An interval sequential linear programming for nonlinear robust optimization problems
•An interval sequential linear programming for nonlinear robust optimization is proposed.•An approximate possibility sensitivity is proposed to efficiently obtain the partial derivatives of the constraints.•A novel iterative mechanism is established to improve the convergence rate.•Two numerical exa...
Saved in:
| Published in: | Applied Mathematical Modelling Vol. 107; pp. 256 - 274 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
New York
Elsevier Inc
01.07.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0307-904X, 1088-8691, 0307-904X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •An interval sequential linear programming for nonlinear robust optimization is proposed.•An approximate possibility sensitivity is proposed to efficiently obtain the partial derivatives of the constraints.•A novel iterative mechanism is established to improve the convergence rate.•Two numerical examples and two practical engineering problems are applied to verify the accuracy and efficiency.
In this paper, interval sequential linear programming (ISLP) is proposed to solve nonlinear robust optimization (RO). The main idea of the programming is to transform the uncertain optimization into several possibility-sensitivity analyses and deterministic linear optimization problems that are sequentially solved. At each cycle, a possibility-sensitivity analysis method is proposed to obtain the approximate partial derivatives of the uncertain constraints at the current design point, based on which a deterministic linear optimization model is constructed and the design point is updated by solving the linear optimization. Moreover, an iterative mechanism is created to adaptively update the design space and improve the convergence rate. Finally, two numerical examples and two practical engineering problems are applied to verify the accuracy and efficiency of the proposed method. |
|---|---|
| AbstractList | •An interval sequential linear programming for nonlinear robust optimization is proposed.•An approximate possibility sensitivity is proposed to efficiently obtain the partial derivatives of the constraints.•A novel iterative mechanism is established to improve the convergence rate.•Two numerical examples and two practical engineering problems are applied to verify the accuracy and efficiency.
In this paper, interval sequential linear programming (ISLP) is proposed to solve nonlinear robust optimization (RO). The main idea of the programming is to transform the uncertain optimization into several possibility-sensitivity analyses and deterministic linear optimization problems that are sequentially solved. At each cycle, a possibility-sensitivity analysis method is proposed to obtain the approximate partial derivatives of the uncertain constraints at the current design point, based on which a deterministic linear optimization model is constructed and the design point is updated by solving the linear optimization. Moreover, an iterative mechanism is created to adaptively update the design space and improve the convergence rate. Finally, two numerical examples and two practical engineering problems are applied to verify the accuracy and efficiency of the proposed method. In this paper, interval sequential linear programming (ISLP) is proposed to solve nonlinear robust optimization (RO). The main idea of the programming is to transform the uncertain optimization into several possibility-sensitivity analyses and deterministic linear optimization problems that are sequentially solved. At each cycle, a possibility-sensitivity analysis method is proposed to obtain the approximate partial derivatives of the uncertain constraints at the current design point, based on which a deterministic linear optimization model is constructed and the design point is updated by solving the linear optimization. Moreover, an iterative mechanism is created to adaptively update the design space and improve the convergence rate. Finally, two numerical examples and two practical engineering problems are applied to verify the accuracy and efficiency of the proposed method. |
| Author | Fu, Chunming Liu, Haibo Tang, Jiachang Mi, Chengji |
| Author_xml | – sequence: 1 givenname: Jiachang surname: Tang fullname: Tang, Jiachang organization: Department of Mechanical Engineering, Hunan University of Technology, Zhuzhou City, 412007, PR China – sequence: 2 givenname: Chunming surname: Fu fullname: Fu, Chunming organization: College of Mechanical Engineering, University of South China, Hengyang City, 421001, PR China – sequence: 3 givenname: Chengji surname: Mi fullname: Mi, Chengji email: michengji_86@126.com organization: Department of Mechanical Engineering, Hunan University of Technology, Zhuzhou City, 412007, PR China – sequence: 4 givenname: Haibo surname: Liu fullname: Liu, Haibo organization: Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan City, 411201, PR China |
| BookMark | eNp9UMtqwzAQFCWFJmk_oDdDz3H1sC2bnkLoCwK9pNCbkOV1kLElV1IC7ddXaXIoPQQWdrU7s6OdGZoYawChW4JTgklx36VyHFKKKU1xDMYv0BQzzBcVzj4mf-orNPO-wxjn8TVFm6VJtAng9rJPPHzuwAQdy14bkC4Znd06OQzabJPWuiSqnibO1jsfEjsGPehvGbQ1B3Tdw-Cv0WUrew83pzxH70-Pm9XLYv32_LparheK0TwsuMoyRRlpWVEUtAVSlk2myqIhFWshY6SKLckAYqOkNc8BWJkRDrWSXKqazdHdcW8Ujj_3QXR250yUFLTgeVHlFOcRRY4o5az3DloxOj1I9yUIFgfzRCeieeJgnsAxGI8c_o-jdPg9Mjip-7PMhyMT4uF7DU54pcEoaLQDFURj9Rn2D_-VjVQ |
