An interval sequential linear programming for nonlinear robust optimization problems

•An interval sequential linear programming for nonlinear robust optimization is proposed.•An approximate possibility sensitivity is proposed to efficiently obtain the partial derivatives of the constraints.•A novel iterative mechanism is established to improve the convergence rate.•Two numerical exa...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Mathematical Modelling Ročník 107; s. 256 - 274
Hlavní autoři: Tang, Jiachang, Fu, Chunming, Mi, Chengji, Liu, Haibo
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier Inc 01.07.2022
Elsevier BV
Témata:
ISSN:0307-904X, 1088-8691, 0307-904X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •An interval sequential linear programming for nonlinear robust optimization is proposed.•An approximate possibility sensitivity is proposed to efficiently obtain the partial derivatives of the constraints.•A novel iterative mechanism is established to improve the convergence rate.•Two numerical examples and two practical engineering problems are applied to verify the accuracy and efficiency. In this paper, interval sequential linear programming (ISLP) is proposed to solve nonlinear robust optimization (RO). The main idea of the programming is to transform the uncertain optimization into several possibility-sensitivity analyses and deterministic linear optimization problems that are sequentially solved. At each cycle, a possibility-sensitivity analysis method is proposed to obtain the approximate partial derivatives of the uncertain constraints at the current design point, based on which a deterministic linear optimization model is constructed and the design point is updated by solving the linear optimization. Moreover, an iterative mechanism is created to adaptively update the design space and improve the convergence rate. Finally, two numerical examples and two practical engineering problems are applied to verify the accuracy and efficiency of the proposed method.
AbstractList •An interval sequential linear programming for nonlinear robust optimization is proposed.•An approximate possibility sensitivity is proposed to efficiently obtain the partial derivatives of the constraints.•A novel iterative mechanism is established to improve the convergence rate.•Two numerical examples and two practical engineering problems are applied to verify the accuracy and efficiency. In this paper, interval sequential linear programming (ISLP) is proposed to solve nonlinear robust optimization (RO). The main idea of the programming is to transform the uncertain optimization into several possibility-sensitivity analyses and deterministic linear optimization problems that are sequentially solved. At each cycle, a possibility-sensitivity analysis method is proposed to obtain the approximate partial derivatives of the uncertain constraints at the current design point, based on which a deterministic linear optimization model is constructed and the design point is updated by solving the linear optimization. Moreover, an iterative mechanism is created to adaptively update the design space and improve the convergence rate. Finally, two numerical examples and two practical engineering problems are applied to verify the accuracy and efficiency of the proposed method.
In this paper, interval sequential linear programming (ISLP) is proposed to solve nonlinear robust optimization (RO). The main idea of the programming is to transform the uncertain optimization into several possibility-sensitivity analyses and deterministic linear optimization problems that are sequentially solved. At each cycle, a possibility-sensitivity analysis method is proposed to obtain the approximate partial derivatives of the uncertain constraints at the current design point, based on which a deterministic linear optimization model is constructed and the design point is updated by solving the linear optimization. Moreover, an iterative mechanism is created to adaptively update the design space and improve the convergence rate. Finally, two numerical examples and two practical engineering problems are applied to verify the accuracy and efficiency of the proposed method.
Author Fu, Chunming
Liu, Haibo
Tang, Jiachang
Mi, Chengji
Author_xml – sequence: 1
  givenname: Jiachang
  surname: Tang
  fullname: Tang, Jiachang
  organization: Department of Mechanical Engineering, Hunan University of Technology, Zhuzhou City, 412007, PR China
– sequence: 2
  givenname: Chunming
  surname: Fu
  fullname: Fu, Chunming
  organization: College of Mechanical Engineering, University of South China, Hengyang City, 421001, PR China
– sequence: 3
  givenname: Chengji
  surname: Mi
  fullname: Mi, Chengji
  email: michengji_86@126.com
  organization: Department of Mechanical Engineering, Hunan University of Technology, Zhuzhou City, 412007, PR China
– sequence: 4
  givenname: Haibo
  surname: Liu
  fullname: Liu, Haibo
