Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep convolutional encoder–decoder network in a similar fashion to approaches considered in deep learning for image-to-image regression tasks. Since...
Saved in:
| Published in: | Journal of computational physics Vol. 366; pp. 415 - 447 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Cambridge
Elsevier Inc
01.08.2018
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0021-9991, 1090-2716 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep convolutional encoder–decoder network in a similar fashion to approaches considered in deep learning for image-to-image regression tasks. Since normal neural networks are data-intensive and cannot provide predictive uncertainty, we propose a Bayesian approach to convolutional neural nets. A recently introduced variational gradient descent algorithm based on Stein's method is scaled to deep convolutional networks to perform approximate Bayesian inference on millions of uncertain network parameters. This approach achieves state of the art performance in terms of predictive accuracy and uncertainty quantification in comparison to other approaches in Bayesian neural networks as well as techniques that include Gaussian processes and ensemble methods even when the training data size is relatively small. To evaluate the performance of this approach, we consider standard uncertainty quantification tasks for flow in heterogeneous media using limited training data consisting of permeability realizations and the corresponding velocity and pressure fields. The performance of the surrogate model developed is very good even though there is no underlying structure shared between the input (permeability) and output (flow/pressure) fields as is often the case in the image-to-image regression models used in computer vision problems. Studies are performed with an underlying stochastic input dimensionality up to 4225 where most other uncertainty quantification methods fail. Uncertainty propagation tasks are considered and the predictive output Bayesian statistics are compared to those obtained with Monte Carlo estimates.
•Bayesian Convolutional Encoder–Decoder Deep Networks for Uncertainty Quantification Tasks.•Integrating Stein variational inference for exploring the high-dimensional posterior distribution of the network parameters.•Addressing the curse of dimensionality showing applications in porous media flows with permeability dimensionality of 4225. |
|---|---|
| AbstractList | We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep convolutional encoder–decoder network in a similar fashion to approaches considered in deep learning for image-to-image regression tasks. Since normal neural networks are data-intensive and cannot provide predictive uncertainty, we propose a Bayesian approach to convolutional neural nets. A recently introduced variational gradient descent algorithm based on Stein's method is scaled to deep convolutional networks to perform approximate Bayesian inference on millions of uncertain network parameters. This approach achieves state of the art performance in terms of predictive accuracy and uncertainty quantification in comparison to other approaches in Bayesian neural networks as well as techniques that include Gaussian processes and ensemble methods even when the training data size is relatively small. To evaluate the performance of this approach, we consider standard uncertainty quantification tasks for flow in heterogeneous media using limited training data consisting of permeability realizations and the