| CitedBy_id | crossref_primary_10_1016_j_cma_2023_116475 crossref_primary_10_1016_j_heliyon_2024_e30171 crossref_primary_10_1007_s11012_024_01857_4 crossref_primary_10_1680_jencm_22_00031 crossref_primary_10_3390_app14146245 crossref_primary_10_1016_j_istruc_2023_03_007 crossref_primary_10_3390_su152115671 crossref_primary_10_1016_j_apm_2023_09_010 crossref_primary_10_3390_e27070682 crossref_primary_10_3390_eng6090238 crossref_primary_10_1177_16878132231153266 crossref_primary_10_1016_j_istruc_2022_09_033 crossref_primary_10_1016_j_ress_2024_109944 crossref_primary_10_1007_s00158_023_03591_z crossref_primary_10_1029_2023WR035373 crossref_primary_10_1155_2024_5754231 crossref_primary_10_3390_app13158806 crossref_primary_10_1016_j_swevo_2024_101584 crossref_primary_10_1016_j_probengmech_2024_103612 |
| Cites_doi | 10.1016/j.aei.2019.04.002 10.1016/j.engstruct.2007.01.020 10.1007/s101070100286 10.1016/j.compstruc.2017.12.001 10.1016/j.cma.2020.113018 10.1007/s00158-013-1010-x 10.1007/s00158-010-0488-8 10.1016/j.advengsoft.2016.05.002 10.1002/nme.281 10.1016/j.apm.2018.12.025 10.1016/j.ejor.2007.03.031 10.1016/j.apm.2019.10.019 10.1115/1.2717225 10.1007/s00158-019-02273-z 10.1016/j.apm.2019.11.029 10.1016/j.cma.2021.113990 10.1137/S0036144504446096 10.1115/1.1711821 10.2514/3.12164 10.1016/j.ress.2008.03.010 10.1016/j.apm.2012.09.073 10.1137/S1052623498344562 10.1016/j.cma.2007.03.003 10.1115/1.2202883 10.1016/j.cma.2003.12.055 10.1016/0045-7949(87)90064-2 10.1115/1.2829499 10.1007/s00158-020-02781-3 10.1016/j.compstruc.2016.10.010 10.1007/s11081-010-9107-1 10.1115/1.4032630 10.1016/j.cma.2019.112649 10.1016/0165-0114(87)90114-X 10.1115/1.1649968 10.1016/j.ress.2017.09.008 10.1016/j.strusafe.2007.10.001 10.1007/s00158-011-0631-1 10.1115/1.4007392 10.1080/00207547808930043 10.1115/1.4025963 10.1007/s00158-014-1160-5 10.1016/S0045-7825(02)00287-6 10.1016/j.ress.2015.12.019 10.1016/j.cma.2007.03.024 |
| ContentType | Journal Article |
| Copyright | 2022 Copyright Elsevier BV Jul 2022 |
| Copyright_xml | – notice: 2022 – notice: Copyright Elsevier BV Jul 2022 |
| DBID | AAYXX CITATION 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.apm.2022.02.037 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics Psychology |
| EISSN | 0307-904X |
| EndPage | 274 |
| ExternalDocumentID | 10_1016_j_apm_2022_02_037 S0307904X22001081 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABAOU ABEFU ABFNM ABMAC ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AEXQZ AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HZ~ IHE IXB J1W JJJVA KOM LG9 LY7 M26 M41 MHUIS MO0 MVM N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSW SSZ T5K TN5 WH7 WUQ XJT XPP ZMT ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD -W8 .7I .GO .QK 0BK 2DF 53G 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALQZU AQTUD AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 DGFLZ DKSSO EAP EBR EBU EDJ EMK EPL EPS EST ESX E~B E~C FEDTE G-F GTTXZ H13 HF~ HVGLF IPNFZ J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 PQQKQ QWB RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ |
| ID | FETCH-LOGICAL-c325t-7c44c231f36662fe188d4c86d193fe4319e18a3eed1982b75ee38417ebca7acb3 |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798289800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0307-904X 1088-8691 |
| IngestDate | Sun Nov 09 07:02:35 EST 2025 Sat Nov 29 07:19:07 EST 2025 Tue Nov 18 21:52:42 EST 2025 Fri Feb 23 02:39:35 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Interval uncertainty Robust optimization Sensitivity analysis Sequential linear programming Reliability-based possibility degree of interval (RPDI) |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-7c44c231f36662fe188d4c86d193fe4319e18a3eed1982b75ee38417ebca7acb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2675695205 |
| PQPubID | 2045280 |
| PageCount | 19 |
| ParticipantIDs | proquest_journals_2675695205 crossref_primary_10_1016_j_apm_2022_02_037 crossref_citationtrail_10_1016_j_apm_2022_02_037 elsevier_sciencedirect_doi_10_1016_j_apm_2022_02_037 |
| PublicationCentury | 2000 |
| PublicationDate | July 2022 2022-07-00 20220701 |
| PublicationDateYYYYMMDD | 2022-07-01 |
| PublicationDate_xml | – month: 07 year: 2022 text: July 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Applied Mathematical Modelling |
| PublicationYear | 2022 |
| Publisher | Elsevier Inc Elsevier BV |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier BV |