  organization: Hunan Provincial Key Laboratory of Health Maintenance for Mechanical Equipment, Hunan University of Science and Technology, Xiangtan City, 411201, PR China
BookMark eNp9UMtqwzAQFCWFJmk_oDdDz3H1sC2bnkLoCwK9pNCbkOV1kLElV1IC7ddXaXIoPQQWdrU7s6OdGZoYawChW4JTgklx36VyHFKKKU1xDMYv0BQzzBcVzj4mf-orNPO-wxjn8TVFm6VJtAng9rJPPHzuwAQdy14bkC4Znd06OQzabJPWuiSqnibO1jsfEjsGPehvGbQ1B3Tdw-Cv0WUrew83pzxH70-Pm9XLYv32_LparheK0TwsuMoyRRlpWVEUtAVSlk2myqIhFWshY6SKLckAYqOkNc8BWJkRDrWSXKqazdHdcW8Ujj_3QXR250yUFLTgeVHlFOcRRY4o5az3DloxOj1I9yUIFgfzRCeieeJgnsAxGI8c_o-jdPg9Mjip-7PMhyMT4uF7DU54pcEoaLQDFURj9Rn2D_-VjVQ
CitedBy_id crossref_primary_10_1016_j_cma_2023_116475
crossref_primary_10_1016_j_heliyon_2024_e30171
crossref_primary_10_1007_s11012_024_01857_4
crossref_primary_10_1680_jencm_22_00031
crossref_primary_10_3390_app14146245
crossref_primary_10_1016_j_istruc_2023_03_007
crossref_primary_10_3390_su152115671
crossref_primary_10_1016_j_apm_2023_09_010
crossref_primary_10_3390_e27070682
crossref_primary_10_3390_eng6090238
crossref_primary_10_1177_16878132231153266
crossref_primary_10_1016_j_istruc_2022_09_033
crossref_primary_10_1016_j_ress_2024_109944
crossref_primary_10_1007_s00158_023_03591_z
crossref_primary_10_1029_2023WR035373
crossref_primary_10_1155_2024_5754231
crossref_primary_10_3390_app13158806
crossref_primary_10_1016_j_swevo_2024_101584
crossref_primary_10_1016_j_probengmech_2024_103612
Cites_doi 10.1016/j.aei.2019.04.002
10.1016/j.engstruct.2007.01.020
10.1007/s101070100286
10.1016/j.compstruc.2017.12.001
10.1016/j.cma.2020.113018
10.1007/s00158-013-1010-x
10.1007/s00158-010-0488-8
10.1016/j.advengsoft.2016.05.002
10.1002/nme.281
10.1016/j.apm.2018.12.025
10.1016/j.ejor.2007.03.031
10.1016/j.apm.2019.10.019
10.1115/1.2717225
10.1007/s00158-019-02273-z
10.1016/j.apm.2019.11.029
10.1016/j.cma.2021.113990
10.1137/S0036144504446096
10.1115/1.1711821
10.2514/3.12164
10.1016/j.ress.2008.03.010
10.1016/j.apm.2012.09.073
10.1137/S1052623498344562
10.1016/j.cma.2007.03.003
10.1115/1.2202883
10.1016/j.cma.2003.12.055
10.1016/0045-7949(87)90064-2
10.1115/1.2829499
10.1007/s00158-020-02781-3
10.1016/j.compstruc.2016.10.010
10.1007/s11081-010-9107-1
10.1115/1.4032630
10.1016/j.cma.2019.112649
10.1016/0165-0114(87)90114-X
10.1115/1.1649968
10.1016/j.ress.2017.09.008
10.1016/j.strusafe.2007.10.001
10.1007/s00158-011-0631-1
10.1115/1.4007392
10.1080/00207547808930043
10.1115/1.4025963
10.1007/s00158-014-1160-5
10.1016/S0045-7825(02)00287-6
10.1016/j.ress.2015.12.019
10.1016/j.cma.2007.03.024
ContentType Journal Article
Copyright 2022
Copyright Elsevier BV Jul 2022
Copyright_xml – notice: 2022
– notice: Copyright Elsevier BV Jul 2022
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2022.02.037
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
Psychology
EISSN 0307-904X
EndPage 274
ExternalDocumentID 10_1016_j_apm_2022_02_037
S0307904X22001081
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABAOU
ABEFU
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEXQZ
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HZ~
IHE
IXB
J1W
JJJVA
KOM
LG9
LY7
M26
M41
MHUIS
MO0
MVM
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSW
SSZ
T5K
TN5
WH7
WUQ
XJT
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
-W8
.7I
.GO
.QK
0BK
2DF
53G
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALQZU
AQTUD
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
DGFLZ
DKSSO
EAP
EBR
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
IPNFZ
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-7c44c231f36662fe188d4c86d193fe4319e18a3eed1982b75ee38417ebca7acb3
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798289800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0307-904X
1088-8691
IngestDate Sun Nov 09 07:02:35 EST 2025
Sat Nov 29 07:19:07 EST 2025
Tue Nov 18 21:52:42 EST 2025
Fri Feb 23 02:39:35 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Interval uncertainty
Robust optimization
Sensitivity analysis
Sequential linear programming
Reliability-based possibility degree of interval (RPDI)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-7c44c231f36662fe188d4c86d193fe4319e18a3eed1982b75ee38417ebca7acb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2675695205
PQPubID 2045280
PageCount 19
ParticipantIDs proquest_journals_2675695205
crossref_primary_10_1016_j_apm_2022_02_037
crossref_citationtrail_10_1016_j_apm_2022_02_037
elsevier_sciencedirect_doi_10_1016_j_apm_2022_02_037
PublicationCentury 2000
PublicationDate July 2022
2022-07-00
20220701
PublicationDateYYYYMMDD 2022-07-01
PublicationDate_xml – month: 07
  year: 2022
  text: July 2022
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2022
Publisher Elsevier Inc
Elsevier BV
Publisher_xml – name: Elsevier Inc
– name: Elsevier BV
References Ben-Tal, Nemirovski (bib0013) 2002; 92
Nocedal, Wright (bib0052) 1999
Tu, Choi, Park (bib0005) 1999; 121
Zhang, Han, Jiang, Liu, Li (bib0007) 2017
Harzheim, Warnecke (bib0018) 2010; 42
Medina, Taflanidis (bib0019) 2014; 51
Xiao, Yuan, Zhou (bib0011) 2020; 359
Li, Xiao, Yi, Gao (bib0033) 2019; 40
Wu, Gao, Luo, Brown (bib0029) 2016; 99
Dong, Shah (bib0037) 1987; 24
Beyer, Sendhoff (bib0014) 2007; 196
Cheng, Liu, Qian, Wu, Zhou, Gao, Zhang, Tan (bib0034) 2019; 60
Castillo, Mínguez, Castillo (bib0051) 2008; 93
Mourelatos, Liang (bib0017) 2006; 128
Siddiqui, Azarm, Gabriel (bib0026) 2011; 44
Fu, Cao, Tang, Long (bib0042) 2018; 197
Fu, Liu, Deng (bib0058) 2020; 80
Yang, Zhang, Han (bib0023) 2020; 366
Fu, Liu, Xiao (bib0041) 2019; 69
Du, Chen (bib0004) 2004; 126
Jiang, Han, Liu (bib0046) 2007; 196
Kwak, Lee (bib0050) 1987; 27
Tang, Fu (bib0040) 2017; 113
Tang, Cao, Mi, Fu, Liu (bib0043) 2021
Yonekura, Kanno (bib0025) 2010; 11
Wang, Qing (bib0030) 2016
Wei, Song, Lu, Yue (bib0049) 2016; 149
Gaspar-Cunha, Ferreira, Recio (bib0021) 2014; 49
Papadrakakis, Lagaros (bib0006) 2002; 191
Taguchi (bib0015) 1978; 16
Zhou, Cheng, Li (bib0027) 2012; 134
Gunawan, Azarm (bib0036) 2003; 126
Zhang, Zhou, Jiang, Yang, Han, Li (bib0002) 2021; 384
Yang, Zhang, Han (bib0009) 2020
Wu, Zhang, Chen, Luo (bib0039) 2013; 37
Balling, Free, Parkinson (bib0024) 1986; 108
Jiang, Hana, Liu (bib0044) 2008; 188
Xie, Zhou, Hu, Shu, Jiang (bib0031) 2017
Lu, Song, Yue, Wang (bib0048) 2008; 30
Gill, Murray, Saunders (bib0054) 2005; 47
Xu, Caramanis, Mannor (bib0022) 2017
Zhang, Liang, Cao, Liu, Han (bib0001) 2021
Tang, Mi, Fu, Yao (bib0003) 2021
Cheng, Liu, Tang, Tan (bib0032) 2017; 182
Yang, Zhang, Cheng, Han (bib0012) 2021
Doltsinis, Zhan (bib0016) 2004; 193
Du (bib0055) 2008; 130
Wu (bib0047) 1994; 32
Zhou, Li (bib0028) 2014; 136
Chen, Lian, Yang (bib0038) 2002; 53
Zheng, Da, Li, Xiao, Gao (bib0035) 2020; 78
Zhang, Zhang, Ye, Fang, Han (bib0010) 2020
Jiang, Han, Guan, Li (bib0045) 2007; 29
Lawrence, Tits (bib0053) 2001; 11
Xiao, Zuo, Zhou (bib0008) 2018; 169
Ben-Tal, Nemirovski (bib0020) 2002; 92
Huang, Zhou, Jiang, Zheng, Han (bib0057) 2017
Sandau (bib0056) 2009
Tang (10.1016/j.apm.2022.02.037_bib0040) 2017; 113
Wu (10.1016/j.apm.2022.02.037_bib0039) 2013; 37
Tang (10.1016/j.apm.2022.02.037_bib0043) 2021
Nocedal (10.1016/j.apm.2022.02.037_bib0052) 1999
Du (10.1016/j.apm.2022.02.037_bib0055) 2008; 130
Fu (10.1016/j.apm.2022.02.037_bib0058) 2020; 80
Beyer (10.1016/j.apm.2022.02.037_bib0014) 2007; 196
Yang (10.1016/j.apm.2022.02.037_bib0009) 2020
Taguchi (10.1016/j.apm.2022.02.037_bib0015) 1978; 16
Lu (10.1016/j.apm.2022.02.037_bib0048) 2008; 30
Tu (10.1016/j.apm.2022.02.037_bib0005) 1999; 121
Yonekura (10.1016/j.apm.2022.02.037_bib0025) 2010; 11
Gill (10.1016/j.apm.2022.02.037_bib0054) 2005; 47
Xiao (10.1016/j.apm.2022.02.037_bib0011) 2020; 359
Wu (10.1016/j.apm.2022.02.037_bib0029) 2016; 99
Wang (10.1016/j.apm.2022.02.037_bib0030) 2016
Zheng (10.1016/j.apm.2022.02.037_bib0035) 2020; 78
Zhang (10.1016/j.apm.2022.02.037_bib0010) 2020
Gunawan (10.1016/j.apm.2022.02.037_bib0036) 2003; 126
Zhou (10.1016/j.apm.2022.02.037_bib0028) 2014; 136
Wu (10.1016/j.apm.2022.02.037_bib0047) 1994; 32
Jiang (10.1016/j.apm.2022.02.037_bib0046) 2007; 196
Lawrence (10.1016/j.apm.2022.02.037_bib0053) 2001; 11
Tang (10.1016/j.apm.2022.02.037_bib0003) 2021
Du (10.1016/j.apm.2022.02.037_bib0004) 2004; 126
Chen (10.1016/j.apm.2022.02.037_bib0038) 2002; 53
Jiang (10.1016/j.apm.2022.02.037_bib0044) 2008; 188
Doltsinis (10.1016/j.apm.2022.02.037_bib0016) 2004; 193
Huang (10.1016/j.apm.2022.02.037_bib0057) 2017
Cheng (10.1016/j.apm.2022.02.037_bib0032) 2017; 182
Medina (10.1016/j.apm.2022.02.037_bib0019) 2014; 51
Jiang (10.1016/j.apm.2022.02.037_bib0045) 2007; 29
Zhang (10.1016/j.apm.2022.02.037_bib0001) 2021
Li (10.1016/j.apm.2022.02.037_bib0033) 2019; 40
Wei (10.1016/j.apm.2022.02.037_bib0049) 2016; 149
Ben-Tal (10.1016/j.apm.2022.02.037_bib0013) 2002; 92
Cheng (10.1016/j.apm.2022.02.037_bib0034) 2019; 60
Zhang (10.1016/j.apm.2022.02.037_bib0002) 2021; 384
Siddiqui (10.1016/j.apm.2022.02.037_bib0026) 2011; 44
Ben-Tal (10.1016/j.apm.2022.02.037_bib0020) 2002; 92
Xie (10.1016/j.apm.2022.02.037_bib0031) 2017
Fu (10.1016/j.apm.2022.02.037_bib0042) 2018; 197
Xu (10.1016/j.apm.2022.02.037_bib0022) 2017
Zhang (10.1016/j.apm.2022.02.037_bib0007) 2017
Xiao (10.1016/j.apm.2022.02.037_bib0008) 2018; 169
Mourelatos (10.1016/j.apm.2022.02.037_bib0017) 2006; 128
Gaspar-Cunha (10.1016/j.apm.2022.02.037_bib0021) 2014; 49
Balling (10.1016/j.apm.2022.02.037_bib0024) 1986; 108
Sandau (10.1016/j.apm.2022.02.037_bib0056) 2009
Yang (10.1016/j.apm.2022.02.037_bib0023) 2020; 366
Fu (10.1016/j.apm.2022.02.037_bib0041) 2019; 69
Papadrakakis (10.1016/j.apm.2022.02.037_bib0006) 2002; 191
Yang (10.1016/j.apm.2022.02.037_bib0012) 2021
Zhou (10.1016/j.apm.2022.02.037_bib0027) 2012; 134
Castillo (10.1016/j.apm.2022.02.037_bib0051) 2008; 93
Dong (10.1016/j.apm.2022.02.037_bib0037) 1987; 24
Harzheim (10.1016/j.apm.2022.02.037_bib0018) 2010; 42
Kwak (10.1016/j.apm.2022.02.037_bib0050) 1987; 27
References_xml – volume: 196
  start-page: 3190
  year: 2007
  end-page: 3218
  ident: bib0014
  article-title: Robust optimization – a comprehensive survey
  publication-title: Comput. Methods Appl. Mech. Eng.
