Deep Learning Predictive Model for Colon Cancer Patient using CNN-based Classification
In recent years, the area of Medicine and Healthcare has made significant advances with the assistance of computational technology. During this time, new diagnostic techniques were developed. Cancer is the world's second-largest cause of mortality, claiming the lives of one out of every six ind...
Uloženo v:
| Vydáno v: | International journal of advanced computer science & applications Ročník 12; číslo 8 |
|---|---|
| Hlavní autoři: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
West Yorkshire
Science and Information (SAI) Organization Limited
2021
|
| Témata: | |
| ISSN: | 2158-107X, 2156-5570 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In recent years, the area of Medicine and Healthcare has made significant advances with the assistance of computational technology. During this time, new diagnostic techniques were developed. Cancer is the world's second-largest cause of mortality, claiming the lives of one out of every six individuals. The colon cancer variation is the most frequent and lethal of the numerous kinds of cancer. Identifying the illness at an early stage, on the other hand, substantially increases the odds of survival. A cancer diagnosis may be automated by using the power of Artificial Intelligence (AI), allowing us to evaluate more cases in less time and at a lower cost. In this research, CNN models are employed to analyse imaging data of colon cells. For colon cell image classification, CNN with max pooling and average pooling layers and MobileNetV2 models are utilized. To determine the learning rate, the models are trained and evaluated at various Epochs. It's found that the accuracy of the max pooling and average pooling layers is 97.49% and 95.48%, respectively. And MobileNetV2 outperforms the other two models with the most remarkable accuracy of 99.67% with a data loss rate of 1.24. |
|---|---|
| AbstractList | In recent years, the area of Medicine and Healthcare has made significant advances with the assistance of computational technology. During this time, new diagnostic techniques were developed. Cancer is the world's second-largest cause of mortality, claiming the lives of one out of every six individuals. The colon cancer variation is the most frequent and lethal of the numerous kinds of cancer. Identifying the illness at an early stage, on the other hand, substantially increases the odds of survival. A cancer diagnosis may be automated by using the power of Artificial Intelligence (AI), allowing us to evaluate more cases in less time and at a lower cost. In this research, CNN models are employed to analyse imaging data of colon cells. For colon cell image classification, CNN with max pooling and average pooling layers and MobileNetV2 models are utilized. To determine the learning rate, the models are trained and evaluated at various Epochs. It's found that the accuracy of the max pooling and average pooling layers is 97.49% and 95.48%, respectively. And MobileNetV2 outperforms the other two models with the most remarkable accuracy of 99.67% with a data loss rate of 1.24. |
| Author | Tasnim, Zarrin Billah, Md. Masum Karim, Asif Nuha, Humaira Alam Zahir, Sabrina Binte Chowdhury, Ali Newaz Chakraborty, Sovon Shamrat, F. M. Javed Mehedi |
| Author_xml | – sequence: 1 givenname: Zarrin surname: Tasnim fullname: Tasnim, Zarrin – sequence: 2 givenname: Sovon surname: Chakraborty fullname: Chakraborty, Sovon – sequence: 3 givenname: F. M. Javed Mehedi surname: Shamrat fullname: Shamrat, F. M. Javed Mehedi – sequence: 4 givenname: Ali Newaz surname: Chowdhury fullname: Chowdhury, Ali Newaz – sequence: 5 givenname: Humaira Alam surname: Nuha fullname: Nuha, Humaira Alam – sequence: 6 givenname: Asif surname: Karim fullname: Karim, Asif – sequence: 7 givenname: Sabrina Binte surname: Zahir fullname: Zahir, Sabrina Binte – sequence: 8 givenname: Md. Masum surname: Billah fullname: Billah, Md. Masum |