| References | Ben-Tal, Nemirovski (bib0013) 2002; 92 Nocedal, Wright (bib0052) 1999 Tu, Choi, Park (bib0005) 1999; 121 Zhang, Han, Jiang, Liu, Li (bib0007) 2017 Harzheim, Warnecke (bib0018) 2010; 42 Medina, Taflanidis (bib0019) 2014; 51 Xiao, Yuan, Zhou (bib0011) 2020; 359 Li, Xiao, Yi, Gao (bib0033) 2019; 40 Wu, Gao, Luo, Brown (bib0029) 2016; 99 Dong, Shah (bib0037) 1987; 24 Beyer, Sendhoff (bib0014) 2007; 196 Cheng, Liu, Qian, Wu, Zhou, Gao, Zhang, Tan (bib0034) 2019; 60 Castillo, Mínguez, Castillo (bib0051) 2008; 93 Mourelatos, Liang (bib0017) 2006; 128 Siddiqui, Azarm, Gabriel (bib0026) 2011; 44 Fu, Cao, Tang, Long (bib0042) 2018; 197 Fu, Liu, Deng (bib0058) 2020; 80 Yang, Zhang, Han (bib0023) 2020; 366 Fu, Liu, Xiao (bib0041) 2019; 69 Du, Chen (bib0004) 2004; 126 Jiang, Han, Liu (bib0046) 2007; 196 Kwak, Lee (bib0050) 1987; 27 Tang, Fu (bib0040) 2017; 113 Tang, Cao, Mi, Fu, Liu (bib0043) 2021 Yonekura, Kanno (bib0025) 2010; 11 Wang, Qing (bib0030) 2016 Wei, Song, Lu, Yue (bib0049) 2016; 149 Gaspar-Cunha, Ferreira, Recio (bib0021) 2014; 49 Papadrakakis, Lagaros (bib0006) 2002; 191 Taguchi (bib0015) 1978; 16 Zhou, Cheng, Li (bib0027) 2012; 134 Gunawan, Azarm (bib0036) 2003; 126 Zhang, Zhou, Jiang, Yang, Han, Li (bib0002) 2021; 384 Yang, Zhang, Han (bib0009) 2020 Wu, Zhang, Chen, Luo (bib0039) 2013; 37 Balling, Free, Parkinson (bib0024) 1986; 108 Jiang, Hana, Liu (bib0044) 2008; 188 Xie, Zhou, Hu, Shu, Jiang (bib0031) 2017 Lu, Song, Yue, Wang (bib0048) 2008; 30 Gill, Murray, Saunders (bib0054) 2005; 47 Xu, Caramanis, Mannor (bib0022) 2017 Zhang, Liang, Cao, Liu, Han (bib0001) 2021 Tang, Mi, Fu, Yao (bib0003) 2021 Cheng, Liu, Tang, Tan (bib0032) 2017; 182 Yang, Zhang, Cheng, Han (bib0012) 2021 Doltsinis, Zhan (bib0016) 2004; 193 Du (bib0055) 2008; 130 Wu (bib0047) 1994; 32 Zhou, Li (bib0028) 2014; 136 Chen, Lian, Yang (bib0038) 2002; 53 Zheng, Da, Li, Xiao, Gao (bib0035) 2020; 78 Zhang, Zhang, Ye, Fang, Han (bib0010) 2020 Jiang, Han, Guan, Li (bib0045) 2007; 29 Lawrence, Tits (bib0053) 2001; 11 Xiao, Zuo, Zhou (bib0008) 2018; 169 Ben-Tal, Nemirovski (bib0020) 2002; 92 Huang, Zhou, Jiang, Zheng, Han (bib0057) 2017 Sandau (bib0056) 2009 Tang (10.1016/j.apm.2022.02.037_bib0040) 2017; 113 Wu (10.1016/j.apm.2022.02.037_bib0039) 2013; 37 Tang (10.1016/j.apm.2022.02.037_bib0043) 2021 Nocedal (10.1016/j.apm.2022.02.037_bib0052) 1999 Du (10.1016/j.apm.2022.02.037_bib0055) 2008; 130 Fu (10.1016/j.apm.2022.02.037_bib0058) 2020; 80 Beyer (10.1016/j.apm.2022.02.037_bib0014) 2007; 196 Yang (10.1016/j.apm.2022.02.037_bib0009) 2020 Taguchi (10.1016/j.apm.2022.02.037_bib0015) 1978; 16 Lu (10.1016/j.apm.2022.02.037_bib0048) 2008; 30 Tu (10.1016/j.apm.2022.02.037_bib0005) 1999; 121 Yonekura (10.1016/j.apm.2022.02.037_bib0025) 2010; 11 Gill (10.1016/j.apm.2022.02.037_bib0054) 2005; 47 Xiao (10.1016/j.apm.2022.02.037_bib0011) 2020; 359 Wu (10.1016/j.apm.2022.02.037_bib0029) 2016; 99 Wang (10.1016/j.apm.2022.02.037_bib0030) 2016 Zheng (10.1016/j.apm.2022.02.037_bib0035) 2020; 78 Zhang (10.1016/j.apm.2022.02.037_bib0010) 2020 Gunawan (10.1016/j.apm.2022.02.037_bib0036) 2003; 126 Zhou (10.1016/j.apm.2022.02.037_bib0028) 2014; 136 Wu (10.1016/j.apm.2022.02.037_bib0047) 1994; 32 Jiang (10.1016/j.apm.2022.02.037_bib0046) 2007; 196 Lawrence (10.1016/j.apm.2022.02.037_bib0053) 2001; 11 Tang (10.1016/j.apm.2022.02.037_bib0003) 2021 Du (10.1016/j.apm.2022.02.037_bib0004) 2004; 126 Chen (10.1016/j.apm.2022.02.037_bib0038) 2002; 53 Jiang (10.1016/j.apm.2022.02.037_bib0044) 2008; 188 Doltsinis (10.1016/j.apm.2022.02.037_bib0016) 2004; 193 Huang (10.1016/j.apm.2022.02.037_bib0057) 2017 Cheng (10.1016/j.apm.2022.02.037_bib0032) 2017; 182 Medina (10.1016/j.apm.2022.02.037_bib0019) 2014; 51 Jiang (10.1016/j.apm.2022.02.037_bib0045) 2007; 29 Zhang (10.1016/j.apm.2022.02.037_bib0001) 2021 Li (10.1016/j.apm.2022.02.037_bib0033) 2019; 40 Wei (10.1016/j.apm.2022.02.037_bib0049) 2016; 149 Ben-Tal (10.1016/j.apm.2022.02.037_bib0013) 2002; 92 Cheng (10.1016/j.apm.2022.02.037_bib0034) 2019; 60 Zhang (10.1016/j.apm.2022.02.037_bib0002) 2021; 384 Siddiqui (10.1016/j.apm.2022.02.037_bib0026) 2011; 44 Ben-Tal (10.1016/j.apm.2022.02.037_bib0020) 2002; 92 Xie (10.1016/j.apm.2022.02.037_bib0031) 2017 Fu (10.1016/j.apm.2022.02.037_bib0042) 2018; 197 Xu (10.1016/j.apm.2022.02.037_bib0022) 2017 Zhang (10.1016/j.apm.2022.02.037_bib0007) 2017 Xiao (10.1016/j.apm.2022.02.037_bib0008) 2018; 169 Mourelatos (10.1016/j.apm.2022.02.037_bib0017) 2006; 128 Gaspar-Cunha (10.1016/j.apm.2022.02.037_bib0021) 2014; 49 Balling (10.1016/j.apm.2022.02.037_bib0024) 1986; 108 Sandau (10.1016/j.apm.2022.02.037_bib0056) 2009 Yang (10.1016/j.apm.2022.02.037_bib0023) 2020; 366 Fu (10.1016/j.apm.2022.02.037_bib0041) 2019; 69 Papadrakakis (10.1016/j.apm.2022.02.037_bib0006) 2002; 191 Yang (10.1016/j.apm.2022.02.037_bib0012) 2021 Zhou (10.1016/j.apm.2022.02.037_bib0027) 2012; 134 Castillo (10.1016/j.apm.2022.02.037_bib0051) 2008; 93 Dong (10.1016/j.apm.2022.02.037_bib0037) 1987; 24 Harzheim (10.1016/j.apm.2022.02.037_bib0018) 2010; 42 Kwak (10.1016/j.apm.2022.02.037_bib0050) 1987; 27 |
| References_xml | – volume: 196 start-page: 3190 year: 2007 end-page: 3218 ident: bib0014 article-title: Robust optimization – a comprehensive survey publication-title: Comput. Methods Appl. Mech. Eng. – year: 2009 ident: bib0056 article-title: Digital Airborne Camera: Introduction and Technology – volume: 126 start-page: 395 year: 2003 end-page: 402 ident: bib0036 article-title: Non-gradient based parameter sensitivity estimation for single objective robust design optimization publication-title: J. Mech. Des. – volume: 60 start-page: 17 year: 2019 end-page: 33 ident: bib0034 article-title: Robust optimization of uncertain structures based on interval closeness coefficients and the 3D violation vectors of interval constraints publication-title: Struct. Multidiscip. Optim. – volume: 182 start-page: 41 year: 2017 end-page: 54 ident: bib0032 article-title: Robust optimization of uncertain structures based on normalized violation degree of interval constraint publication-title: Comput. Struct. – start-page: 144 year: 2021 ident: bib0001 article-title: Evidence-theory-based reliability analysis through Kriging surrogate model publication-title: J. Mech. Des. – volume: 92 start-page: 453 year: 2002 end-page: 480 ident: bib0013 article-title: Robust optimization - methodology and applications publication-title: Math. Program. – volume: 359 year: 2020 ident: bib0011 article-title: Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 40 start-page: 81 year: 2019 end-page: 92 ident: bib0033 article-title: Maximum variation analysis based analytical target cascading for multidisciplinary robust design optimization under interval uncertainty publication-title: Adv. Eng. Inf. – volume: 113 start-page: 239 year: 2017 end-page: 259 ident: bib0040 article-title: A dimension-reduction interval analysis method for uncertain problems publication-title: Comput. Model. Eng. Sci. – volume: 196 start-page: 4791 year: 2007 end-page: 4800 ident: bib0046 article-title: Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval publication-title: Comput. Meth. Appl. Mech. Eng. – year: 1999 ident: bib0052 article-title: Numerical Optimization – volume: 24 start-page: 65 year: 1987 end-page: 78 ident: bib0037 article-title: Vertex method for computing functions of fuzzy variables publication-title: Fuzzy Sets Syst. – start-page: 139 year: 2017 ident: bib0007 article-title: Time-dependent reliability analysis through response surface method publication-title: J. Mech. Des. – volume: 30 start-page: 517 year: 2008 end-page: 532 ident: bib0048 article-title: Reliability sensitivity method by line sampling publication-title: Struct. Saf. – volume: 51 start-page: 813 year: 2014 end-page: 834 ident: bib0019 article-title: Probabilistic measures for assessing appropriateness of robust design optimization solutions publication-title: Struct. Multidiscip. Optim. – volume: 384 year: 2021 ident: bib0002 article-title: A stochastic process discretization method combing active learning Kriging model for efficient time-variant reliability analysis publication-title: Comput. Meth. Appl. Mech. Eng. – start-page: 1 year: 2020 end-page: 14 ident: bib0010 article-title: Hybrid learning algorithm of radial basis function networks for reliability analysis publication-title: IEEE Trans. Reliab. – volume: 49 start-page: 771 year: 2014 end-page: 793 ident: bib0021 article-title: Evolutionary robustness analysis for multi-objective optimization: benchmark problems publication-title: Struct. Multidiscip. Optim. – volume: 44 start-page: 259 year: 2011 end-page: 275 ident: bib0026 article-title: A modified Benders decomposition method for efficient robust optimization under interval uncertainty publication-title: Struct. Multidiscip. Optim. – volume: 47 start-page: 99 year: 2005 end-page: 131 ident: bib0054 article-title: SNOPT: an SQP algorithm for large-scale constrained optimization publication-title: SIAM Rev. – volume: 191 start-page: 3491 year: 2002 end-page: 3507 ident: bib0006 article-title: Reliability-based structural optimization using neural networks and Monte Carlo simulation publication-title: Comput. Methods Appl. Mech. Eng. – volume: 37 start-page: 4578 year: 2013 end-page: 4591 ident: bib0039 article-title: A Chebyshev interval method for nonlinear dynamic systems under uncertainty publication-title: Appl. Math. Modell. – year: 2017 ident: bib0031 article-title: A sequential multi-objective robust optimization approach under interval uncertainty based on support vector machines publication-title: IEEE International Conference on Industrial Engineering and Engineering Management – volume: 80 start-page: 384 year: 2020 end-page: 393 ident: bib0058 article-title: A direct solution framework for structural optimization problems with interval uncertainties publication-title: Appl. Math. Modell. – volume: 169 start-page: 330 year: 2018 end-page: 338 ident: bib0008 article-title: A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis publication-title: Reliab. Eng. Syst. Saf. – volume: 134 start-page: 1087 year: 2012 end-page: 1100 ident: bib0027 article-title: Sequential quadratic programming for robust optimization with interval uncertainty publication-title: J. Mech. Des. – year: 2021 ident: bib0012 article-title: Reliability-based design optimization for RV reducer with experimental constraint publication-title: Struct. Multidiscip. Optim. – volume: 197 start-page: 58 year: 2018 end-page: 69 ident: bib0042 article-title: A subinterval decomposition analysis method for uncertain structures with large uncertainty parameters publication-title: Comput. Struct. – volume: 27 start-page: 399 year: 1987 end-page: 406 ident: bib0050 article-title: Sensitivity analysis for reliability-based optimization using an AFOSM method publication-title: Comput. Struct. – volume: 92 start-page: 453 year: 2002 end-page: 480 ident: bib0020 article-title: Robust optimization – methodology and applications publication-title: Math. Program. – volume: 78 start-page: 627 year: 2020 end-page: 647 ident: bib0035 article-title: Robust topology optimization for multi-material structures under interval uncertainty publication-title: Appl. Math. Modell. – volume: 121 start-page: 557 year: 1999 end-page: 564 ident: bib0005 article-title: A new study on reliability-based design optimization publication-title: J. Mech. Des. – volume: 29 start-page: 3168 year: 2007 end-page: 3177 ident: bib0045 article-title: An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method publication-title: Eng. Struct. – volume: 16 start-page: 521 year: 1978 end-page: 530 ident: bib0015 article-title: Performance analysis design publication-title: Int. J. Prod. Res. – volume: 128 start-page: 1195 year: 2006 end-page: 1204 ident: bib0017 article-title: A methodology for trading-off performance and robustness under uncertainty publication-title: J. Mech. Des. – volume: 136 year: 2014 ident: bib0028 article-title: Advanced robust optimization with interval uncertainty using a single-looped structure and sequential quadratic programming publication-title: J. Mech. Des. – volume: 42 start-page: 315 year: 2010 end-page: 323 ident: bib0018 article-title: Robustness optimization of the position of an anti-roll bar link to avoid the toggling of a rear axle stabilizer publication-title: Struct. Multidiscip. Optim. – volume: 149 start-page: 107 year: 2016 end-page: 120 ident: bib0049 article-title: Time-dependent reliability sensitivity analysis of motion mechanisms publication-title: Reliab. Eng. Syst. Saf. – volume: 188 start-page: 1 year: 2008 end-page: 13 ident: bib0044 article-title: A nonlinear interval number programming method for uncertain optimization problems publication-title: Eur. J. Oper. Res. – volume: 53 start-page: 393 year: 2002 end-page: 407 ident: bib0038 article-title: Interval static displacement analysis for structures with interval parameters publication-title: Int. J. Numer. Methods Eng. – start-page: 1 year: 2017 end-page: 18 ident: bib0057 article-title: Reliability-based multidisciplinary design optimization using incremental shifting vector strategy and its application in electronic product design publication-title: Acta Mech. Sin. – year: 2016 ident: bib0030 article-title: A new approach using a mixed IA/AA model for robust optimization with interval uncertainty publication-title: J. Mech. Des. – volume: 99 start-page: 36 year: 2016 end-page: 48 ident: bib0029 article-title: Robust topology optimization for structures under interval uncertainty publication-title: Adv. Eng. Software – volume: 130 start-page: 842 year: 2008 end-page: 849 ident: bib0055 article-title: Saddlepoint approximation for sequential optimization and reliability analysis publication-title: J. Mech. Des. – volume: 366 year: 2020 ident: bib0023 article-title: New efficient and robust method for structural reliability analysis and its application in reliability-based design optimization publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 32 start-page: 1717 year: 1994 end-page: 1723 ident: bib0047 article-title: Computational methods for efficient structural reliability and reliability sensitivity analysis publication-title: AIAA J. – volume: 11 start-page: 355 year: 2010 end-page: 379 ident: bib0025 article-title: Global optimization of robust truss topology via mixed integer semidefinite programming publication-title: Optim. Eng. – volume: 11 start-page: 1092 year: 2001 end-page: 1118 ident: bib0053 article-title: A computationally efficient feasible sequential quadratic programming algorithm publication-title: SIAM J. Optim. – volume: 193 start-page: 2221 year: 2004 end-page: 2237 ident: bib0016 article-title: Robust design of structures using optimization methods publication-title: Comput. Methods Appl. Mech. Eng. – volume: 126 start-page: 871 year: 2004 end-page: 880 ident: bib0004 article-title: Sequential optimization and reliability assessment method for efficient probabilistic design publication-title: J. Mech. Des. – year: 2020 ident: bib0009 article-title: Enriched single-loop approach for reliability-based design optimization of complex nonlinear problems publication-title: Eng. Comput. – start-page: 552 year: 2017 end-page: 556 ident: bib0022 article-title: A distributional interpretation of robust optimization publication-title: Commun. Control Comput. – volume: 108 start-page: 438 year: 1986 end-page: 441 ident: bib0024 article-title: Consideration of worst-case manufacturing tolerances in design optimization publication-title: J. Mech. Des. – volume: 69 start-page: 441 year: 2019 end-page: 452 ident: bib0041 article-title: Interval differential evolution with dimension-reduction interval analysis method for uncertain optimization problems publication-title: Appl. Math. Modell. – year: 2021 ident: bib0003 article-title: Novel solution framework for inverse problem considering interval uncertainty publication-title: Int. J. Numer. Methods Eng. – year: 2021 ident: bib0043 article-title: Interval assessments of identified parameters for uncertain structures publication-title: Eng. Comput. – volume: 93 start-page: 1788 year: 2008 end-page: 1800 ident: bib0051 article-title: Sensitivity analysis in optimization and reliability problems publication-title: Reliab. Eng. Syst. Saf. – year: 1999 ident: 10.1016/j.apm.2022.02.037_bib0052 – volume: 40 start-page: 81 year: 2019 ident: 10.1016/j.apm.2022.02.037_bib0033 article-title: Maximum variation analysis based analytical target cascading for multidisciplinary robust design optimization under interval uncertainty publication-title: Adv. Eng. Inf. doi: 10.1016/j.aei.2019.04.002 – volume: 29 start-page: 3168 year: 2007 ident: 10.1016/j.apm.2022.02.037_bib0045 article-title: An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2007.01.020 – volume: 92 start-page: 453 year: 2002 ident: 10.1016/j.apm.2022.02.037_bib0013 article-title: Robust optimization - methodology and applications publication-title: Math. Program. doi: 10.1007/s101070100286 – volume: 197 start-page: 58 year: 2018 ident: 10.1016/j.apm.2022.02.037_bib0042 article-title: A subinterval decomposition analysis method for uncertain structures with large uncertainty parameters publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2017.12.001 – volume: 366 year: 2020 ident: 10.1016/j.apm.2022.02.037_bib0023 article-title: New efficient and robust method for structural reliability analysis and its application in reliability-based design optimization publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2020.113018 – year: 2020 ident: 10.1016/j.apm.2022.02.037_bib0009 article-title: Enriched single-loop approach for reliability-based design optimization of complex nonlinear problems publication-title: Eng. Comput. – volume: 49 start-page: 771 year: 2014 ident: 10.1016/j.apm.2022.02.037_bib0021 article-title: Evolutionary robustness analysis for multi-objective optimization: benchmark problems publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-013-1010-x – year: 2009 ident: 10.1016/j.apm.2022.02.037_bib0056 – volume: 42 start-page: 315 year: 2010 ident: 10.1016/j.apm.2022.02.037_bib0018 article-title: Robustness optimization of the position of an anti-roll bar link to avoid the toggling of a rear axle stabilizer publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-010-0488-8 – volume: 99 start-page: 36 year: 2016 ident: 10.1016/j.apm.2022.02.037_bib0029 article-title: Robust topology optimization for structures under interval uncertainty publication-title: Adv. Eng. Software doi: 10.1016/j.advengsoft.2016.05.002 – volume: 53 start-page: 393 year: 2002 ident: 10.1016/j.apm.2022.02.037_bib0038 article-title: Interval static displacement analysis for structures with interval parameters publication-title: Int. J. Numer. Methods Eng. doi: 10.1002/nme.281 – volume: 69 start-page: 441 year: 2019 ident: 10.1016/j.apm.2022.02.037_bib0041 article-title: Interval differential evolution with dimension-reduction interval analysis method for uncertain optimization problems publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2018.12.025 – volume: 188 start-page: 1 year: 2008 ident: 10.1016/j.apm.2022.02.037_bib0044 article-title: A nonlinear interval number programming method for uncertain optimization problems publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2007.03.031 – volume: 78 start-page: 627 year: 2020 ident: 10.1016/j.apm.2022.02.037_bib0035 article-title: Robust topology optimization for multi-material structures under interval uncertainty publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2019.10.019 – volume: 130 start-page: 842 year: 2008 ident: 10.1016/j.apm.2022.02.037_bib0055 article-title: Saddlepoint approximation for sequential optimization and reliability analysis publication-title: J. Mech. Des. doi: 10.1115/1.2717225 – volume: 60 start-page: 17 year: 2019 ident: 10.1016/j.apm.2022.02.037_bib0034 article-title: Robust optimization of uncertain structures based on interval closeness coefficients and the 3D violation vectors of interval constraints publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-019-02273-z – volume: 80 start-page: 384 year: 2020 ident: 10.1016/j.apm.2022.02.037_bib0058 article-title: A direct solution framework for structural optimization problems with interval uncertainties publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2019.11.029 – year: 2021 ident: 10.1016/j.apm.2022.02.037_bib0043 article-title: Interval assessments of identified parameters for uncertain structures publication-title: Eng. Comput. – volume: 384 year: 2021 ident: 10.1016/j.apm.2022.02.037_bib0002 article-title: A stochastic process discretization method combing active learning Kriging model for efficient time-variant reliability analysis publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2021.113990 – volume: 47 start-page: 99 year: 2005 ident: 10.1016/j.apm.2022.02.037_bib0054 article-title: SNOPT: an SQP algorithm for large-scale constrained optimization publication-title: SIAM Rev. doi: 10.1137/S0036144504446096 – year: 2017 ident: 10.1016/j.apm.2022.02.037_bib0031 article-title: A sequential multi-objective robust optimization approach under interval uncertainty based on support vector machines – volume: 126 start-page: 395 issue: 3 year: 2003 ident: 10.1016/j.apm.2022.02.037_bib0036 article-title: Non-gradient based parameter sensitivity