A new multivariable grey prediction model with structure compatibility
A new multivariable grey prediction model was proposed by adding a dependent variable lag term, a linear correction term and a random disturbance term to the traditional GM(1,N) model. It was theoretically proved that the new model can be completely compatible with the mainstream single variable and...
Saved in:
| Published in: | Applied Mathematical Modelling Vol. 75; p. 385 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier BV
01.11.2019
|
| Subjects: | |
| ISSN: | 1088-8691, 0307-904X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A new multivariable grey prediction model was proposed by adding a dependent variable lag term, a linear correction term and a random disturbance term to the traditional GM(1,N) model. It was theoretically proved that the new model can be completely compatible with the mainstream single variable and multivariable grey prediction models by adjusting and changing the model's parameters. To test the performance of the new model, three case studies were performed. The simulation and prediction results of the new model were compared with those of other grey prediction models. Results showed that the new model had evidently superior performance to other grey models, which confirms that the structure design of the new model is more reasonable than those of the other existing grey prediction models. |
|---|---|
| AbstractList | A new multivariable grey prediction model was proposed by adding a dependent variable lag term, a linear correction term and a random disturbance term to the traditional GM(1,N) model. It was theoretically proved that the new model can be completely compatible with the mainstream single variable and multivariable grey prediction models by adjusting and changing the model's parameters. To test the performance of the new model, three case studies were performed. The simulation and prediction results of the new model were compared with those of other grey prediction models. Results showed that the new model had evidently superior performance to other grey models, which confirms that the structure design of the new model is more reasonable than those of the other existing grey prediction models. |
| Author | Duan, Huiming Zeng, Bo Zhou, Yufeng |
| Author_xml | – sequence: 1 givenname: Bo surname: Zeng fullname: Zeng, Bo – sequence: 2 givenname: Huiming surname: Duan fullname: Duan, Huiming – sequence: 3 givenname: Yufeng surname: Zhou fullname: Zhou, Yufeng |
| BookMark | eNotjctKAzEUQINUsK1-gLuA6xlvkplMsizFWqHgRsFdyeOOZpiXmYylf29BV2dx4JwVWfRDj4TcM8gZMPnY5Gbscg5M51DmUBRXZAkCqkxD8bEgSwZKZUpqdkNW09QAMK4kLMluQ3s80W5uU_gxMRjbIv2MeKZjRB9cCkNPu8FjS08hfdEpxdmlOSJ1QzeaFGxoQzrfkuvatBPe_XNN3ndPb9t9dnh9ftluDpkTvEyZMjUzlfSFt1A6K1AbLVxpvbbM6IrhRVqnjfUcQVWmNmVRAgJnljOJSqzJw193jMP3jFM6NsMc-8vyyLmWsuAcQPwCxTJRxA |
| CitedBy_id | crossref_primary_10_1016_j_jclepro_2020_120793 crossref_primary_10_1108_GS_03_2021_0039 crossref_primary_10_1016_j_apm_2021_04_016 crossref_primary_10_1016_j_jclepro_2021_127500 crossref_primary_10_1016_j_cnsns_2025_108773 crossref_primary_10_1016_j_knosys_2021_107363 crossref_primary_10_1109_ACCESS_2022_3163309 crossref_primary_10_3934_math_2025853 crossref_primary_10_1108_GS_03_2020_0031 crossref_primary_10_1016_j_apm_2024_04_025 crossref_primary_10_1080_03610918_2020_1788588 crossref_primary_10_1155_2021_5558623 