– year: 2009
  ident: bib0056
  article-title: Digital Airborne Camera: Introduction and Technology
– volume: 126
  start-page: 395
  year: 2003
  end-page: 402
  ident: bib0036
  article-title: Non-gradient based parameter sensitivity estimation for single objective robust design optimization
  publication-title: J. Mech. Des.
– volume: 60
  start-page: 17
  year: 2019
  end-page: 33
  ident: bib0034
  article-title: Robust optimization of uncertain structures based on interval closeness coefficients and the 3D violation vectors of interval constraints
  publication-title: Struct. Multidiscip. Optim.
– volume: 182
  start-page: 41
  year: 2017
  end-page: 54
  ident: bib0032
  article-title: Robust optimization of uncertain structures based on normalized violation degree of interval constraint
  publication-title: Comput. Struct.
– start-page: 144
  year: 2021
  ident: bib0001
  article-title: Evidence-theory-based reliability analysis through Kriging surrogate model
  publication-title: J. Mech. Des.
– volume: 92
  start-page: 453
  year: 2002
  end-page: 480
  ident: bib0013
  article-title: Robust optimization - methodology and applications
  publication-title: Math. Program.
– volume: 359
  year: 2020
  ident: bib0011
  article-title: Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 40
  start-page: 81
  year: 2019
  end-page: 92
  ident: bib0033
  article-title: Maximum variation analysis based analytical target cascading for multidisciplinary robust design optimization under interval uncertainty
  publication-title: Adv. Eng. Inf.
– volume: 113
  start-page: 239
  year: 2017
  end-page: 259
  ident: bib0040
  article-title: A dimension-reduction interval analysis method for uncertain problems
  publication-title: Comput. Model. Eng. Sci.
– volume: 196
  start-page: 4791
  year: 2007
  end-page: 4800
  ident: bib0046
  article-title: Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval
  publication-title: Comput. Meth. Appl. Mech. Eng.
– year: 1999
  ident: bib0052
  article-title: Numerical Optimization
– volume: 24
  start-page: 65
  year: 1987
  end-page: 78
  ident: bib0037
  article-title: Vertex method for computing functions of fuzzy variables
  publication-title: Fuzzy Sets Syst.
– start-page: 139
  year: 2017
  ident: bib0007
  article-title: Time-dependent reliability analysis through response surface method
  publication-title: J. Mech. Des.
– volume: 30
  start-page: 517
  year: 2008
  end-page: 532
  ident: bib0048
  article-title: Reliability sensitivity method by line sampling
  publication-title: Struct. Saf.
– volume: 51
  start-page: 813
  year: 2014
  end-page: 834
  ident: bib0019
  article-title: Probabilistic measures for assessing appropriateness of robust design optimization solutions
  publication-title: Struct. Multidiscip. Optim.
– volume: 384
  year: 2021
  ident: bib0002
  article-title: A stochastic process discretization method combing active learning Kriging model for efficient time-variant reliability analysis
  publication-title: Comput. Meth. Appl. Mech. Eng.
– start-page: 1
  year: 2020
  end-page: 14
  ident: bib0010
  article-title: Hybrid learning algorithm of radial basis function networks for reliability analysis
  publication-title: IEEE Trans. Reliab.
– volume: 49
  start-page: 771
  year: 2014
  end-page: 793
  ident: bib0021
  article-title: Evolutionary robustness analysis for multi-objective optimization: benchmark problems
  publication-title: Struct. Multidiscip. Optim.
– volume: 44
  start-page: 259
  year: 2011
  end-page: 275
  ident: bib0026
  article-title: A modified Benders decomposition method for efficient robust optimization under interval uncertainty
  publication-title: Struct. Multidiscip. Optim.
– volume: 47
  start-page: 99
  year: 2005
  end-page: 131
  ident: bib0054
  article-title: SNOPT: an SQP algorithm for large-scale constrained optimization
  publication-title: SIAM Rev.
– volume: 191
  start-page: 3491
  year: 2002
  end-page: 3507
  ident: bib0006
  article-title: Reliability-based structural optimization using neural networks and Monte Carlo simulation
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 37
  start-page: 4578
  year: 2013
  end-page: 4591
  ident: bib0039
  article-title: A Chebyshev interval method for nonlinear dynamic systems under uncertainty
  publication-title: Appl. Math. Modell.
– year: 2017
  ident: bib0031
  article-title: A sequential multi-objective robust optimization approach under interval uncertainty based on support vector machines
  publication-title: IEEE International Conference on Industrial Engineering and Engineering Management
– volume: 80
  start-page: 384
  year: 2020
  end-page: 393
  ident: bib0058
  article-title: A direct solution framework for structural optimization problems with interval uncertainties
  publication-title: Appl. Math. Modell.
– volume: 169
  start-page: 330
  year: 2018
  end-page: 338
  ident: bib0008
  article-title: A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 134
  start-page: 1087
  year: 2012
  end-page: 1100
  ident: bib0027
  article-title: Sequential quadratic programming for robust optimization with interval uncertainty
  publication-title: J. Mech. Des.
– year: 2021
  ident: bib0012
  article-title: Reliability-based design optimization for RV reducer with experimental constraint
  publication-title: Struct. Multidiscip. Optim.
– volume: 197
  start-page: 58
  year: 2018
  end-page: 69
  ident: bib0042
  article-title: A subinterval decomposition analysis method for uncertain structures with large uncertainty parameters
  publication-title: Comput. Struct.
– volume: 27
  start-page: 399
  year: 1987
  end-page: 406
  ident: bib0050
  article-title: Sensitivity analysis for reliability-based optimization using an AFOSM method
  publication-title: Comput. Struct.
– volume: 92
  start-page: 453
  year: 2002
  end-page: 480
  ident: bib0020
  article-title: Robust optimization – methodology and applications
  publication-title: Math. Program.
– volume: 78
  start-page: 627
  year: 2020
  end-page: 647
  ident: bib0035
  article-title: Robust topology optimization for multi-material structures under interval uncertainty
  publication-title: Appl. Math. Modell.
– volume: 121
  start-page: 557
  year: 1999
  end-page: 564
  ident: bib0005
  article-title: A new study on reliability-based design optimization
  publication-title: J. Mech. Des.
– volume: 29
  start-page: 3168
  year: 2007
  end-page: 3177
  ident: bib0045
  article-title: An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method
  publication-title: Eng. Struct.
– volume: 16
  start-page: 521
  year: 1978
  end-page: 530
  ident: bib0015
  article-title: Performance analysis design
  publication-title: Int. J. Prod. Res.
– volume: 128
  start-page: 1195
  year: 2006
  end-page: 1204
  ident: bib0017
  article-title: A methodology for trading-off performance and robustness under uncertainty
  publication-title: J. Mech. Des.
– volume: 136
  year: 2014
  ident: bib0028
  article-title: Advanced robust optimization with interval uncertainty using a single-looped structure and sequential quadratic programming
  publication-title: J. Mech. Des.
– volume: 42
  start-page: 315
  year: 2010
  end-page: 323
  ident: bib0018
  article-title: Robustness optimization of the position of an anti-roll bar link to avoid the toggling of a rear axle stabilizer
  publication-title: Struct. Multidiscip. Optim.
– volume: 149
  start-page: 107
  year: 2016
  end-page: 120
  ident: bib0049
  article-title: Time-dependent reliability sensitivity analysis of motion mechanisms
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 188
  start-page: 1
  year: 2008
  end-page: 13
  ident: bib0044
  article-title: A nonlinear interval number programming method for uncertain optimization problems
  publication-title: Eur. J. Oper. Res.
– volume: 53
  start-page: 393
  year: 2002
  end-page: 407
  ident: bib0038
  article-title: Interval static displacement analysis for structures with interval parameters
  publication-title: Int. J. Numer. Methods Eng.
– start-page: 1
  year: 2017
  end-page: 18
  ident: bib0057
  article-title: Reliability-based multidisciplinary design optimization using incremental shifting vector strategy and its application in electronic product design
  publication-title: Acta Mech. Sin.
– year: 2016
  ident: bib0030
  article-title: A new approach using a mixed IA/AA model for robust optimization with interval uncertainty
  publication-title: J. Mech. Des.
– volume: 99
  start-page: 36
  year: 2016
  end-page: 48
  ident: bib0029
  article-title: Robust topology optimization for structures under interval uncertainty
  publication-title: Adv. Eng. Software
– volume: 130
  start-page: 842
  year: 2008
  end-page: 849
  ident: bib0055
  article-title: Saddlepoint approximation for sequential optimization and reliability analysis
  publication-title: J. Mech. Des.
– volume: 366
  year: 2020
  ident: bib0023
  article-title: New efficient and robust method for structural reliability analysis and its application in reliability-based design optimization
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 32
  start-page: 1717
  year: 1994
  end-page: 1723
  ident: bib0047
  article-title: Computational methods for efficient structural reliability and reliability sensitivity analysis
  publication-title: AIAA J.
– volume: 11
  start-page: 355
  year: 2010
  end-page: 379
  ident: bib0025
  article-title: Global optimization of robust truss topology via mixed integer semidefinite programming
  publication-title: Optim. Eng.
– volume: 11
  start-page: 1092
  year: 2001
  end-page: 1118
  ident: bib0053
  article-title: A computationally efficient feasible sequential quadratic programming algorithm
  publication-title: SIAM J. Optim.
– volume: 193
  start-page: 2221
  year: 2004
  end-page: 2237
  ident: bib0016
  article-title: Robust design of structures using optimization methods
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 126
  start-page: 871
  year: 2004
  end-page: 880
  ident: bib0004
  article-title: Sequential optimization and reliability assessment method for efficient probabilistic design
  publication-title: J. Mech. Des.
– year: 2020
  ident: bib0009
  article-title: Enriched single-loop approach for reliability-based design optimization of complex nonlinear problems
  publication-title: Eng. Comput.
– start-page: 552
  year: 2017
  end-page: 556
  ident: bib0022
  article-title: A distributional interpretation of robust optimization
  publication-title: Commun. Control Comput.