| BookMark | eNp9kElPwzAQhS1UJErpP-BgiXOKl9hJuFVhKyqlEou4WY4zQa6CXewUiX9Pupw4MJcZad6bN_pO0cB5BwidUzKhqZDF5exhWj5PJ4wwOiGUkTwnR2jIqJCJEBkZ7OY8oSR7P0HjGFekL14wmfMhersGWOM56OCs-8DLALU1nf0G_OhraHHjAy596x0utTMQ8FJ3FlyHN3GrLxeLpNIRaly2OkbbWNPvvTtDx41uI4wPfYReb29eyvtk_nQ3K6fzxHAmukTqqiFU0wwo14aDSQUzeVoVmTCccyGJKSTjkmqRmYbWhAnIWEq1pBWwDPgIXezvroP_2kDs1MpvgusjFZNCUMpFmvWqq73KBB9jgEYZ2-3-7IK2raJE7VCqPUq1RakOKHtz-se8DvZTh5__bb8ekXfC |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2025_108202 crossref_primary_10_3389_fnins_2023_1177424 crossref_primary_10_1016_j_eswa_2024_124114 crossref_primary_10_1109_ACCESS_2023_3309711 crossref_primary_10_1002_ima_70161 crossref_primary_10_1016_j_eswa_2022_117695 crossref_primary_10_1080_01969722_2023_2175131 crossref_primary_10_1111_his_15331 crossref_primary_10_3390_technologies12090151 crossref_primary_10_1155_2022_8670534 crossref_primary_10_3390_biology10111174 crossref_primary_10_1109_ACCESS_2023_3321686 crossref_primary_10_1007_s11042_024_18607_z crossref_primary_10_1155_2024_5562890 crossref_primary_10_3389_fonc_2022_931141 crossref_primary_10_1007_s10462_024_10701_w |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2021.0120880 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database (ProQuest) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2021_0120880 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c325t-6abf01a17e13ac3ec452c84b975c333560c962361a57cf1d025e7241a61be27e3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 29 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000693682500080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Sun Nov 09 06:05:31 EST 2025 Sat Nov 29 02:26:03 EST 2025 Tue Nov 18 20:49:11 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-6abf01a17e13ac3ec452c84b975c333560c962361a57cf1d025e7241a61be27e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2655113547?pq-origsite=%requestingapplication% |
| PQID | 2655113547 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_2655113547 crossref_citationtrail_10_14569_IJACSA_2021_0120880 crossref_primary_10_14569_IJACSA_2021_0120880 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2021 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.4103284 |
| Snippet | In recent years, the area of Medicine and Healthcare has made significant advances with the assistance of computational technology. During this time, new... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Accuracy Artificial intelligence Colorectal cancer Cost analysis Data loss Deep learning Evaluation Image classification Machine learning Prediction models |
| Title | Deep Learning Predictive Model for Colon Cancer Patient using CNN-based Classification |
| URI | https://www.proquest.com/docview/2655113547 |
| Volume | 12 |
| WOSCitedRecordID | wos000693682500080&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database (ProQuest) customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB7xOnDhWQQFVj70aljbcbw5VUsA8RBpBLTa9hLFjoOQ0LLd3fL7mUm8QC9w4JBcnESRZzzzeWx_H8C3WmNcNNLyMpKGo4dU3EpruHcVZhMt6q6tG7EJk2W9wSDJQ8FtErZVzmJiE6irR0c18kMZY24XSkfm--gvJ9UoWl0NEhrzsEgsCSTdkOs_LzWWLib_uGHixEZiMTWDcHoOYUNyeH7RT2_6OEeU4oDOkPaIG_Jtdvo_ODcZ53T1s_-6BisBa7J-6xzrMOeHG7A603FgYVhvwq9j70csMK3esXxMizcUBhkppT0wxLUsxSA5ZCn5yJjlLRkro03zdyzNMk7JsGKNwibtPWrM_QV-np7cpmc86C1wp6Se8ri0dVeUwnihSqe8i7R0vcgmRjulFGIjl8RE1lJq42pRIVzyBhFAGQvrpfFqCxaGj0O_DaxMvBS20ni5SMUx4o5eLJxF_FlbK6IdULN-LlwgIydNjIeCJiVknaK1TkHWKYJ1doC_vDVqyTg-eH5vZp8iDM1J8Wqcr-8378Iyfaytt-zBwnT8z-_Dknua3k_GHVg8Osny6w7MXxqO9yv5o9N4H7bk51f572eH7txp |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3LTtwwFL2CKRJsoDwqoNPiRVkaxnYSJ4sKjUIRw9BoJGg1uxA7DqqEhmFmAPWn-o3cmwePDV2xYJFVEkuJj--5ftxzAL4VPsZFLQ3PPKk5IiTnRhrNnc2RTXxRdExRmk3oJAmHw2gwB_-aWhg6VtnExDJQ59eW1sj3ZYDcLpTv6YPxDSfXKNpdbSw0Klj03d97nLJNv_cOsX93pTz6cR4f89pVgFsl_RkPMlN0RCa0EyqzylnPlzb0TKR9q5TCDMBGAUmSZL62hcgxKXAaeS4LhHFSO4XtzsMHT4WaxlVf88c1nQ4mG0Gp_IlESqqpelhX62GaEu33TrrxWRfnpFLsUc1qSFqUz9nwJRmUDHe08t7-zUdYrnNp1q3AvwpzbrQGK41PBavD1jr8PnRuzGol2Us2mNDmFIV5Rk5wVwzzdhYjCYxYTGNgwgaV2CyjooBLFicJJ7LPWekgSmerSjhvwK83-bpP0Bpdj9wmsCxyUpjcx8t6KggwrwoDYQ3m14UxwtsC1fRramuxdfL8uEpp0kVoSCs0pISGtEbDFvDHt8aV2Mh_nm83eEjr0DNNn8Cw_frtHVg8Pv95mp72kv5nWKKGq7WlNrRmk1v3BRbs3ezPdPK1RDmDi7eGzgPOPjI8 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+Learning+Predictive+Model+for+Colon+Cancer+Patient+using+CNN-based+Classification&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Zarrin+Tasnim&rft.au=Chakraborty%2C+Sovon&rft.au=F.+M.+Javed+Mehedi+Shamrat&rft.au=Ali+Newaz+Chowdhury&rft.date=2021&rft.pub=Science+and+Information+%28SAI%29+Organization+Limited&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=12&rft.issue=8&rft_id=info:doi/10.14569%2FIJACSA.2021.0120880 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |