The Anosov–Katok method and pseudo-rotations in symplectic dynamics
We prove that toric symplectic manifolds admit Hamiltonian pseudo-rotations with a finite, and in a sense minimal, number of ergodic measures. The set of ergodic measures of these pseudo-rotations consists of the measure induced by the symplectic volume form and the Dirac measures supported at the f...
Uloženo v:
| Vydáno v: | Journal of fixed point theory and applications Ročník 24; číslo 2 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cham
Springer International Publishing
01.06.2022
Springer Verlag |
| Témata: | |
| ISSN: | 1661-7738, 1661-7746 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We prove that toric symplectic manifolds admit Hamiltonian pseudo-rotations with a finite, and in a sense minimal, number of ergodic measures. The set of ergodic measures of these pseudo-rotations consists of the measure induced by the symplectic volume form and the Dirac measures supported at the fixed points of the torus action. Our construction relies on the conjugation method of Anosov and Katok. |
|---|---|
| ISSN: | 1661-7738 1661-7746 |
| DOI: | 10.1007/s11784-022-00955-8 |