– volume: 108
  start-page: 438
  year: 1986
  end-page: 441
  ident: bib0024
  article-title: Consideration of worst-case manufacturing tolerances in design optimization
  publication-title: J. Mech. Des.
– volume: 69
  start-page: 441
  year: 2019
  end-page: 452
  ident: bib0041
  article-title: Interval differential evolution with dimension-reduction interval analysis method for uncertain optimization problems
  publication-title: Appl. Math. Modell.
– year: 2021
  ident: bib0003
  article-title: Novel solution framework for inverse problem considering interval uncertainty
  publication-title: Int. J. Numer. Methods Eng.
– year: 2021
  ident: bib0043
  article-title: Interval assessments of identified parameters for uncertain structures
  publication-title: Eng. Comput.
– volume: 93
  start-page: 1788
  year: 2008
  end-page: 1800
  ident: bib0051
  article-title: Sensitivity analysis in optimization and reliability problems
  publication-title: Reliab. Eng. Syst. Saf.
– year: 1999
  ident: 10.1016/j.apm.2022.02.037_bib0052
– volume: 40
  start-page: 81
  year: 2019
  ident: 10.1016/j.apm.2022.02.037_bib0033
  article-title: Maximum variation analysis based analytical target cascading for multidisciplinary robust design optimization under interval uncertainty
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2019.04.002
– volume: 29
  start-page: 3168
  year: 2007
  ident: 10.1016/j.apm.2022.02.037_bib0045
  article-title: An uncertain structural optimization method based on nonlinear interval number programming and interval analysis method
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2007.01.020
– volume: 92
  start-page: 453
  year: 2002
  ident: 10.1016/j.apm.2022.02.037_bib0013
  article-title: Robust optimization - methodology and applications
  publication-title: Math. Program.
  doi: 10.1007/s101070100286
– volume: 197
  start-page: 58
  year: 2018
  ident: 10.1016/j.apm.2022.02.037_bib0042
  article-title: A subinterval decomposition analysis method for uncertain structures with large uncertainty parameters
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2017.12.001
– volume: 366
  year: 2020
  ident: 10.1016/j.apm.2022.02.037_bib0023
  article-title: New efficient and robust method for structural reliability analysis and its application in reliability-based design optimization
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2020.113018
– year: 2020
  ident: 10.1016/j.apm.2022.02.037_bib0009
  article-title: Enriched single-loop approach for reliability-based design optimization of complex nonlinear problems
  publication-title: Eng. Comput.
– volume: 49
  start-page: 771
  year: 2014
  ident: 10.1016/j.apm.2022.02.037_bib0021
  article-title: Evolutionary robustness analysis for multi-objective optimization: benchmark problems
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-013-1010-x
– year: 2009
  ident: 10.1016/j.apm.2022.02.037_bib0056
– volume: 42
  start-page: 315
  year: 2010
  ident: 10.1016/j.apm.2022.02.037_bib0018
  article-title: Robustness optimization of the position of an anti-roll bar link to avoid the toggling of a rear axle stabilizer
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-010-0488-8
– volume: 99
  start-page: 36
  year: 2016
  ident: 10.1016/j.apm.2022.02.037_bib0029
  article-title: Robust topology optimization for structures under interval uncertainty
  publication-title: Adv. Eng. Software
  doi: 10.1016/j.advengsoft.2016.05.002
– volume: 53
  start-page: 393
  year: 2002
  ident: 10.1016/j.apm.2022.02.037_bib0038
  article-title: Interval static displacement analysis for structures with interval parameters
  publication-title: Int. J. Numer. Methods Eng.
  doi: 10.1002/nme.281
– volume: 69
  start-page: 441
  year: 2019
  ident: 10.1016/j.apm.2022.02.037_bib0041
  article-title: Interval differential evolution with dimension-reduction interval analysis method for uncertain optimization problems
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2018.12.025
– volume: 188
  start-page: 1
  year: 2008
  ident: 10.1016/j.apm.2022.02.037_bib0044
  article-title: A nonlinear interval number programming method for uncertain optimization problems
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2007.03.031
– volume: 78
  start-page: 627
  year: 2020
  ident: 10.1016/j.apm.2022.02.037_bib0035
  article-title: Robust topology optimization for multi-material structures under interval uncertainty
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2019.10.019
– volume: 130
  start-page: 842
  year: 2008
  ident: 10.1016/j.apm.2022.02.037_bib0055
  article-title: Saddlepoint approximation for sequential optimization and reliability analysis
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2717225
– volume: 60
  start-page: 17
  year: 2019
  ident: 10.1016/j.apm.2022.02.037_bib0034
  article-title: Robust optimization of uncertain structures based on interval closeness coefficients and the 3D violation vectors of interval constraints
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-019-02273-z
– volume: 80
  start-page: 384
  year: 2020
  ident: 10.1016/j.apm.2022.02.037_bib0058
  article-title: A direct solution framework for structural optimization problems with interval uncertainties
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2019.11.029
– year: 2021
  ident: 10.1016/j.apm.2022.02.037_bib0043
  article-title: Interval assessments of identified parameters for uncertain structures
  publication-title: Eng. Comput.
– volume: 384
  year: 2021
  ident: 10.1016/j.apm.2022.02.037_bib0002
  article-title: A stochastic process discretization method combing active learning Kriging model for efficient time-variant reliability analysis
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2021.113990
– volume: 47
  start-page: 99
  year: 2005
  ident: 10.1016/j.apm.2022.02.037_bib0054
  article-title: SNOPT: an SQP algorithm for large-scale constrained optimization
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144504446096
– year: 2017
  ident: 10.1016/j.apm.2022.02.037_bib0031
  article-title: A sequential multi-objective robust optimization approach under interval uncertainty based on support vector machines
– volume: 126
  start-page: 395
  issue: 3
  year: 2003
  ident: 10.1016/j.apm.2022.02.037_bib0036
  article-title: Non-gradient based parameter sensitivity estimation for single objective robust design optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.1711821
– volume: 108
  start-page: 438
  year: 1986
  ident: 10.1016/j.apm.2022.02.037_bib0024
  article-title: Consideration of worst-case manufacturing tolerances in design optimization
  publication-title: J. Mech. Des.
