Decoupled local/global energy-preserving schemes for the N-coupled nonlinear Schrödinger equations

We develop two local energy-preserving integrators and a global energy-preserving integrator for the general multisymplectic Hamiltonian system. When applied to the 1D and multi-dimensional N-coupled nonlinear Schrödinger equations, the given schemes have the exact preservation of the local/global c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of computational physics Ročník 374; s. 281 - 299
Hlavní autori: Cai, Jiaxiang, Bai, Chuanzhi, Zhang, Haihui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge Elsevier Inc 01.12.2018
Elsevier Science Ltd
Predmet:
ISSN:0021-9991, 1090-2716
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We develop two local energy-preserving integrators and a global energy-preserving integrator for the general multisymplectic Hamiltonian system. When applied to the 1D and multi-dimensional N-coupled nonlinear Schrödinger equations, the given schemes have the exact preservation of the local/global conservation law and are decoupled in the components ψn, n=1,2,…,N, i.e., each of the components can be solved independently. The decoupled feature is significant and helpful for overcoming the computational difficulty of the N-coupled (N≥3) nonlinear Schrödinger equations, especially of the multi-dimensional case. The composition method is employed to improve the accuracy of the schemes in time and the discrete fast Fourier transform is used to reduce the computational complexity. Several numerical experiments are carried out to exhibit the behaviors of the wave solutions. Numerical results confirm the theoretical results.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0021-9991
1090-2716
DOI:10.1016/j.jcp.2018.07.050