crossref_primary_10_1016_j_apm_2019_11_032 crossref_primary_10_1016_j_engappai_2023_107068 crossref_primary_10_1108_GS_02_2020_0025 crossref_primary_10_1016_j_isatra_2021_03_024 crossref_primary_10_1080_10095020_2023_2292578 crossref_primary_10_1016_j_energy_2021_122786 crossref_primary_10_1109_ACCESS_2020_2995974 crossref_primary_10_1016_j_scitotenv_2023_163383 crossref_primary_10_1108_GS_10_2021_0159 crossref_primary_10_3390_su16219383 crossref_primary_10_1016_j_heliyon_2022_e12138 crossref_primary_10_1109_ACCESS_2019_2926337 crossref_primary_10_1371_journal_pone_0221333 crossref_primary_10_1016_j_engappai_2023_106777 crossref_primary_10_1155_2020_1406978 crossref_primary_10_1016_j_cie_2023_109278 crossref_primary_10_1016_j_engappai_2022_105661 crossref_primary_10_1016_j_isatra_2019_07_009 crossref_primary_10_1016_j_egyr_2022_10_344 crossref_primary_10_1016_j_jenvman_2024_121005 crossref_primary_10_1007_s40747_022_00803_9 crossref_primary_10_1155_2020_8673965 crossref_primary_10_1007_s40314_021_01448_z crossref_primary_10_1155_2022_5241737 crossref_primary_10_3390_machines13080664 crossref_primary_10_1016_j_jclepro_2019_118573 crossref_primary_10_1016_j_apm_2022_04_031 crossref_primary_10_36543_kauiibfd_2021_033 crossref_primary_10_1016_j_compbiomed_2022_105256 crossref_primary_10_1016_j_energy_2023_127664 crossref_primary_10_1371_journal_pone_0225362 crossref_primary_10_1109_ACCESS_2020_3001194 crossref_primary_10_17093_alphanumeric_1144398 crossref_primary_10_1016_j_apm_2020_06_020 crossref_primary_10_1016_j_eswa_2024_124130 crossref_primary_10_1007_s11071_023_08296_y crossref_primary_10_1016_j_asoc_2020_106555 crossref_primary_10_1155_2021_9200560 crossref_primary_10_3390_fractalfract9070422 crossref_primary_10_1016_j_apm_2024_115830 crossref_primary_10_1016_j_energy_2021_119952 crossref_primary_10_1016_j_engappai_2022_105773 crossref_primary_10_1016_j_cie_2021_107888 crossref_primary_10_1016_j_egyr_2022_03_166 crossref_primary_10_1108_MAEM_03_2024_0005 crossref_primary_10_1108_GS_07_2022_0072 crossref_primary_10_1016_j_cnsns_2025_108636 crossref_primary_10_1016_j_energy_2021_122441 crossref_primary_10_1016_j_chaos_2021_111657 crossref_primary_10_1016_j_scs_2020_102611 crossref_primary_10_1108_GS_06_2022_0066 crossref_primary_10_1007_s11356_020_09572_9 crossref_primary_10_1016_j_chaos_2021_110969 crossref_primary_10_1016_j_chaos_2021_110968 crossref_primary_10_1007_s10668_025_06033_6 crossref_primary_10_1007_s11356_022_19805_8 crossref_primary_10_1016_j_chaos_2023_113767 crossref_primary_10_1016_j_egyr_2022_09_038 crossref_primary_10_1109_ACCESS_2020_3036644 crossref_primary_10_1155_2019_9623878 crossref_primary_10_3390_ma16041390 crossref_primary_10_1016_j_matcom_2023_02_008 crossref_primary_10_1016_j_matcom_2025_06_022 crossref_primary_10_1002_ese3_1164 crossref_primary_10_1016_j_eswa_2022_116691 crossref_primary_10_1016_j_scitotenv_2019_135321 crossref_primary_10_1016_j_puhe_2021_09_025 crossref_primary_10_1007_s11356_020_09435_3 crossref_primary_10_1155_2021_7725125 crossref_primary_10_1016_j_engappai_2019_103350 crossref_primary_10_1016_j_knosys_2024_111581 crossref_primary_10_1016_j_eswa_2022_118115 crossref_primary_10_1155_2019_1510257 crossref_primary_10_3233_JIFS_210871 crossref_primary_10_1016_j_scitotenv_2019_135447 crossref_primary_10_1109_TPWRD_2022_3168552 crossref_primary_10_1155_2020_6614570 