– volume: 113
  start-page: 239
  year: 2017
  ident: 10.1016/j.apm.2022.02.037_bib0040
  article-title: A dimension-reduction interval analysis method for uncertain problems
  publication-title: Comput. Model. Eng. Sci.
– volume: 32
  start-page: 1717
  year: 1994
  ident: 10.1016/j.apm.2022.02.037_bib0047
  article-title: Computational methods for efficient structural reliability and reliability sensitivity analysis
  publication-title: AIAA J.
  doi: 10.2514/3.12164
– volume: 93
  start-page: 1788
  year: 2008
  ident: 10.1016/j.apm.2022.02.037_bib0051
  article-title: Sensitivity analysis in optimization and reliability problems
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2008.03.010
– volume: 37
  start-page: 4578
  year: 2013
  ident: 10.1016/j.apm.2022.02.037_bib0039
  article-title: A Chebyshev interval method for nonlinear dynamic systems under uncertainty
  publication-title: Appl. Math. Modell.
  doi: 10.1016/j.apm.2012.09.073
– volume: 11
  start-page: 1092
  year: 2001
  ident: 10.1016/j.apm.2022.02.037_bib0053
  article-title: A computationally efficient feasible sequential quadratic programming algorithm
  publication-title: SIAM J. Optim.
  doi: 10.1137/S1052623498344562
– volume: 92
  start-page: 453
  year: 2002
  ident: 10.1016/j.apm.2022.02.037_bib0020
  article-title: Robust optimization – methodology and applications
  publication-title: Math. Program.
  doi: 10.1007/s101070100286
– volume: 196
  start-page: 3190
  year: 2007
  ident: 10.1016/j.apm.2022.02.037_bib0014
  article-title: Robust optimization – a comprehensive survey
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.03.003
– volume: 128
  start-page: 1195
  year: 2006
  ident: 10.1016/j.apm.2022.02.037_bib0017
  article-title: A methodology for trading-off performance and robustness under uncertainty
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2202883
– start-page: 1
  year: 2020
  ident: 10.1016/j.apm.2022.02.037_bib0010
  article-title: Hybrid learning algorithm of radial basis function networks for reliability analysis
  publication-title: IEEE Trans. Reliab.
– volume: 193
  start-page: 2221
  year: 2004
  ident: 10.1016/j.apm.2022.02.037_bib0016
  article-title: Robust design of structures using optimization methods
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2003.12.055
– volume: 27
  start-page: 399
  year: 1987
  ident: 10.1016/j.apm.2022.02.037_bib0050
  article-title: Sensitivity analysis for reliability-based optimization using an AFOSM method
  publication-title: Comput. Struct.
  doi: 10.1016/0045-7949(87)90064-2
– volume: 121
  start-page: 557
  year: 1999
  ident: 10.1016/j.apm.2022.02.037_bib0005
  article-title: A new study on reliability-based design optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2829499
– year: 2021
  ident: 10.1016/j.apm.2022.02.037_bib0012
  article-title: Reliability-based design optimization for RV reducer with experimental constraint
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-020-02781-3
– volume: 182
  start-page: 41
  year: 2017
  ident: 10.1016/j.apm.2022.02.037_bib0032
  article-title: Robust optimization of uncertain structures based on normalized violation degree of interval constraint
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2016.10.010
– year: 2021
  ident: 10.1016/j.apm.2022.02.037_bib0003
  article-title: Novel solution framework for inverse problem considering interval uncertainty
  publication-title: Int. J. Numer. Methods Eng.
– start-page: 139
  year: 2017
  ident: 10.1016/j.apm.2022.02.037_bib0007
  article-title: Time-dependent reliability analysis through response surface method
  publication-title: J. Mech. Des.
– volume: 11
  start-page: 355
  year: 2010
  ident: 10.1016/j.apm.2022.02.037_bib0025
  article-title: Global optimization of robust truss topology via mixed integer semidefinite programming
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-010-9107-1
– year: 2016
  ident: 10.1016/j.apm.2022.02.037_bib0030
  article-title: A new approach using a mixed IA/AA model for robust optimization with interval uncertainty
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4032630
– start-page: 1
  year: 2017
  ident: 10.1016/j.apm.2022.02.037_bib0057
  article-title: Reliability-based multidisciplinary design optimization using incremental shifting vector strategy and its application in electronic product design
  publication-title: Acta Mech. Sin.
– volume: 359
  year: 2020
  ident: 10.1016/j.apm.2022.02.037_bib0011
  article-title: Adaptive kriging-based efficient reliability method for structural systems with multiple failure modes and mixed variables
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.112649
– volume: 24
  start-page: 65
  year: 1987
  ident: 10.1016/j.apm.2022.02.037_bib0037
  article-title: Vertex method for computing functions of fuzzy variables
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/0165-0114(87)90114-X
– volume: 126
  start-page: 871
  year: 2004
  ident: 10.1016/j.apm.2022.02.037_bib0004
  article-title: Sequential optimization and reliability assessment method for efficient probabilistic design
  publication-title: J. Mech. Des.
  doi: 10.1115/1.1649968
– volume: 169
  start-page: 330
  year: 2018
  ident: 10.1016/j.apm.2022.02.037_bib0008
  article-title: A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2017.09.008
– start-page: 552
  year: 2017
  ident: 10.1016/j.apm.2022.02.037_bib0022
  article-title: A distributional interpretation of robust optimization
  publication-title: Commun. Control Comput.