estimation for single objective robust design optimization publication-title: J. Mech. Des. doi: 10.1115/1.1711821 – volume: 108 start-page: 438 year: 1986 ident: 10.1016/j.apm.2022.02.037_bib0024 article-title: Consideration of worst-case manufacturing tolerances in design optimization publication-title: J. Mech. Des. – volume: 113 start-page: 239 year: 2017 ident: 10.1016/j.apm.2022.02.037_bib0040 article-title: A dimension-reduction interval analysis method for uncertain problems publication-title: Comput. Model. Eng. Sci. – volume: 32 start-page: 1717 year: 1994 ident: 10.1016/j.apm.2022.02.037_bib0047 article-title: Computational methods for efficient structural reliability and reliability sensitivity analysis publication-title: AIAA J. doi: 10.2514/3.12164 – volume: 93 start-page: 1788 year: 2008 ident: 10.1016/j.apm.2022.02.037_bib0051 article-title: Sensitivity analysis in optimization and reliability problems publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2008.03.010 – volume: 37 start-page: 4578 year: 2013 ident: 10.1016/j.apm.2022.02.037_bib0039 article-title: A Chebyshev interval method for nonlinear dynamic systems under uncertainty publication-title: Appl. Math. Modell. doi: 10.1016/j.apm.2012.09.073 – volume: 11 start-page: 1092 year: 2001 ident: 10.1016/j.apm.2022.02.037_bib0053 article-title: A computationally efficient feasible sequential quadratic programming algorithm publication-title: SIAM J. Optim. doi: 10.1137/S1052623498344562 – volume: 92 start-page: 453 year: 2002 ident: 10.1016/j.apm.2022.02.037_bib0020 article-title: Robust optimization – methodology and applications publication-title: Math. Program. doi: 10.1007/s101070100286 – volume: 196 start-page: 3190 year: 2007 ident: 10.1016/j.apm.2022.02.037_bib0014 article-title: Robust optimization – a comprehensive survey publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2007.03.003 – volume: 128 start-page: 1195 year: 2006 ident: 10.1016/j.apm.2022.02.037_bib0017 article-title: A methodology for trading-off performance and robustness under uncertainty publication-title: J. Mech. Des. doi: 10.1115/1.2202883 – start-page: 1 year: 2020 ident: 10.1016/j.apm.2022.02.037_bib0010 article-title: Hybrid learning algorithm of radial basis function networks for reliability analysis publication-title: IEEE Trans. Reliab. – volume: 193 start-page: 2221 year: 2004 ident: 10.1016/j.apm.2022.02.037_bib0016 article-title: Robust design of structures using optimization methods publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2003.12.055 – volume: 27 start-page: 399 year: 1987 ident: 10.1016/j.apm.2022.02.037_bib0050 article-title: Sensitivity analysis for reliability-based optimization using an AFOSM method publication-title: Comput. Struct. doi: 10.1016/0045-7949(87)90064-2 – volume: 121 start-page: 557 year: 1999 ident: 10.1016/j.apm.2022.02.037_bib0005 article-title: A new study on reliability-based design optimization publication-title: J. Mech. Des. doi: 10.1115/1.2829499 – year: 2021 ident: 10.1016/j.apm.2022.02.037_bib0012 article-title: Reliability-based design optimization for RV reducer with experimental constraint publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-020-02781-3 – volume: 182 start-page: 41 year: 2017 ident: 10.1016/j.apm.2022.02.037_bib0032 article-title: Robust optimization of uncertain structures based on normalized violation degree of interval constraint publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2016.10.010 – year: 2021 ident: 10.1016/j.apm.2022.02.037_bib0003 article-title: Novel solution framework for inverse problem considering interval uncertainty publication-title: Int. J. Numer. Methods Eng. – start-page: 139 year: 2017 ident: 10.1016/j.apm.2022.02.037_bib0007 article-title: Time-dependent reliability analysis through response surface method publication-title: J. Mech. Des. – volume: 11 start-page: 355 year: 2010 ident: 10.1016/j.apm.2022.02.037_bib0025 article-title: Global optimization of robust truss topology via mixed integer semidefinite programming publication-title: Optim. Eng. doi: 10.1007/s11081-010-9107-1 – year: 2016 ident: 10.1016/j.apm.2022.02.037_bib0030 article-title: A new approach using a mixed IA/AA model for robust optimization with interval uncertainty publication-title: J. Mech. Des. doi: 10.1115/1.4032630 – start-page: 1 year: 2017 ident: 10.1016/j.apm.2022.02.037_bib0057 article-title: Reliability-based multidisciplinary design optimization using incremental shifting vector strategy and its application in electronic product design publication-title: Acta Mech. Sin. – volume: 359 year: 2020 ident: 10.1016/j.apm.2022.02.037_bib0011 article-title: Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2019.112649 – volume: 24 start-page: 65 year: 1987 ident: 10.1016/j.apm.2022.02.037_bib0037 article-title: Vertex method for computing functions of fuzzy variables publication-title: Fuzzy Sets Syst. doi: 10.1016/0165-0114(87)90114-X – volume: 126 start-page: 871 year: 2004 ident: 10.1016/j.apm.2022.02.037_bib0004 article-title: Sequential optimization and reliability assessment method for efficient probabilistic design publication-title: J. Mech. Des. doi: 10.1115/1.1649968 – volume: 