Multiobjective big data optimization based on a hybrid salp swarm algorithm and differential evolution
This paper developed a multiobjective Big Data optimization approach based on a hybrid salp swarm algorithm and the differential evolution algorithm. The role of the differential evolution algorithm is to enhance the capability of the feature exploitation of the salp swarm algorithm because the oper...
Uloženo v:
| Vydáno v: | Applied Mathematical Modelling Ročník 80; s. 929 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Elsevier BV
01.04.2020
|
| Témata: | |
| ISSN: | 1088-8691, 0307-904X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper developed a multiobjective Big Data optimization approach based on a hybrid salp swarm algorithm and the differential evolution algorithm. The role of the differential evolution algorithm is to enhance the capability of the feature exploitation of the salp swarm algorithm because the operators of the differential evolution algorithm are used as local search operators. In general, the proposed method contains three stages. In the first stage, the population is generated, and the archive is initialized. The second stage updates the solutions using the hybrid salp swarm algorithm and the differential evolution algorithm, and the final stage determines the nondominated solutions and updates the archive. To assess the performance of the proposed approach, a series of experiments were performed. A set of single-objective and multiobjective problems from the 2015 Big Data optimization competition were tested; the dataset contained data with and without noise. The results of our experiments illustrated that the proposed approach outperformed other approaches, including the baseline nondominated sorting genetic algorithm, on all test problems. Moreover, for single-objective problems, the score value of the proposed method was better than that of the traditional multiobjective salp swarm algorithm. When compared with both algorithms, that is, the adaptive DE algorithm with external archive and the hybrid multiobjective firefly algorithm, its score was the largest. In contrast, for the multiobjective functions, the scores of the proposed algorithm were higher than that of the fireworks algorithm framework. |
|---|---|
| AbstractList | This paper developed a multiobjective Big Data optimization approach based on a hybrid salp swarm algorithm and the differential evolution algorithm. The role of the differential evolution algorithm is to enhance the capability of the feature exploitation of the salp swarm algorithm because the operators of the differential evolution algorithm are used as local search operators. In general, the proposed method contains three stages. In the first stage, the population is generated, and the archive is initialized. The second stage updates the solutions using the hybrid salp swarm algorithm and the differential evolution algorithm, and the final stage determines the nondominated solutions and updates the archive. To assess the performance of the proposed approach, a series of experiments were performed. A set of single-objective and multiobjective problems from the 2015 Big Data optimization competition were tested; the dataset contained data with and without noise. The results of our experiments illustrated that the proposed approach outperformed other approaches, including the baseline nondominated sorting genetic algorithm, on all test problems. Moreover, for single-objective problems, the score value of the proposed method was better than that of the traditional multiobjective salp swarm algorithm. When compared with both algorithms, that is, the adaptive DE algorithm with external archive and the hybrid multiobjective firefly algorithm, its score was the largest. In contrast, for the multiobjective functions, the scores of the proposed algorithm were higher than that of the fireworks algorithm framework. |
| Author | Jayasena, K P N Li, Lin Elaziz, Mohamed Abd Xiong, Shengwu |
| Author_xml | – sequence: 1 givenname: Mohamed surname: Elaziz middlename: Abd fullname: Elaziz, Mohamed Abd – sequence: 2 givenname: Lin surname: Li fullname: Li, Lin – sequence: 3 givenname: K surname: Jayasena middlename: P N fullname: Jayasena, K P N – sequence: 4 givenname: Shengwu surname: Xiong fullname: Xiong, Shengwu |
| BookMark | eNotjU1Lw0AURQepYFv9Ae4GXCe-yUymeUspaoWKGwV3ZT7bCWkSM5OK_nojurrncuHcBZm1XesIuWaQM2Dyts5Vf8wLYDj1HCSekTlwWGUI4n1G5gyqKqsksguyiLEGYEUlYU7889ik0OnamRROjuqwp1YlRbs-hWP4VtPYUq2is3QCRQ9fegiWRtX0NH6q4UhVs--GkA4TtZba4L0bXJuCaqg7dc34a7gk51410V3955K8Pdy_rjfZ9uXxaX23zQwvypRJw7FCj46BF1Yb42WptECsmPDaltZwg6iAOdBcY8kBLAqwgpXaIl_xJbn58_ZD9zG6mHZ1Nw7tdLkr-EqiEBwY_wEO51zq |
| CitedBy_id | crossref_primary_10_1007_s00500_022_06916_0 crossref_primary_10_1016_j_jhydrol_2022_128001 crossref_primary_10_1002_jnm_2948 crossref_primary_10_1016_j_egyr_2022_09_025 crossref_primary_10_32604_cmes_2025_059319 crossref_primary_10_3390_math10193566 crossref_primary_10_1016_j_knosys_2021_106856 crossref_primary_10_3390_electronics10020101 crossref_primary_10_1109_ACCESS_2021_3066323 crossref_primary_10_1007_s00500_021_05757_7 crossref_primary_10_1007_s10489_022_03912_7 crossref_primary_10_1007_s11063_022_10850_5 crossref_primary_10_1016_j_renene_2020_09_109 crossref_primary_10_1038_s41598_025_16208_w crossref_primary_10_1016_j_energy_2022_123990 crossref_primary_10_1007_s11277_021_08201_z crossref_primary_10_1007_s00500_023_08059_2 crossref_primary_10_1007_s43926_022_00022_1 crossref_primary_10_1016_j_apm_2021_01_017 crossref_primary_10_1007_s11277_021_08478_0 crossref_primary_10_1016_j_asoc_2020_106487 crossref_primary_10_1007_s10586_025_05419_5 crossref_primary_10_1038_s41598_024_57231_7 crossref_primary_10_1007_s00521_022_07557_y crossref_primary_10_1016_j_future_2021_05_026 crossref_primary_10_1109_ACCESS_2020_2991865 crossref_primary_10_1007_s00521_022_06921_2 crossref_primary_10_1007_s11063_023_11321_1 crossref_primary_10_1016_j_jocs_2022_101597 crossref_primary_10_1109_ACCESS_2020_2997783 crossref_primary_10_1155_2022_6711019 crossref_primary_10_1007_s42235_022_00262_5 crossref_primary_10_3390_math8081223 |
| ContentType | Journal Article |
| Copyright | Copyright Elsevier BV Apr 2020 |
| Copyright_xml | – notice: Copyright Elsevier BV Apr 2020 |
| DBID | 7SC 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.apm.2019.10.069 |
| DatabaseName | Computer and Information Systems Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | Computer and Information Systems Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Advanced Technologies Database with Aerospace ProQuest Computer Science Collection Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Computer and Information Systems Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology Mathematics |
| EISSN | 0307-904X |
| GroupedDBID | -W8 -~X .7I .GO .QK 0BK 0R~ 23M 2DF 4.4 53G 5GY 6J9 7SC 8FD 8VB AAGDL AAGZJ AAHIA AAHSB AAMFJ AAMIU AAPUL AATTQ AAZMC ABCCY ABDBF ABFIM ABIVO ABJNI ABLIJ ABPEM ABRYG ABTAI ABXUL ABXYU ABZLS ACGFS ACGOD ACHQT ACTIO ACTOA ACUHS ADAHI ADCVX ADKVQ ADYSH AECIN AEFOU AEGXH AEISY AEKEX AEMOZ AEMXT AEOZL AEPSL AEYOC AEZRU AFHDM AFRVT AGDLA AGMYJ AGRBW AHDZW AHQJS AIJEM AIYEW AJWEG AKBVH AKVCP ALMA_UNASSIGNED_HOLDINGS ALQZU AVBZW AWYRJ BEJHT BLEHA BMOTO BOHLJ CCCUG CQ1 CS3 DGFLZ DKSSO EAP EBR EBS EBU EDJ EMK EPL EPS EST ESX E~B E~C F5P FEDTE G-F GTTXZ H13 HF~ HVGLF HZ~ IPNFZ J.O JQ2 K1G KYCEM L7M LJTGL L~C L~D M4Z NA5 O9- P2P PQQKQ QWB RIG RNANH ROSJB RSYQP S-F STATR TASJS TBQAZ TDBHL TEH TFH TFL TFW TH9 TNTFI TRJHH TUROJ TUS TWZ UPT UT5 UT9 VAE ZL0 ~01 ~S~ |
| ID | FETCH-LOGICAL-c325t-6c3989f9e10f4dbccf65ab499814fbd5dc3c99a01e0b3b95300d940d415bd9373 |
| ISICitedReferencesCount | 36 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517665300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1088-8691 |
| IngestDate | Sat Jul 26 03:35:52 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-6c3989f9e10f4dbccf65ab499814fbd5dc3c99a01e0b3b95300d940d415bd9373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2376944301 |
| PQPubID | 2045280 |
| ParticipantIDs | proquest_journals_2376944301 |
| PublicationCentury | 2000 |
| PublicationDate | 20200401 |
| PublicationDateYYYYMMDD | 2020-04-01 |
| PublicationDate_xml | – month: 04 year: 2020 text: 20200401 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | Applied Mathematical Modelling |
| PublicationYear | 2020 |
| Publisher | Elsevier BV |
| Publisher_xml | – name: Elsevier BV |
| SSID | ssj0012860 ssj0005904 |
| Score | 2.4505134 |
| Snippet | This paper developed a multiobjective Big Data optimization approach based on a hybrid salp swarm algorithm and the differential evolution algorithm. The role... |
| SourceID | proquest |
| SourceType | Aggregation Database |
| StartPage | 929 |
| SubjectTerms | Adaptive algorithms Algorithms Archives & records Big Data Classification Evolutionary algorithms Evolutionary computation Fireworks Genetic algorithms Heuristic methods Multiple objective analysis Operators (mathematics) Optimization Sorting algorithms |
| Title | Multiobjective big data optimization based on a hybrid salp swarm algorithm and differential evolution |
| URI | https://www.proquest.com/docview/2376944301 |
| Volume | 80 |
| WOSCitedRecordID | wos000517665300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAWR databaseName: Taylor & Francis Online Journals customDbUrl: eissn: 0307-904X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0012860 issn: 1088-8691 databaseCode: TFW dateStart: 19970301 isFulltext: true titleUrlDefault: https://www.tandfonline.com providerName: Taylor & Francis |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FwqEcEBRQgYL2gLhYjjb-3mOFGnFoQyVcyC3aD2_iKrVD7KYNf4U_y6x37bhUQnDgYlmOFG08LzOzM2_2IfQ-VEp6ocddkrDMDZgKXZoo5ULwklRGXiykaMQm4skkmU7p-WDws52F2Szjokhub-nqv5oanoGx9ejsP5i7-1J4APdgdLiC2eH6V4ZvRmpLfmk8mcPzuaNpoE4JzuHKTl06OnhJ3ShgzmKrh7acii1XTnXD1lcOW87LdV4vjHpGK6FS69p6trFr7ye1bSZ71h0Bqwd-tcTOsg2MDTuE_cibcvVZuWAQhJ1jLjs-UG4LBB2jh21hiXZgzTnfdYymuSURf1lkxfzmul-28EiP7dLU0rp5mq897wsuz00iI981zOxYF4ldSgyNs3XZRvzJ-lxqSib3YoEpS1wO2UqfODCiQ83iM7owd8_dnnyejS9OT2fpyTT9sPruakky3bq3-iwP0EMvDqnmC6bjbzv-ENUbWduv8hIzj97-gLZ_3jAJf1vAvajfpDLpU_TE7kHwscHOMzTIigP0eGe96gDtd4Fx-xypu5DCACmsIYX7kMINpDDcMGwghTWkcAMp3EEKA6RwH1K4g9QLdDE-ST9-cq0-hyt8L6zdSPg0oYpmI6ICyYVQUcg4bKGTUaC4DKXwBaWMjDLCfU5DnxBJAyIhZ-QS0mL_JdoryiI7RFjwAN6hYrFHeCDUiPk8opzTQGohLRa8QkftO5vZ_1o104QuGgQQol7_-eM3aH8HwSO0V6-vs7fokdjUebV-15j1F8AnfXs |
| linkProvider | Taylor & Francis |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+big+data+optimization+based+on+a+hybrid+salp+swarm+algorithm+and+differential+evolution&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Elaziz%2C+Mohamed+Abd&rft.au=Li%2C+Lin&rft.au=Jayasena%2C+K+P+N&rft.au=Xiong%2C+Shengwu&rft.date=2020-04-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=80&rft.spage=929&rft_id=info:doi/10.1016%2Fj.apm.2019.10.069&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-8691&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-8691&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-8691&client=summon |