– volume: 30
  start-page: 517
  year: 2008
  ident: 10.1016/j.apm.2022.02.037_bib0048
  article-title: Reliability sensitivity method by line sampling
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2007.10.001
– volume: 44
  start-page: 259
  year: 2011
  ident: 10.1016/j.apm.2022.02.037_bib0026
  article-title: A modified Benders decomposition method for efficient robust optimization under interval uncertainty
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-011-0631-1
– volume: 134
  start-page: 1087
  year: 2012
  ident: 10.1016/j.apm.2022.02.037_bib0027
  article-title: Sequential quadratic programming for robust optimization with interval uncertainty
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4007392
– volume: 16
  start-page: 521
  year: 1978
  ident: 10.1016/j.apm.2022.02.037_bib0015
  article-title: Performance analysis design
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207547808930043
– volume: 136
  year: 2014
  ident: 10.1016/j.apm.2022.02.037_bib0028
  article-title: Advanced robust optimization with interval uncertainty using a single-looped structure and sequential quadratic programming
  publication-title: J. Mech. Des.
  doi: 10.1115/1.4025963
– start-page: 144
  year: 2021
  ident: 10.1016/j.apm.2022.02.037_bib0001
  article-title: Evidence-theory-based reliability analysis through Kriging surrogate model
  publication-title: J. Mech. Des.
– volume: 51
  start-page: 813
  year: 2014
  ident: 10.1016/j.apm.2022.02.037_bib0019
  article-title: Probabilistic measures for assessing appropriateness of robust design optimization solutions
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-014-1160-5
– volume: 191
  start-page: 3491
  year: 2002
  ident: 10.1016/j.apm.2022.02.037_bib0006
  article-title: Reliability-based structural optimization using neural networks and Monte Carlo simulation
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(02)00287-6
– volume: 149
  start-page: 107
  year: 2016
  ident: 10.1016/j.apm.2022.02.037_bib0049
  article-title: Time-dependent reliability sensitivity analysis of motion mechanisms
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2015.12.019
– volume: 196
  start-page: 4791
  year: 2007
  ident: 10.1016/j.apm.2022.02.037_bib0046
  article-title: Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2007.03.024
SSID ssj0005904
ssj0012860
Score 2.440703
Snippet •An interval sequential linear programming for nonlinear robust optimization is proposed.•An approximate possibility sensitivity is proposed to efficiently...
In this paper, interval sequential linear programming (ISLP) is proposed to solve nonlinear robust optimization (RO). The main idea of the programming is to...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 256
SubjectTerms Interval uncertainty
Iterative methods
Linear programming
Optimization models
Reliability-based possibility degree of interval (RPDI)
Robust optimization
Robustness (mathematics)
Sensitivity analysis
Sequential linear programming
Title An interval sequential linear programming for nonlinear robust optimization problems
URI https://dx.doi.org/10.1016/j.apm.2022.02.037
https://www.proquest.com/docview/2675695205
Volume 107
WOSCitedRecordID wos000798289800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005904
  issn: 0307-904X
  databaseCode: AIEXJ
  dateStart: 20211214
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 0307-904X
  databaseCode: TFW
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLXKxgM8ID61wZj8wBNTUOI4cfxYoU0DbRMSBfoWOY6DUrVp1aTVfj7XX2koYgIkpCqqXCeufI_ta-fccxF6A259XCalCISKaECJSgNRpCXsWgsd1yhkZfKnfL1iNzfZdMo_jUYrHwuznbOmyW5v-eq_mhrKwNg6dPYvzN0_FArgOxgdrmB2uP6R4ceN0YBYb3UkiCFKd_pUXLuTWtba8rEWnkDZWKkM-GW9LDZtd7aEOWThgjPPXLqZdujCer910Qu-6gAUnVBn7pdBcxLgqL61MLHFPU429iX_plkMal_XtlQ132e1L7yqTd1LURfL4eEE2RFZ3YmZj5r5idRphCl5aJmZ_Sxsk9_6eTRJB0sysYl8fpnt7cHD7J1YaU0BQoz6qtWQ2RPR_qzb1E0SzSELdaz-IWEJh6n8cPzhfPpxRwviIfXimfoG_ybccAL3GvqdL7O3qhtXZfIYPXJ7DDy22HiCRqp5ih5e9_Zqn6HJuMEeJXiHEmyxgAcowYAS3KMEW5TgIUqwR8lz9OXifPL-MnAJNgIZk6QLmKRUgoNfxbCJJZWKsqykMktL8OorBa4lhyIRgxsV8YwULFEqzmjENIGOCVnEL9AB_AF1hHAqFSuYUhxWCFpUGQx9UUERj-IiDoU8RqHvqlw69XmdBGWee5rhLIfezXXv5iF8YnaM3va3rKz0yl2Vqe__3PmO1ifMASx33XbibZW7MdzmBDbRKU9ImLz8t6e-Qg92g-EEHXTrjXqN7sttV7frU4e4U3RvcvHtB_3BopY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+interval+sequential+linear+programming+for+nonlinear+robust+optimization+problems&rft.jtitle=Applied+mathematical+modelling&rft.au=Tang%2C+Jiachang&rft.au=Fu%2C+Chunming&rft.au=Mi%2C+Chengji&rft.au=Liu%2C+Haibo&rft.date=2022-07-01&rft.pub=Elsevier+Inc&rft.issn=0307-904X&rft.volume=107&rft.spage=256&rft.epage=274&rft_id=info:doi/10.1016%2Fj.apm.2022.02.037&rft.externalDocID=S0307904X22001081
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0307-904X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0307-904X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0307-904X&client=summon