The Anosov–Katok method and pseudo-rotations in symplectic dynamics

We prove that toric symplectic manifolds admit Hamiltonian pseudo-rotations with a finite, and in a sense minimal, number of ergodic measures. The set of ergodic measures of these pseudo-rotations consists of the measure induced by the symplectic volume form and the Dirac measures supported at the f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of fixed point theory and applications Ročník 24; číslo 2
Hlavní autoři: Le Roux, Frédéric, Seyfaddini, Sobhan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Cham Springer International Publishing 01.06.2022
Springer Verlag
Témata:
ISSN:1661-7738, 1661-7746
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We prove that toric symplectic manifolds admit Hamiltonian pseudo-rotations with a finite, and in a sense minimal, number of ergodic measures. The set of ergodic measures of these pseudo-rotations consists of the measure induced by the symplectic volume form and the Dirac measures supported at the fixed points of the torus action. Our construction relies on the conjugation method of Anosov and Katok.
ISSN:1661-7738
1661-7746
DOI:10.1007/s11784-022-00955-8