A new hybrid optimization ensemble learning approach for carbon price forecasting

Accurate carbon price forecast plays a vital role in energy conservation, emission reduction and environmental protection. In previous studies, more attention was focused on the prediction accuracy and stability, while the problem of disharmony between the prediction model and the data pattern is us...

Full description

Saved in:
Bibliographic Details
Published in:Applied Mathematical Modelling Vol. 97; p. 182
Main Authors: Sun, Shaolong, Jin, Feng, Li, Hongtao, Li, Yongwu
Format: Journal Article
Language:English
Published: New York Elsevier BV 01.09.2021
Subjects:
ISSN:1088-8691, 0307-904X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate carbon price forecast plays a vital role in energy conservation, emission reduction and environmental protection. In previous studies, more attention was focused on the prediction accuracy and stability, while the problem of disharmony between the prediction model and the data pattern is usually ignored. Considering the matching utility with deeper understanding of data and model, this paper proposes a novel approach to forecast carbon price, which combines the data preprocessing mechanism, decomposition technology, forecast module with selection and matching strategy and ensemble model based on an original hybrid optimization algorithm. According to a comprehensive evaluation index in consideration of several evaluation perspectives, the optimal parameter structures of the three forecast models are selected in this framework. Then, the data components decomposed by variational mode decomposition are reconstructed into three novel range entropy series with different levels of complexity by range entropy. As a result, the matching relation between the three forecasting models and the three range entropy series is correspondingly established. Additionally, a feedback neural network optimized by hybrid optimization algorithm, which persists more superiorities of reasonable weight assignment than the usual ensemble method, is initially used to synthesize three forecasting results of range entropy series. The carbon price data from four different trading markets in China is used to test the novel approach and the experimental results indicate that it does enhance the performance of carbon price forecasting, and provide a convincing tool for the operation and investment of the carbon markets.
AbstractList Accurate carbon price forecast plays a vital role in energy conservation, emission reduction and environmental protection. In previous studies, more attention was focused on the prediction accuracy and stability, while the problem of disharmony between the prediction model and the data pattern is usually ignored. Considering the matching utility with deeper understanding of data and model, this paper proposes a novel approach to forecast carbon price, which combines the data preprocessing mechanism, decomposition technology, forecast module with selection and matching strategy and ensemble model based on an original hybrid optimization algorithm. According to a comprehensive evaluation index in consideration of several evaluation perspectives, the optimal parameter structures of the three forecast models are selected in this framework. Then, the data components decomposed by variational mode decomposition are reconstructed into three novel range entropy series with different levels of complexity by range entropy. As a result, the matching relation between the three forecasting models and the three range entropy series is correspondingly established. Additionally, a feedback neural network optimized by hybrid optimization algorithm, which persists more superiorities of reasonable weight assignment than the usual ensemble method, is initially used to synthesize three forecasting results of range entropy series. The carbon price data from four different trading markets in China is used to test the novel approach and the experimental results indicate that it does enhance the performance of carbon price forecasting, and provide a convincing tool for the operation and investment of the carbon markets.
