Multiobjective big data optimization based on a hybrid salp swarm algorithm and differential evolution

This paper developed a multiobjective Big Data optimization approach based on a hybrid salp swarm algorithm and the differential evolution algorithm. The role of the differential evolution algorithm is to enhance the capability of the feature exploitation of the salp swarm algorithm because the oper...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Mathematical Modelling Ročník 80; s. 929
Hlavní autoři: Elaziz, Mohamed Abd, Li, Lin, Jayasena, K P N, Xiong, Shengwu
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York Elsevier BV 01.04.2020
Témata:
ISSN:1088-8691, 0307-904X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper developed a multiobjective Big Data optimization approach based on a hybrid salp swarm algorithm and the differential evolution algorithm. The role of the differential evolution algorithm is to enhance the capability of the feature exploitation of the salp swarm algorithm because the operators of the differential evolution algorithm are used as local search operators. In general, the proposed method contains three stages. In the first stage, the population is generated, and the archive is initialized. The second stage updates the solutions using the hybrid salp swarm algorithm and the differential evolution algorithm, and the final stage determines the nondominated solutions and updates the archive. To assess the performance of the proposed approach, a series of experiments were performed. A set of single-objective and multiobjective problems from the 2015 Big Data optimization competition were tested; the dataset contained data with and without noise. The results of our experiments illustrated that the proposed approach outperformed other approaches, including the baseline nondominated sorting genetic algorithm, on all test problems. Moreover, for single-objective problems, the score value of the proposed method was better than that of the traditional multiobjective salp swarm algorithm. When compared with both algorithms, that is, the adaptive DE algorithm with external archive and the hybrid multiobjective firefly algorithm, its score was the largest. In contrast, for the multiobjective functions, the scores of the proposed algorithm were higher than that of the fireworks algorithm framework.
AbstractList This paper developed a multiobjective Big Data optimization approach based on a hybrid salp swarm algorithm and the differential evolution algorithm. The role of the differential evolution algorithm is to enhance the capability of the feature exploitation of the salp swarm algorithm because the operators of the differential evolution algorithm are used as local search operators. In general, the proposed method contains three stages. In the first stage, the population is generated, and the archive is initialized. The second stage updates the solutions using the hybrid salp swarm algorithm and the differential evolution algorithm, and the final stage determines the nondominated solutions and updates the archive. To assess the performance of the proposed approach, a series of experiments were performed. A set of single-objective and multiobjective problems from the 2015 Big Data optimization competition were tested; the dataset contained data with and without noise. The results of our experiments illustrated that the proposed approach outperformed other approaches, including the baseline nondominated sorting genetic algorithm, on all test problems. Moreover, for single-objective problems, the score value of the proposed method was better than that of the traditional multiobjective salp swarm algorithm. When compared with both algorithms, that is, the adaptive DE algorithm with external archive and the hybrid multiobjective firefly algorithm, its score was the largest. In contrast, for the multiobjective functions, the scores of the proposed algorithm were higher than that of the fireworks algorithm framework.
Author Jayasena, K P N
Li, Lin
Elaziz, Mohamed Abd
Xiong, Shengwu
Author_xml – sequence: 1
  givenname: Mohamed
  surname: Elaziz
  middlename: Abd
  fullname: Elaziz, Mohamed Abd
– sequence: 2
  givenname: Lin
  surname: Li
  fullname: Li, Lin
– sequence: 3
  givenname: K
  surname: Jayasena
  middlename: P N
  fullname: Jayasena, K P N
– sequence: 4
  givenname: Shengwu
  surname: Xiong
  fullname: Xiong, Shengwu
BookMark eNotjU1Lw0AURQepYFv9Ae4GXCe-yUymeUspaoWKGwV3ZT7bCWkSM5OK_nojurrncuHcBZm1XesIuWaQM2Dyts5Vf8wLYDj1HCSekTlwWGUI4n1G5gyqKqsksguyiLEGYEUlYU7889ik0OnamRROjuqwp1YlRbs-hWP4VtPYUq2is3QCRQ9fegiWRtX0NH6q4UhVs--GkA4TtZba4L0bXJuCaqg7dc34a7gk51410V3955K8Pdy_rjfZ9uXxaX23zQwvypRJw7FCj46BF1Yb42WptECsmPDaltZwg6iAOdBcY8kBLAqwgpXaIl_xJbn58_ZD9zG6mHZ1Nw7tdLkr-EqiEBwY_wEO51zq
CitedBy_id crossref_primary_10_1007_s00500_022_06916_0
crossref_primary_10_1016_j_jhydrol_2022_128001
crossref_primary_10_1002_jnm_2948
crossref_primary_10_1016_j_egyr_2022_09_025