169 start-page: 330 year: 2018 ident: 10.1016/j.apm.2022.02.037_bib0008 article-title: A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2017.09.008 – start-page: 552 year: 2017 ident: 10.1016/j.apm.2022.02.037_bib0022 article-title: A distributional interpretation of robust optimization publication-title: Commun. Control Comput. – volume: 30 start-page: 517 year: 2008 ident: 10.1016/j.apm.2022.02.037_bib0048 article-title: Reliability sensitivity method by line sampling publication-title: Struct. Saf. doi: 10.1016/j.strusafe.2007.10.001 – volume: 44 start-page: 259 year: 2011 ident: 10.1016/j.apm.2022.02.037_bib0026 article-title: A modified Benders decomposition method for efficient robust optimization under interval uncertainty publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-011-0631-1 – volume: 134 start-page: 1087 year: 2012 ident: 10.1016/j.apm.2022.02.037_bib0027 article-title: Sequential quadratic programming for robust optimization with interval uncertainty publication-title: J. Mech. Des. doi: 10.1115/1.4007392 – volume: 16 start-page: 521 year: 1978 ident: 10.1016/j.apm.2022.02.037_bib0015 article-title: Performance analysis design publication-title: Int. J. Prod. Res. doi: 10.1080/00207547808930043 – volume: 136 year: 2014 ident: 10.1016/j.apm.2022.02.037_bib0028 article-title: Advanced robust optimization with interval uncertainty using a single-looped structure and sequential quadratic programming publication-title: J. Mech. Des. doi: 10.1115/1.4025963 – start-page: 144 year: 2021 ident: 10.1016/j.apm.2022.02.037_bib0001 article-title: Evidence-theory-based reliability analysis through Kriging surrogate model publication-title: J. Mech. Des. – volume: 51 start-page: 813 year: 2014 ident: 10.1016/j.apm.2022.02.037_bib0019 article-title: Probabilistic measures for assessing appropriateness of robust design optimization solutions publication-title: Struct. Multidiscip. Optim. doi: 10.1007/s00158-014-1160-5 – volume: 191 start-page: 3491 year: 2002 ident: 10.1016/j.apm.2022.02.037_bib0006 article-title: Reliability-based structural optimization using neural networks and Monte Carlo simulation publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/S0045-7825(02)00287-6 – volume: 149 start-page: 107 year: 2016 ident: 10.1016/j.apm.2022.02.037_bib0049 article-title: Time-dependent reliability sensitivity analysis of motion mechanisms publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2015.12.019 – volume: 196 start-page: 4791 year: 2007 ident: 10.1016/j.apm.2022.02.037_bib0046 article-title: Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2007.03.024 |
| SSID | ssj0005904 ssj0012860 |
| Score | 2.440703 |
| Snippet | •An interval sequential linear programming for nonlinear robust optimization is proposed.•An approximate possibility sensitivity is proposed to efficiently... In this paper, interval sequential linear programming (ISLP) is proposed to solve nonlinear robust optimization (RO). The main idea of the programming is to... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 256 |
| SubjectTerms | Interval uncertainty Iterative methods Linear programming Optimization models Reliability-based possibility degree of interval (RPDI) Robust optimization Robustness (mathematics) Sensitivity analysis Sequential linear programming |
| Title | An interval sequential linear programming for nonlinear robust optimization problems |
| URI | https://dx.doi.org/10.1016/j.apm.2022.02.037 https://www.proquest.com/docview/2675695205 |
| Volume | 107 |
| WOSCitedRecordID | wos000798289800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0005904 issn: 0307-904X databaseCode: AIEXJ dateStart: 20211214 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVAWR databaseName: Taylor & Francis Journals Complete customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012860 issn: 0307-904X databaseCode: TFW dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdpu8N2GPuk3bqiw04rHrb8IesYRktb2rJDtuVmZFkeDokTYieU_vV9kizFy2hpD4VgwossFL-fpPfk33sPoa9S0IgzQb2SFSE4KCLxWEJhurOcy4D4nGhW5e9Len2djsfs52Bwa2Nh1lNa1-nNDVs8q6pBBspWobNPULfrFATwHZQOV1A7XB-l-GGtc0As1yoSRBOlW3UqrsxJldba8LFmlkBZm1QZ8Mtynq-a9ngOa8isC8487srNNH0T1tqtM5fwVQWgqII6U7sN6pOAjupbcR1b7HCyMi_5V_Ws1_qqMlJZ_51UVnhZ6bZnvMrn_cMJsiGyuqAsEDDfkDDdgmvq3NolM056uy8xNXv-W9jNGcPkO1-o9AGE6ESrJl3Mv0m0tzY3Rzm0bLZJBl1kqovMh09Id9AeoTGDRX1veH4yvtgQhJgf2TSa6i_Yd-KaHbg1jvusmq39XRstozfodedt4KFByVs0kPU79OrKaa55j0bDGlu84A1esEEF7uEFA16wwws2eMF9vGCLlw_o1-nJ6MeZ15Xa8ERI4tajIooEmPplCO4sKWWQpkUk0qQA-76UYGQyEPEQDKqApSSnsZRhGgVUUekoF3n4Ee3CAOQ-wjQsRAS3iAK8AXCGOZfgNHCWxkSUgWAHyLePKhNdHnpVDmWa3auiA_TN3bIwSVgeahzZ5591VqSxDjPA0kO3HVpdZd1sbjIC7nTCYuLHn54yhM_o5WYyHKLddrmSX9ALsW6rZnnU4ewI7YxO_9wB5hqg9g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interval+sequential+linear+programming+for+nonlinear+robust+optimization+problems&rft.jtitle=Applied+mathematical+modelling&rft.au=Tang%2C+Jiachang&rft.au=Fu%2C+Chunming&rft.au=Mi%2C+Chengji&rft.au=Liu%2C+Haibo&rft.date=2022-07-01&rft.issn=0307-904X&rft.volume=107&rft.spage=256&rft.epage=274&rft_id=info:doi/10.1016%2Fj.apm.2022.02.037&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_apm_2022_02_037 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon |