal_2021_105939
crossref_primary_10_1051_shsconf_202418103011
crossref_primary_10_3390_wevj15120584
crossref_primary_10_1155_2020_2416840
crossref_primary_10_1016_j_envpol_2019_113148
crossref_primary_10_1016_j_energy_2022_124801
crossref_primary_10_1016_j_asoc_2020_106145
crossref_primary_10_1016_j_apm_2020_01_014
crossref_primary_10_1016_j_trb_2022_01_007
crossref_primary_10_1007_s00521_020_05227_5
crossref_primary_10_1155_2021_7874564
crossref_primary_10_1016_j_seta_2020_100968
crossref_primary_10_1155_2019_9459038
crossref_primary_10_1016_j_jclepro_2021_127410
crossref_primary_10_1007_s12597_023_00736_y
crossref_primary_10_1108_GS_09_2023_0090
crossref_primary_10_1007_s11356_021_13737_5
crossref_primary_10_3390_en15155584
crossref_primary_10_1016_j_apm_2022_07_013
crossref_primary_10_3233_JIFS_237479
crossref_primary_10_1016_j_neucom_2020_04_045
crossref_primary_10_1155_2020_5071267
crossref_primary_10_1108_GS_02_2023_0013
crossref_primary_10_1108_GS_09_2023_0095
crossref_primary_10_1016_j_jclepro_2020_120929
crossref_primary_10_3390_su15054500
crossref_primary_10_1080_01605682_2022_2085065
crossref_primary_10_1016_j_engappai_2023_106820
crossref_primary_10_1016_j_engappai_2021_104441
crossref_primary_10_1016_j_eswa_2024_125977
crossref_primary_10_1016_j_cie_2021_107725
crossref_primary_10_3233_JIFS_210822
crossref_primary_10_1016_j_cie_2021_107729
crossref_primary_10_1016_j_apm_2022_10_032
crossref_primary_10_1177_03611981211057527
crossref_primary_10_1155_2020_4564653
crossref_primary_10_1155_2021_5576830
crossref_primary_10_1155_2020_3427040
crossref_primary_10_1155_2020_6570683
crossref_primary_10_1016_j_energy_2021_121314
crossref_primary_10_1155_2021_5524479
crossref_primary_10_1016_j_eswa_2024_125054
crossref_primary_10_3390_systems11080428
crossref_primary_10_1016_j_engappai_2021_104297
crossref_primary_10_1016_j_techfore_2021_120707
crossref_primary_10_1016_j_neucom_2021_05_048
crossref_primary_10_1016_j_chaos_2023_113200
crossref_primary_10_1080_23307706_2019_1666310
crossref_primary_10_1016_j_energy_2020_117948
crossref_primary_10_1007_s11771_022_5036_3
crossref_primary_10_1016_j_istruc_2024_107986
crossref_primary_10_2166_ws_2024_093
crossref_primary_10_1007_s00500_020_05313_9
crossref_primary_10_1016_j_asoc_2021_107220
crossref_primary_10_1016_j_chaos_2021_110778
crossref_primary_10_1016_j_physa_2019_123341
crossref_primary_10_1108_K_05_2020_0284
ContentType Journal Article
Copyright Copyright Elsevier BV Nov 2019
Copyright_xml – notice: Copyright Elsevier BV Nov 2019
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2019.05.044
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Mathematics
EISSN 0307-904X
GroupedDBID -W8
-~X
.7I
.GO
.QK
0BK
0R~
23M
2DF
4.4
53G
5GY
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
EAP
EBR
EBS
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
HZ~
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
O9-
P2P
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-8af1a76d4db05cb3e9a93c5bd9b1a971ea76bc9abd2e087afa5450e021b216e83
ISICitedReferencesCount 189
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000486102700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1088-8691
IngestDate Sun Jul 27 15:03:03 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-8af1a76d4db05cb3e9a93c5bd9b1a971ea76bc9abd2e087afa5450e021b216e83
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2296642200
PQPubID 2045280
ParticipantIDs proquest_journals_2296642200
PublicationCentury 2000
PublicationDate 20191101
PublicationDateYYYYMMDD 2019-11-01
PublicationDate_xml – month: 11
  year: 2019
  text: 20191101
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2019
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
SSID ssj0012860
ssj0005904
Score 2.620819
Snippet A new multivariable grey prediction model was proposed by adding a dependent variable lag term, a linear correction term and a random disturbance term to the...
SourceID proquest
SourceType Aggregation Database
StartPage 385
SubjectTerms Computer simulation
Dependent variables
Grey prediction
Title A new multivariable grey prediction model with structure compatibility
URI https://www.proquest.com/docview/2296642200
Volume 75
WOSCitedRecordID wos000486102700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Journals Complete
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 1088-8691
  databaseCode: TFW
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLcYcIDDtAHTxjrkw7SbUezUiX0sUysOrNshjN4qf1VjQmm3tgj-e54_ktAhTduBS1Q5VdT09_z8vn8IfeRCUGWdIZ5bh_QtNWHPEc2MdXD8ZVyZQDZRjsdiMpHfUv38MtAJlHUt7u7k4lmhhjUA27fO_gfc7UNhAT4D6HAF2OH6T8APPEt4LBS8BUc4tEaBU33vxwHY68gMHvhvUnl6GCDr0wihHH0Vq2U3kr2NpfqlHfHqG3r9I26ag8-Hnl1UG2fzzjiO0dXztacO6774Y74Omn89c2k1hR2oTP13bSys7Yf5_kh7gsoiooj0W6cutWVlJZFZLMNsVG7JH-nMPHL2PNHlMazw81Qt_MQAKsOE1TgscnNu9vjrdHR5cTGthpPq0-IX8ZRiPvWe-FVeoB1WculVXjW66up_pHdEU76JidhP3rxAk_8OlYB__IAnp3YwRapX6GXyIfAgYv8abbn6AO136CwP0F57sN0fotEAg0jgDZHAXiRwJxI4iAT2IoFbkcAbInGELkfD6vM5SfwZxOSMr4hQM6rKwvatzrjRuZNK5oZrKzVVsqQObmojlbbMZaJUMwXmdObA6tOMFk7kb9B2Pa_dW4RzwTgz0nJJXd_xTGWzXFoD9p7WuijEO9Rr_pNp2gvLKWPgS_cZbM7jv99-j_Y6EeuhbXhL9wHtmtvV9fL3SYDtAVpKWxA
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+multivariable+grey+prediction+model+with+structure+compatibility&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Zeng%2C+Bo&rft.au=Duan%2C+Huiming&rft.au=Zhou%2C+Yufeng&rft.date=2019-11-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=75&rft.spage=385&rft_id=info:doi/10.1016%2Fj.apm.2019.05.044&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-8691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-8691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-8691&client=summon