crossref_primary_10_32604_cmes_2025_059319
crossref_primary_10_3390_math10193566
crossref_primary_10_1016_j_knosys_2021_106856
crossref_primary_10_3390_electronics10020101
crossref_primary_10_1109_ACCESS_2021_3066323
crossref_primary_10_1007_s00500_021_05757_7
crossref_primary_10_1007_s10489_022_03912_7
crossref_primary_10_1007_s11063_022_10850_5
crossref_primary_10_1016_j_renene_2020_09_109
crossref_primary_10_1038_s41598_025_16208_w
crossref_primary_10_1016_j_energy_2022_123990
crossref_primary_10_1007_s11277_021_08201_z
crossref_primary_10_1007_s00500_023_08059_2
crossref_primary_10_1007_s43926_022_00022_1
crossref_primary_10_1016_j_apm_2021_01_017
crossref_primary_10_1007_s11277_021_08478_0
crossref_primary_10_1016_j_asoc_2020_106487
crossref_primary_10_1007_s10586_025_05419_5
crossref_primary_10_1038_s41598_024_57231_7
crossref_primary_10_1007_s00521_022_07557_y
crossref_primary_10_1016_j_future_2021_05_026
crossref_primary_10_1109_ACCESS_2020_2991865
crossref_primary_10_1007_s00521_022_06921_2
crossref_primary_10_1007_s11063_023_11321_1
crossref_primary_10_1016_j_jocs_2022_101597
crossref_primary_10_1109_ACCESS_2020_2997783
crossref_primary_10_1155_2022_6711019
crossref_primary_10_1007_s42235_022_00262_5
crossref_primary_10_3390_math8081223
ContentType Journal Article
Copyright Copyright Elsevier BV Apr 2020
Copyright_xml – notice: Copyright Elsevier BV Apr 2020
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2019.10.069
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Mathematics
EISSN 0307-904X
GroupedDBID -W8
-~X
.7I
.GO
.QK
0BK
0R~
23M
2DF
4.4
53G
5GY
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
EAP
EBR
EBS
EBU
EDJ
EMK
EPL
EPS
EST
ESX
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
HZ~
IPNFZ
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
O9-
P2P
PQQKQ
QWB
RIG
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-6c3989f9e10f4dbccf65ab499814fbd5dc3c99a01e0b3b95300d940d415bd9373
ISICitedReferencesCount 36
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000517665300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1088-8691
IngestDate Sat Jul 26 03:35:52 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-6c3989f9e10f4dbccf65ab499814fbd5dc3c99a01e0b3b95300d940d415bd9373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2376944301
PQPubID 2045280
ParticipantIDs proquest_journals_2376944301
PublicationCentury 2000
PublicationDate 20200401
PublicationDateYYYYMMDD 2020-04-01
PublicationDate_xml – month: 04
  year: 2020
  text: 20200401
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2020
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
SSID ssj0012860
ssj0005904
Score 2.4505134
Snippet This paper developed a multiobjective Big Data optimization approach based on a hybrid salp swarm algorithm and the differential evolution algorithm. The role...
SourceID proquest
SourceType Aggregation Database
StartPage 929
SubjectTerms Adaptive algorithms
Algorithms
Archives & records
Big Data
Classification
Evolutionary algorithms
Evolutionary computation
Fireworks
Genetic algorithms
Heuristic methods
Multiple objective analysis
Operators (mathematics)
Optimization
Sorting algorithms
Title Multiobjective big data optimization based on a hybrid salp swarm algorithm and differential evolution
URI https://www.proquest.com/docview/2376944301
Volume 80
WOSCitedRecordID wos000517665300050&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor & Francis Online Journals
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 1088-8691
  databaseCode: TFW
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9NAEF2FwqEcEBRQgYL2gLhYjjb-3mOFGnFoQyVcyC3aD2_iKrVD7KYNf4U_y6x37bhUQnDgYlmOFG08LzOzM2_2IfQ-VEp6ocddkrDMDZgKXZoo5ULwklRGXiykaMQm4skkmU7p-WDws52F2Szjokhub-nqv5oanoGx9ejsP5i7-1J4APdgdLiC2eH6V4ZvRmpLfmk8mcPzuaNpoE4JzuHKTl06OnhJ3ShgzmKrh7acii1XTnXD1lcOW87LdV4vjHpGK6FS69p6trFr7ye1bSZ71h0Bqwd-tcTOsg2MDTuE_cibcvVZuWAQhJ1jLjs-UG4LBB2jh21hiXZgzTnfdYymuSURf1lkxfzmul-28EiP7dLU0rp5mq897wsuz00iI981zOxYF4ldSgyNs3XZRvzJ-lxqSib3YoEpS1wO2UqfODCiQ83iM7owd8_dnnyejS9OT2fpyTT9sPruakky3bq3-iwP0EMvDqnmC6bjbzv-ENUbWduv8hIzj97-gLZ_3jAJf1vAvajfpDLpU_TE7kHwscHOMzTIigP0eGe96gDtd4Fx-xypu5DCACmsIYX7kMINpDDcMGwghTWkcAMp3EEKA6RwH1K4g9QLdDE-ST9-cq0-hyt8L6zdSPg0oYpmI6ICyYVQUcg4bKGTUaC4DKXwBaWMjDLCfU5DnxBJAyIhZ-QS0mL_JdoryiI7RFjwAN6hYrFHeCDUiPk8opzTQGohLRa8QkftO5vZ_1o104QuGgQQol7_-eM3aH8HwSO0V6-vs7fokdjUebV-15j1F8AnfXs
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multiobjective+big+data+optimization+based+on+a+hybrid+salp+swarm+algorithm+and+differential+evolution&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Elaziz%2C+Mohamed+Abd&rft.au=Li%2C+Lin&rft.au=Jayasena%2C+K+P+N&rft.au=Xiong%2C+Shengwu&rft.date=2020-04-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=80&rft.spage=929&rft_id=info:doi/10.1016%2Fj.apm.2019.10.069&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-8691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-8691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-8691&client=summon