crossref_primary_10_1016_j_engappai_2021_104261 crossref_primary_10_1016_j_cie_2023_109189 crossref_primary_10_1108_BIJ_12_2023_0856 crossref_primary_10_1108_GS_06_2022_0059 crossref_primary_10_1007_s40314_024_03013_w crossref_primary_10_1155_2019_1731262 crossref_primary_10_1155_2020_4170804 crossref_primary_10_3390_su11215921 crossref_primary_10_1016_j_cnsns_2020_105617 crossref_primary_10_1016_j_engappai_2020_104148 crossref_primary_10_1007_s00500_020_04799_7 crossref_primary_10_1155_2020_6514236 crossref_primary_10_1016_j_cnsns_2021_105696 crossref_primary_10_1016_j_energy_2022_124093 crossref_primary_10_3390_su11143832 crossref_primary_10_1007_s11069_020_04476_w crossref_primary_10_1007_s00521_019_04364_w crossref_primary_10_1108_GS_08_2024_0104 crossref_primary_10_1016_j_engfailanal_2021_105939 crossref_primary_10_1051_shsconf_202418103011 crossref_primary_10_3390_wevj15120584 crossref_primary_10_1155_2020_2416840 crossref_primary_10_1016_j_envpol_2019_113148 crossref_primary_10_1016_j_energy_2022_124801 crossref_primary_10_1016_j_asoc_2020_106145 crossref_primary_10_1016_j_apm_2020_01_014 crossref_primary_10_1016_j_trb_2022_01_007 crossref_primary_10_1007_s00521_020_05227_5 crossref_primary_10_1155_2021_7874564 crossref_primary_10_1016_j_seta_2020_100968 crossref_primary_10_1155_2019_9459038 crossref_primary_10_1016_j_jclepro_2021_127410 crossref_primary_10_1007_s12597_023_00736_y crossref_primary_10_1108_GS_09_2023_0090 crossref_primary_10_1007_s11356_021_13737_5 crossref_primary_10_3390_en15155584 crossref_primary_10_1016_j_apm_2022_07_013 crossref_primary_10_3233_JIFS_237479 crossref_primary_10_1016_j_neucom_2020_04_045 crossref_primary_10_1155_2020_5071267 crossref_primary_10_1108_GS_02_2023_0013 crossref_primary_10_1108_GS_09_2023_0095 crossref_primary_10_1016_j_jclepro_2020_120929 crossref_primary_10_3390_su15054500 crossref_primary_10_1080_01605682_2022_2085065 crossref_primary_10_1016_j_engappai_2023_106820 crossref_primary_10_1016_j_engappai_2021_104441 crossref_primary_10_1016_j_eswa_2024_125977 crossref_primary_10_1016_j_cie_2021_107725 crossref_primary_10_3233_JIFS_210822 crossref_primary_10_1016_j_cie_2021_107729 crossref_primary_10_1016_j_apm_2022_10_032 crossref_primary_10_1177_03611981211057527 crossref_primary_10_1155_2020_4564653 crossref_primary_10_1155_2021_5576830 crossref_primary_10_1155_2020_3427040 crossref_primary_10_1155_2020_6570683 crossref_primary_10_1016_j_energy_2021_121314 crossref_primary_10_1155_2021_5524479 crossref_primary_10_1016_j_eswa_2024_125054 crossref_primary_10_3390_systems11080428 crossref_primary_10_1016_j_engappai_2021_104297 crossref_primary_10_1016_j_techfore_2021_120707 crossref_primary_10_1016_j_neucom_2021_05_048 crossref_primary_10_1016_j_chaos_2023_113200 crossref_primary_10_1080_23307706_2019_1666310 crossref_primary_10_1016_j_energy_2020_117948 crossref_primary_10_1007_s11771_022_5036_3 crossref_primary_10_1016_j_istruc_2024_107986 crossref_primary_10_2166_ws_2024_093 crossref_primary_10_1007_s00500_020_05313_9 crossref_primary_10_1016_j_asoc_2021_107220 crossref_primary_10_1016_j_chaos_2021_110778 crossref_primary_10_1016_j_physa_2019_123341 crossref_primary_10_1108_K_05_2020_0284 |
| ContentType | Journal Article |
| Copyright | Copyright Elsevier BV Nov 2019 |
| Copyright_xml | – notice: Copyright Elsevier BV Nov 2019 |
| DBID | 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.apm.2019.05.044 |
| DatabaseName | Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology Mathematics |
| EISSN | 0307-904X |
| GroupedDBID | -W8 -~X .7I .GO .QK 0BK 0R~ 23M 2DF 4.4 53G 5GY 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABJNI ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO EAP EBR EBS EBU EDJ EMK EPL EPS EST ESX E~B E~C F5P FEDTE G-F GTTXZ H13 HF~ HVGLF HZ~ J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 O9- P2P PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ |
| ID | FETCH-LOGICAL-c325t-8af1a76d4db05cb3e9a93c5bd9b1a971ea76bc9abd2e087afa5450e021b216e83 |
| ISICitedReferencesCount | 189 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000486102700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1088-8691 |
| IngestDate | Sun Jul 27 15:03:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-8af1a76d4db05cb3e9a93c5bd9b1a971ea76bc9abd2e087afa5450e021b216e83 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2296642200 |
| PQPubID | 2045280 |
| ParticipantIDs | proquest_journals_2296642200 |
| PublicationCentury | 2000 |
| PublicationDate | 20191101 |
| PublicationDateYYYYMMDD | 2019-11-01 |
| PublicationDate_xml | – month: 11 year: 2019 text: 20191101 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Applied Mathematical Modelling |
| PublicationYear | 2019 |
| Publisher | Elsevier BV |
| Publisher_xml | – name: Elsevier BV |
| SSID | ssj0012860 ssj0005904 |
| Score | 2.620819 |
| Snippet | A new multivariable grey prediction model was proposed by adding a dependent variable lag term, a linear correction term and a random disturbance term to the... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 385 |
| SubjectTerms | Computer simulation Dependent variables Grey prediction |
| Title | A new multivariable grey prediction model with structure compatibility |
| URI | https://www.proquest.com/docview/2296642200 |
| Volume | 75 |
| WOSCitedRecordID | wos000486102700022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012860 issn: 1088-8691 databaseCode: TFW dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NT9swFLcYcIDDtAHTxjrkw7SbUezUiX0sUysOrNshjN4qf1VjQmm3tgj-e54_ktAhTduBS1Q5VdT09_z8vn8IfeRCUGWdIZ5bh_QtNWHPEc2MdXD8ZVyZQDZRjsdiMpHfUv38MtAJlHUt7u7k4lmhhjUA27fO_gfc7UNhAT4D6HAF2OH6T8APPEt4LBS8BUc4tEaBU33vxwHY68gMHvhvUnl6GCDr0wihHH0Vq2U3kr2NpfqlHfHqG3r9I26ag8-Hnl1UG2fzzjiO0dXztacO6774Y74Omn89c2k1hR2oTP13bSys7Yf5_kh7gsoiooj0W6cutWVlJZFZLMNsVG7JH-nMPHL2PNHlMazw81Qt_MQAKsOE1TgscnNu9vjrdHR5cTGthpPq0-IX8ZRiPvWe-FVeoB1WculVXjW66up_pHdEU76JidhP3rxAk_8OlYB__IAnp3YwRapX6GXyIfAgYv8abbn6AO136CwP0F57sN0fotEAg0jgDZHAXiRwJxI4iAT2IoFbkcAbInGELkfD6vM5SfwZxOSMr4hQM6rKwvatzrjRuZNK5oZrKzVVsqQObmojlbbMZaJUMwXmdObA6tOMFk7kb9B2Pa_dW4RzwTgz0nJJXd_xTGWzXFoD9p7WuijEO9Rr_pNp2gvLKWPgS_cZbM7jv99-j_Y6EeuhbXhL9wHtmtvV9fL3SYDtAVpKWxA |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+multivariable+grey+prediction+model+with+structure+compatibility&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Zeng%2C+Bo&rft.au=Duan%2C+Huiming&rft.au=Zhou%2C+Yufeng&rft.date=2019-11-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=75&rft.spage=385&rft_id=info:doi/10.1016%2Fj.apm.2019.05.044&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-8691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-8691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-8691&client=summon |