Author Jin, Feng
Sun, Shaolong
Li, Hongtao
Li, Yongwu
Author_xml – sequence: 1
  givenname: Shaolong
  surname: Sun
  fullname: Sun, Shaolong
– sequence: 2
  givenname: Feng
  surname: Jin
  fullname: Jin, Feng
– sequence: 3
  givenname: Hongtao
  surname: Li
  fullname: Li, Hongtao
– sequence: 4
  givenname: Yongwu
  surname: Li
  fullname: Li, Yongwu
BookMark eNotjl9LwzAUxYNMcJt-AN8CPrfepE2aPo6hThiIoODbuE1vXEub1qRD9NNb0acDh9_5s2ILP3hi7FpAKkDo2zbFsU8lSJFCloKEM7aEDIqkhPxtwZYCjEmMLsUFW8XYAghpNCzZ84Z7-uTHryo0NR_Gqembb5yawXPykfqqI94RBt_4d47jGAa0R-6GwC2GaqbG0Fj6NchinGbqkp077CJd_euavd7fvWx3yf7p4XG72Sc2k2pKjKoFVXltLCpllANtpAStHEJRGINlZStZ6oLIIapCaydEDrIo3ZzS0mVrdvPXO3_6OFGcDu1wCn6ePEilMqWVETL7AUJPVHY
CitedBy_id crossref_primary_10_1016_j_jclepro_2023_140322
crossref_primary_10_1155_2021_6567902
crossref_primary_10_1007_s10489_023_04590_9
crossref_primary_10_1080_09593330_2025_2464979
crossref_primary_10_1038_s41598_023_44770_8
crossref_primary_10_1016_j_compind_2025_104352
crossref_primary_10_1016_j_chaos_2023_113692
crossref_primary_10_1016_j_psep_2024_05_073
crossref_primary_10_1016_j_jclepro_2025_144960
crossref_primary_10_1080_13547860_2025_2555003
crossref_primary_10_1016_j_resourpol_2023_103320
crossref_primary_10_1007_s00521_023_09106_7
crossref_primary_10_1016_j_asoc_2022_108560
crossref_primary_10_1016_j_renene_2025_122737
crossref_primary_10_1016_j_ribaf_2025_103063
crossref_primary_10_1016_j_asoc_2022_109654
crossref_primary_10_1016_j_jenvman_2023_118716
crossref_primary_10_1016_j_jenvman_2024_120131
crossref_primary_10_1016_j_jclepro_2024_142932
crossref_primary_10_1002_ese3_1380
crossref_primary_10_1016_j_eswa_2022_119184
crossref_primary_10_1016_j_eswa_2024_123325
crossref_primary_10_1007_s10668_022_02299_2
crossref_primary_10_1016_j_energy_2024_131410
crossref_primary_10_1007_s10479_021_04392_7
crossref_primary_10_1007_s11356_023_29196_z
crossref_primary_10_3390_math13101624
crossref_primary_10_1016_j_jclepro_2023_137853
crossref_primary_10_1016_j_eswa_2023_121286
crossref_primary_10_4018_JOEUC_387168
crossref_primary_10_1016_j_ribaf_2025_102951
crossref_primary_10_1109_ACCESS_2024_3409822
crossref_primary_10_1016_j_apm_2022_01_023
crossref_primary_10_1016_j_cie_2022_108935
crossref_primary_10_1016_j_engappai_2024_108646
crossref_primary_10_1016_j_apenergy_2022_120452
crossref_primary_10_1016_j_apr_2024_102200
crossref_primary_10_1111_exsy_13672
crossref_primary_10_1016_j_energy_2024_132338
crossref_primary_10_3233_JIFS_233422
crossref_primary_10_3233_JIFS_236019
crossref_primary_10_1016_j_eswa_2023_120647
crossref_primary_10_46939_J_Sci_Arts_22_2_a18
crossref_primary_10_1016_j_asoc_2024_111869
crossref_primary_10_1007_s10479_022_04858_2
crossref_primary_10_1007_s10479_023_05443_x
crossref_primary_10_3390_en16114444
crossref_primary_10_3390_su142416351
crossref_primary_10_1016_j_jclepro_2023_139063
crossref_primary_10_1016_j_eswa_2024_124954
crossref_primary_10_1007_s40747_024_01609_7
crossref_primary_10_1016_j_apm_2022_11_001
crossref_primary_10_1016_j_jclepro_2024_143042
crossref_primary_10_1007_s11356_022_24570_9
crossref_primary_10_1002_ese3_2015
crossref_primary_10_1007_s42979_025_04033_x
crossref_primary_10_3389_fams_2024_1435517
crossref_primary_10_1016_j_energy_2024_132929
crossref_primary_10_1016_j_eneco_2024_107353
crossref_primary_10_3390_su13094896
crossref_primary_10_1016_j_omega_2023_102922
crossref_primary_10_1016_j_energy_2021_123006
crossref_primary_10_1016_j_energy_2021_121989
crossref_primary_10_3390_en15103562
crossref_primary_10_1016_j_resourpol_2022_102762
ContentType Journal Article
Copyright Copyright Elsevier BV Sep 2021
Copyright_xml – notice: Copyright Elsevier BV Sep 2021
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2021.03.020
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Mathematics
EISSN 0307-904X
GroupedDBID -W8
-~X
.7I
.GO
.QK
0BK
0R~
23M
2DF
4.4
53G
5GY
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
EAP
EBR
EBS
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
HZ~
IPNFZ
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-85d1eb4d8ca5585f06822065fa07788a9bcb2967eefaa5766f1140279feb462f3
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661954400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1088-8691
IngestDate Sun Sep 07 05:40:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-85d1eb4d8ca5585f06822065fa07788a9bcb2967eefaa5766f1140279feb462f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2553565812
PQPubID 2045280
ParticipantIDs proquest_journals_2553565812
PublicationCentury 2000
PublicationDate 20210901
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 20210901
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2021
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
SSID ssj0012860
ssj0005904
Score 2.5721443
Snippet Accurate carbon price forecast plays a vital role in energy conservation, emission reduction and environmental protection. In previous studies, more attention...
SourceID proquest
SourceType Aggregation Database
StartPage 182
SubjectTerms Algorithms
Carbon
Decomposition
Emission analysis
Emissions control
Ensemble learning
Entropy
Environmental protection
Forecasting
Matching
Mathematical models
Neural networks
Optimization
Optimization algorithms
Prediction models
Title A new hybrid optimization ensemble learning approach for carbon price forecasting
URI https://www.proquest.com/docview/2553565812
Volume 97
WOSCitedRecordID wos000661954400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 1088-8691
  databaseCode: TFW
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELe6jYfxgNgA8TGQHyZeqkyu82H7sUKrECrdkDIoT5Xj2BqoS0ubjY2_nnNsJ4VJEzzsJYquaZXmfjnf-X53h9ChMEnKmGXUcK0gQNEiEqZIojhliitwkeMiaYZNsMmET6fitNf7FWphruasqvj1tVjeq6pBBsq2pbP_oe72R0EA56B0OILa4fhPih_aKeH98xtbitVfgEW48KWWfYhY9YWtlJqH_ZDQUbwhGyq5KhaWsQW2wwq0kus6rGyhUa13Wj-23V5tba-dpjMPVzYZJrerei7BtHbiD65fATytVjR2Q7Pholou_hR-BeHPy81dCTpoaVd-q6wtl_m8YVzBokU8c9O5jrSv2iIsEsSxNINFdoxdb1IHbjjRLVPvdh2-H8mlbShAB02vWkq6dS3k8icns9HZeDzLj6f52-WPyE4cs5l5P35lC-1QlgpLB8xHXzp6kLBxqk9HUe7KzcMfCOnxhij41w3cWtQbTyV_jB75EAMPHTT2UE9X--hhp7H1Ptpt172bJ-jTEANisEMM3kQMDojBATE4IAYDQLBDDG4QgzcQ8xSdjY7zd-8jP2kjUjFN64in5UAXScmVTCF-NCQDvxGcUyMJY5xLUaiCioxpbaSECDUzEEYTyoSBb2XUxM_QdrWo9HOECSkzS1mWiTGJ4mlRcJ5xYhQpy4yZ5AU6CI9n5t-a9Qzi2hgiC3A2X9798Su026HtAG3Xq0v9Gj1QV_W39epNo8HfKX9n8Q
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+hybrid+optimization+ensemble+learning+approach+for+carbon+price+forecasting&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Sun%2C+Shaolong&rft.au=Jin%2C+Feng&rft.au=Li%2C+Hongtao&rft.au=Li%2C+Yongwu&rft.date=2021-09-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=97&rft.spage=182&rft_id=info:doi/10.1016%2Fj.apm.2021.03.020&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-8691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-8691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-8691&client=summon