corresponding velocity and pressure fields. The performance of the surrogate model developed is very good even though there is no underlying structure shared between the input (permeability) and output (flow/pressure) fields as is often the case in the image-to-image regression models used in computer vision problems. Studies are performed with an underlying stochastic input dimensionality up to 4225 where most other uncertainty quantification methods fail. Uncertainty propagation tasks are considered and the predictive output Bayesian statistics are compared to those obtained with Monte Carlo estimates. We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep convolutional encoder–decoder network in a similar fashion to approaches considered in deep learning for image-to-image regression tasks. Since normal neural networks are data-intensive and cannot provide predictive uncertainty, we propose a Bayesian approach to convolutional neural nets. A recently introduced variational gradient descent algorithm based on Stein's method is scaled to deep convolutional networks to perform approximate Bayesian inference on millions of uncertain network parameters. This approach achieves state of the art performance in terms of predictive accuracy and uncertainty quantification in comparison to other approaches in Bayesian neural networks as well as techniques that include Gaussian processes and ensemble methods even when the training data size is relatively small. To evaluate the performance of this approach, we consider standard uncertainty quantification tasks for flow in heterogeneous media using limited training data consisting of permeability realizations and the corresponding velocity and pressure fields. The performance of the surrogate model developed is very good even though there is no underlying structure shared between the input (permeability) and output (flow/pressure) fields as is often the case in the image-to-image regression models used in computer vision problems. Studies are performed with an underlying stochastic input dimensionality up to 4225 where most other uncertainty quantification methods fail. Uncertainty propagation tasks are considered and the predictive output Bayesian statistics are compared to those obtained with Monte Carlo estimates. •Bayesian Convolutional Encoder–Decoder Deep Networks for Uncertainty Quantification Tasks.•Integrating Stein variational inference for exploring the high-dimensional posterior distribution of the network parameters.•Addressing the curse of dimensionality showing applications in porous media flows with permeability dimensionality of 4225. |
| Author | Zhu, Yinhao Zabaras, Nicholas |
| Author_xml | – sequence: 1 givenname: Yinhao surname: Zhu fullname: Zhu, Yinhao email: yzhu10@nd.edu – sequence: 2 givenname: Nicholas surname: Zabaras fullname: Zabaras, Nicholas email: nzabaras@gmail.com |
| BookMark | eNp9kMFO3DAQhq0KpC5LH6A3Sz0n9TiJk6inFkFbCYlLOVuz9gQ5DfZiO6C98Q68YZ-E7G5PHDjNSPN_I_3fGTvxwRNjn0GUIEB9HcvRbEspoCtFXS7jA1uB6EUhW1AnbCWEhKLve_jIzlIahRBdU3crNv3AHSWHnluiLTfBP4Zpzi54nDh5EyzFf88vlg4b95SfQvyb-BAiT3OM4Q4z8fvlODl_x9FbPntDMaPzeccfZvTZDc7g_uU5Ox1wSvTp_1yz26vLPxe_iuubn78vvl8XppJNLpoGbd9aVbWyJoHQddL00JpNb2U7bCocFKlu0wyICkVPALVqJDQVgrKqhWrNvhz_bmN4mCllPYY5Lo2SlqKrukVP1S4pOKZMDClFGvQ2unuMOw1C76XqUS9S9V6qFrXeU2vWvmGMy4duOaKb3iW_HUlaij86ijoZtwgm6yKZrG1w79Cv9EiW0Q |
| CitedBy_id | crossref_primary_10_1016_j_jcp_2022_111230 crossref_primary_10_1016_j_cma_2024_117061 crossref_primary_10_1016_j_petrol_2022_110111 crossref_primary_10_1029_2024WR037953 crossref_primary_10_1016_j_apenergy_2023_121576 crossref_primary_10_1007_s00158_020_02659_4 crossref_primary_10_1109_ACCESS_2020_3010800 crossref_primary_10_1016_j_cma_2022_114587 crossref_primary_10_1016_j_cma_2022_115436 crossref_primary_10_1017_jfm_2018_872 crossref_primary_10_1007_s12652_021_03017_y crossref_primary_10_1016_j_apenergy_2021_116641 crossref_primary_10_1016_j_jhydrol_2024_130737 crossref_primary_10_1016_j_cma_2021_114087 crossref_primary_10_1063_5_0139857 crossref_primary_10_1002_hbm_25784 crossref_primary_10_1016_j_jhydrol_2023_130551 crossref_primary_10_1016_j_jcp_2019_06_042 crossref_primary_10_1016_j_envpol_2024_124820 crossref_primary_10_1016_j_jcp_2020_109942 crossref_primary_10_1007_s10915_022_01930_8 crossref_primary_10_1016_j_petrol_2022_110109 crossref_primary_10_1016_j_neunet_2025_107455 crossref_primary_10_1007_s00466_023_02331_w crossref_primary_10_1007_s42967_023_00317_2 crossref_primary_10_1016_j_geoen_2022_211368 crossref_primary_10_1016_j_jcp_2022_111579 crossref_primary_10_1016_j_taml_2021_100252 crossref_primary_10_2118_205485_PA crossref_primary_10_1109_TAI_2023_3268609 crossref_primary_10_1038_s41467_020_19448_8 crossref_primary_10_1016_j_jcp_2024_113194 crossref_primary_10_1117_1_JBO_28_3_036501 crossref_primary_10_1088_2632_2153_abd1cf crossref_primary_10_1016_j_ifacol_2021_08_225 crossref_primary_10_1016_j_geoen_2022_211373 crossref_primary_10_1029_2019WR024833 crossref_primary_10_1016_j_jcp_2022_111008 crossref_primary_10_1016_j_jrmge_2024_10_025 crossref_primary_10_1016_j_knosys_2022_109998 crossref_primary_10_1002_nme_6958 crossref_primary_10_1002_tee_23745 crossref_primary_10_1029_2023WR034939 crossref_primary_10_1016_j_ijheatmasstransfer_2024_126149 crossref_primary_10_1007_s42979_024_02874_6 crossref_primary_10_1007_s00371_025_03967_w crossref_primary_10_1016_j_petrol_2021_110069 crossref_primary_10_1007_s10686_021_09827_4 crossref_primary_10_1016_j_petrol_2022_110244 crossref_primary_10_1016_j_enganabound_2023_09_009 crossref_primary_10_1016_j_jhydrol_2025_133285 crossref_primary_10_22331_q_2025_06_04_1761 crossref_primary_10_1007_s00158_023_03547_3 crossref_primary_10_1007_s10915_024_02711_1 crossref_primary_10_1016_j_nucengdes_2022_111716 crossref_primary_10_1016_j_ces_2023_119636 crossref_primary_10_1016_j_jcp_2022_111270 crossref_primary_10_1016_j_geoen_2024_213061 crossref_primary_10_1016_j_jhydrol_2022_129013 crossref_primary_10_1007_s10596_021_10126_2 crossref_primary_10_1371_journal_pcbi_1013330 crossref_primary_10_1016_j_jhydrol_2024_130641 crossref_primary_10_1016_j_petsci_2025_02_014 crossref_primary_10_2118_217456_PA crossref_primary_10_1029_2019WR026082 crossref_primary_10_1016_j_cam_2023_115532 crossref_primary_10_1016_j_compfluid_2021_104947 crossref_primary_10_1002_sam_11610 crossref_primary_10_1016_j_advwatres_2023_104494 crossref_primary_10_1016_j_cma_2022_115236 crossref_primary_10_1016_j_eswa_2025_128820 crossref_primary_10_1016_j_jcp_2019_109056 crossref_primary_10_1007_s11356_020_09382_z crossref_primary_10_2118_206755_PA crossref_primary_10_1002_pc_29998 crossref_primary_10_1016_j_cma_2022_115594 crossref_primary_10_1016_j_jcp_2019_07_048 crossref_primary_10_1016_j_jcp_2024_113284 crossref_primary_10_1016_j_cma_2024_117493 crossref_primary_10_2118_208604_PA crossref_primary_10_1016_j_watres_2020_116535 crossref_primary_10_1063_5_0253234 crossref_primary_10_1016_j_jconhyd_2024_104394 crossref_primary_10_1016_j_cma_2024_117486 crossref_primary_10_1007_s41939_025_01030_8 crossref_primary_10_1016_j_ijggc_2020_103223 crossref_primary_10_1029_2022WR031997 crossref_primary_10_1016_j_jappgeo_2020_104107 crossref_primary_10_1016_j_jcp_2019_109071 crossref_primary_10_3389_fams_2022_1021069 crossref_primary_10_1007_s10439_022_02967_4 crossref_primary_10_1137_20M1323151 crossref_primary_10_1016_j_cnsns_2025_109131 crossref_primary_10_1088_2632_2153_ace67c crossref_primary_10_3390_math7050412 crossref_primary_10_1016_j_physd_2024_134304 crossref_primary_10_1016_j_applthermaleng_2024_123599 crossref_primary_10_1016_j_icheatmasstransfer_2025_108655 crossref_primary_10_1016_j_jcp_2023_112549 crossref_primary_10_1016_j_advwatres_2022_104180 crossref_primary_10_1016_j_jcp_2024_113379 crossref_primary_10_1002_cnm_3575 crossref_primary_10_1002_ghg_2333 crossref_primary_10_1007_s42452_022_04936_x crossref_primary_10_1016_j_cma_2022_114871 crossref_primary_10_1007_s00158_020_02788_w crossref_primary_10_1016_j_cageo_2022_105212 crossref_primary_10_1016_j_neucom_2021_01_135 crossref_primary_10_1063_5_0004631 crossref_primary_10_1515_icom_2023_0026 crossref_primary_10_1016_j_commatsci_2021_110883 crossref_primary_10_2118_206126_PA crossref_primary_10_1002_gamm_201900008 crossref_primary_10_1016_j_compfluid_2020_104475 crossref_primary_10_1016_j_chaos_2022_112118 crossref_primary_10_1038_s41467_025_59847_3 crossref_primary_10_1016_j_advwatres_2022_104169 crossref_primary_10_1016_j_advwatres_2024_104726 crossref_primary_10_3390_math11214418 crossref_primary_10_2118_199357_PA crossref_primary_10_1016_j_still_2023_105706 crossref_primary_10_1016_j_knosys_2021_106956 crossref_primary_10_1016_j_geoen_2023_212554 crossref_primary_10_1007_s10596_022_10160_8 crossref_primary_10_1016_j_jhydrol_2022_127844 crossref_primary_10_1155_2023_5499645 crossref_primary_10_1007_s10489_024_05834_y crossref_primary_10_1016_j_jcp_2019_05_053 crossref_primary_10_1016_j_jcp_2024_112944 crossref_primary_10_3389_fncom_2019_00056 crossref_primary_10_1016_j_ijheatmasstransfer_2021_122131 crossref_primary_10_2118_218386_PA crossref_primary_10_1007_s00466_023_02334_7 crossref_primary_10_1016_j_neunet_2021_11_022 crossref_primary_10_1137_20M133957X crossref_primary_10_3390_w15173140 crossref_primary_10_1016_j_cnsns_2024_108103 crossref_primary_10_1007_s11004_025_10223_3 crossref_primary_10_1016_j_neunet_2024_106354 crossref_primary_10_1063_5_0203546 crossref_primary_10_1016_j_probengmech_2023_103421 crossref_primary_10_1007_s40747_023_01276_0 crossref_primary_10_1016_j_cageo_2024_105680 crossref_primary_10_1016_j_cma_2025_118022 crossref_primary_10_1016_j_taml_2020_01_031 crossref_primary_10_1007_s10596_023_10211_8 crossref_primary_10_1016_j_cja_2025_103768 crossref_primary_10_1016_j_advwatres_2023_104564 crossref_primary_10_1029_2018WR024592 crossref_primary_10_5194_hess_26_2923_2022 crossref_primary_10_1016_j_jcp_2021_110362 crossref_primary_10_1007_s00477_024_02814_z crossref_primary_10_1029_2021WR031554 crossref_primary_10_1007_s00521_024_10132_2 crossref_primary_10_1016_j_jcp_2019_05_026 crossref_primary_10_1016_j_jcp_2019_05_024 crossref_primary_10_1016_j_eml_2023_102110 crossref_primary_10_1137_19M1267246 crossref_primary_10_1016_j_jcp_2022_111309 crossref_primary_10_3389_fmats_2022_1060744 crossref_primary_10_1016_j_asoc_2023_110872 crossref_primary_10_1016_j_jcp_2023_111945 crossref_primary_10_1029_2022WR032553 crossref_primary_10_1016_j_jhydrol_2023_130085 crossref_primary_10_1016_j_jcp_2022_111666 crossref_primary_10_1016_j_jcp_2021_110192 crossref_primary_10_1016_j_jcp_2021_110194 crossref_primary_10_1016_j_cma_2022_114784 crossref_primary_10_1109_TGRS_2024_3357797 crossref_primary_10_1016_j_jcp_2019_108939 crossref_primary_10_1016_j_cma_2024_117093 crossref_primary_10_1137_24M1636071 crossref_primary_10_1016_j_jcp_2022_111419 crossref_primary_10_1016_j_geoen_2023_212516 crossref_primary_10_1016_j_advwatres_2022_104243 crossref_primary_10_1016_j_petrol_2022_110548 crossref_primary_10_1016_j_cma_2021_114399 crossref_primary_10_1016_j_jcp_2022_111536 crossref_primary_10_1162_neco_a_01491 crossref_primary_10_1109_TGRS_2023_3249239 crossref_primary_10_1016_j_jhydrol_2024_131674 crossref_primary_10_1016_j_advwatres_2024_104837 crossref_primary_10_1029_2023WR035778 crossref_primary_10_1137_19M130981X crossref_primary_10_2118_203997_PA crossref_primary_10_1016_j_geoen_2023_211418 crossref_primary_10_1016_j_ijnonlinmec_2024_104819 crossref_primary_10_1016_j_jcp_2022_111202 crossref_primary_10_1016_j_cma_2020_112906 crossref_primary_10_1016_j_ces_2020_115949 crossref_primary_10_1029_2021WR031429 crossref_primary_10_1016_j_cma_2024_117195 crossref_primary_10_2166_hydro_2024_275 crossref_primary_10_1016_j_compfluid_2024_106239 crossref_primary_10_1061_JENMDT_EMENG_7617 crossref_primary_10_3390_jcs4020071 crossref_primary_10_1016_j_advwatres_2025_105098 crossref_primary_10_1007_s10596_021_10052_3 crossref_primary_10_1088_1741_2552_ac9646 crossref_primary_10_1016_j_petrol_2021_109046 crossref_primary_10_1016_j_jcp_2022_111313 crossref_primary_10_1016_j_envres_2023_117268 crossref_primary_10_1016_j_jcp_2019_108963 crossref_primary_10_1088_1361_6420_ace9d4 crossref_primary_10_3389_fphy_2022_890910 crossref_primary_10_1007_s10915_025_02791_7 crossref_primary_10_1029_2018WR024638 crossref_primary_10_1111_mice_12510 crossref_primary_10_1137_24M1648703 crossref_primary_10_1186_s12968_020_00650_y crossref_primary_10_1016_j_cageo_2024_105611 crossref_primary_10_1016_j_jcp_2019_108968 crossref_primary_10_1016_j_ijggc_2021_103488 crossref_primary_10_1073_pnas_1916634117 crossref_primary_10_1016_j_cma_2021_114507 crossref_primary_10_1051_e3sconf_202122901048 crossref_primary_10_1016_j_ijggc_2024_104061 crossref_primary_10_1061_JHEND8_HYENG_13190 crossref_primary_10_1016_j_jcp_2021_110896 crossref_primary_10_1007_s00477_025_02954_w crossref_primary_10_1155_2022_2013558 crossref_primary_10_1002_nme_7228 crossref_primary_10_1007_s00158_022_03411_w crossref_primary_10_2118_209223_PA crossref_primary_10_1109_TGRS_2020_3039165 crossref_primary_10_1111_gwat_13005 crossref_primary_10_1016_j_petrol_2020_107192 crossref_primary_10_1016_j_cma_2020_113492 crossref_primary_10_1016_j_fuel_2023_129353 crossref_primary_10_1016_j_jcp_2021_110668 crossref_primary_10_1016_j_neucom_2019_01_103 crossref_primary_10_1016_j_engappai_2025_110873 crossref_primary_10_3390_w15162890 crossref_primary_10_1029_2025WR040191 crossref_primary_10_2139_ssrn_5066408 crossref_primary_10_2118_217441_PA crossref_primary_10_3934_fods_2021016 crossref_primary_10_1016_j_cma_2019_112732 crossref_primary_10_1007_s10483_023_2992_6 crossref_primary_10_1016_j_jenvman_2025_124708 crossref_primary_10_1029_2018WR023528 crossref_primary_10_1016_j_heliyon_2024_e38103 crossref_primary_10_1016_j_cageo_2019_01_012 crossref_primary_10_1016_j_jhydrol_2024_132323 crossref_primary_10_1016_j_cma_2023_116394 crossref_primary_10_1214_22_STS863 crossref_primary_10_1016_j_cageo_2024_105711 crossref_primary_10_1137_23M1562561 crossref_primary_10_1016_j_jhydrol_2020_124700 crossref_primary_10_1016_j_petrol_2020_107273 crossref_primary_10_1080_19942060_2024_2435457 crossref_primary_10_2118_215821_PA crossref_primary_10_1016_j_ress_2019_106731 crossref_primary_10_1016_j_jcp_2022_111800 crossref_primary_10_1093_imanum_draf028 crossref_primary_10_1063_5_0168973 crossref_primary_10_1016_j_cma_2019_112623 crossref_primary_10_1145_3448125 crossref_primary_10_1016_j_advwatres_2023_104607 crossref_primary_10_1016_j_jhydrol_2024_132576 crossref_primary_10_1016_j_jhydrol_2024_132457 crossref_primary_10_1007_s11548_019_01939_9 crossref_primary_10_1016_j_engappai_2023_105945 crossref_primary_10_3390_math8081287 crossref_primary_10_1016_j_geoen_2024_213407 crossref_primary_10_1007_s10489_021_02686_8 crossref_primary_10_1016_j_dsp_2022_103605 crossref_primary_10_1137_21M1452512 crossref_primary_10_1016_j_petrol_2021_109880 crossref_primary_10_3390_agriculture14020217 crossref_primary_10_1088_1755_1315_647_1_012180 crossref_primary_10_1016_j_cam_2022_114963 crossref_primary_10_1016_j_jcp_2024_112760 crossref_primary_10_1016_j_geoderma_2024_116954 crossref_primary_10_1016_j_jhydrol_2021_127233 crossref_primary_10_1038_s41598_021_00773_x crossref_primary_10_1088_1873_7005_acd7a0 crossref_primary_10_1016_j_ijggc_2021_103562 crossref_primary_10_1049_hve2_12435 crossref_primary_10_3390_en16186727 crossref_primary_10_1016_j_envsoft_2023_105658 crossref_primary_10_1080_01621459_2025_2529025 crossref_primary_10_1371_journal_pcbi_1009996 crossref_primary_10_1016_j_jcp_2021_110218 crossref_primary_10_1007_s11053_021_09948_9 crossref_primary_10_1051_e3sconf_202122901003 crossref_primary_10_1016_j_cma_2021_114424 crossref_primary_10_1016_j_jhydrol_2022_127639 crossref_primary_10_1007_s11004_024_10152_7 crossref_primary_10_1016_j_jhydrol_2021_126371 crossref_primary_10_2118_205000_PA crossref_primary_10_1029_2022GL098944 crossref_primary_10_1007_s11837_019_03555_z crossref_primary_10_1007_s10444_024_10110_1 crossref_primary_10_1145_3630098 crossref_primary_10_1016_j_egyai_2025_100553 crossref_primary_10_1029_2023WR036146 crossref_primary_10_1016_j_cma_2020_113047 crossref_primary_10_1016_j_ins_2020_08_090 crossref_primary_10_32604_ee_2022_019556 crossref_primary_10_1016_j_neucom_2019_09_101 crossref_primary_10_1029_2022MS003058 crossref_primary_10_1016_j_cpc_2022_108382 crossref_primary_10_1016_j_jcp_2024_113710 crossref_primary_10_1061_AJRUA6_RUENG_1538 crossref_primary_10_1016_j_geoen_2024_212990 crossref_primary_10_1088_2058_9565_ad42ce crossref_primary_10_1016_j_ress_2024_110386 crossref_primary_10_1137_18M1225409 crossref_primary_10_1016_j_jhydrol_2024_132368 crossref_primary_10_1007_s10915_023_02328_w crossref_primary_10_1038_s41598_023_41039_y crossref_primary_10_1016_j_advwatres_2025_105002 crossref_primary_10_1016_j_jcp_2024_113709 crossref_primary_10_1016_j_jcp_2021_110550 crossref_primary_10_1109_TIM_2023_3256459 crossref_primary_10_1016_j_petrol_2021_109694 crossref_primary_10_1016_j_geoen_2023_212467 crossref_primary_10_1016_j_jcp_2022_111841 crossref_primary_10_1016_j_petrol_2021_109577 crossref_primary_10_1016_j_ress_2024_110392 crossref_primary_10_1016_j_egyr_2022_02_228 crossref_primary_10_3390_en17133097 crossref_primary_10_1016_j_jhydrol_2021_127244 crossref_primary_10_1002_nme_7207 crossref_primary_10_1016_j_advwatres_2021_103917 crossref_primary_10_1090_mcom_3781 crossref_primary_10_1063_5_0157763 crossref_primary_10_1093_jge_gxad061 crossref_primary_10_3390_su15010784 crossref_primary_10_1016_j_mechrescom_2019_103443 crossref_primary_10_1016_j_geoen_2024_212994 crossref_primary_10_1186_s12880_023_01121_3 crossref_primary_10_1016_j_scitotenv_2022_154701 crossref_primary_10_1016_j_cma_2024_117342 crossref_primary_10_1016_j_camwa_2022_02_004 crossref_primary_10_1016_j_compchemeng_2021_107365 crossref_primary_10_1016_j_trc_2024_104868 crossref_primary_10_3390_math12182933 crossref_primary_10_1016_j_jcp_2020_109307 crossref_primary_10_3389_fphy_2022_971722 crossref_primary_10_1029_2022WR032194 crossref_primary_10_1145_3514228 crossref_primary_10_1016_j_ymssp_2023_111014 crossref_primary_10_1007_s10596_024_10325_7 crossref_primary_10_1140_epjs_s11734_024_01263_7 crossref_primary_10_1016_j_jcp_2024_113121 crossref_primary_10_1039_D2EE04204E crossref_primary_10_1017_dce_2023_19 crossref_primary_10_3390_w16101411 crossref_primary_10_1029_2021WR031808 crossref_primary_10_1016_j_engappai_2024_108656 crossref_primary_10_1016_j_cma_2023_116538 crossref_primary_10_1016_j_jcp_2024_113117 crossref_primary_10_1007_s00158_019_02413_5 crossref_primary_10_1016_j_ress_2025_111353 crossref_primary_10_1016_j_ymssp_2019_106399 crossref_primary_10_1016_j_uclim_2023_101499 crossref_primary_10_1016_j_advwatres_2020_103545 crossref_primary_10_1016_j_camwa_2025_07_013 crossref_primary_10_1016_j_jcp_2019_01_021 crossref_primary_10_1029_2019WR026731 crossref_primary_10_1109_ACCESS_2022_3148401 crossref_primary_10_1016_j_cma_2020_113636 crossref_primary_10_1016_j_cma_2023_116684 crossref_primary_10_1016_j_cma_2025_117732 crossref_primary_10_1016_j_jhydrol_2023_129944 crossref_primary_10_1016_j_cma_2022_115296 crossref_primary_10_1016_j_neucom_2020_06_146 crossref_primary_10_1016_j_compfluid_2023_105960 crossref_primary_10_1016_j_asoc_2025_113542 crossref_primary_10_1016_j_jcp_2022_111080 crossref_primary_10_1137_23M1549870 crossref_primary_10_1016_j_jconhyd_2021_103815 crossref_primary_10_1007_s10596_019_09850_7 crossref_primary_10_1016_j_apenergy_2024_123723 crossref_primary_10_1016_j_jhydrol_2022_128321 crossref_primary_10_1016_j_cma_2023_116214 crossref_primary_10_1007_s11222_025_10597_8 crossref_primary_10_1073_pnas_2310142120 crossref_primary_10_1109_TGRS_2022_3222507 crossref_primary_10_1016_j_jcp_2025_113726 crossref_primary_10_1109_TNNLS_2020_2987760 crossref_primary_10_2118_219732_PA crossref_primary_10_1007_s12517_022_09575_5 crossref_primary_10_1016_j_earscirev_2023_104370 crossref_primary_10_1016_j_commatsci_2022_111493 crossref_primary_10_1016_j_cma_2024_117657 crossref_primary_10_1016_j_paerosci_2021_100725 crossref_primary_10_3390_en14020413 crossref_primary_10_1016_j_cma_2025_117953 crossref_primary_10_1016_j_probengmech_2024_103581 crossref_primary_10_1016_j_engstruct_2022_114901 crossref_primary_10_1109_ACCESS_2019_2957200 crossref_primary_10_1016_j_petrol_2021_108975 crossref_primary_10_1088_1748_9326_ab1b7d crossref_primary_10_1016_j_apenergy_2024_124910 crossref_primary_10_1016_j_jcp_2023_112129 crossref_primary_10_1016_j_jcp_2023_112369 crossref_primary_10_1016_j_cma_2024_116793 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124671 crossref_primary_10_1061__ASCE_EM_1943_7889_0001947 crossref_primary_10_1016_j_combustflame_2023_112925 crossref_primary_10_12677_AAM_2024_132069 crossref_primary_10_1016_j_jcp_2020_109456 crossref_primary_10_1007_s10040_023_02713_7 crossref_primary_10_1007_s11538_020_00851_7 crossref_primary_10_1016_S1876_3804_25_60541_6 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124546 crossref_primary_10_1016_j_jcp_2023_112031 crossref_primary_10_3390_jimaging4120147 crossref_primary_10_1137_23M1560574 crossref_primary_10_1155_2023_2973249 crossref_primary_10_1016_j_cam_2024_116191 crossref_primary_10_2118_218000_PA crossref_primary_10_1016_j_fuel_2023_127677 crossref_primary_10_1109_ACCESS_2022_3153056 crossref_primary_10_1016_j_jhydrol_2020_124631 crossref_primary_10_1093_imatrm_tnac001 crossref_primary_10_1016_j_jcp_2019_109120 crossref_primary_10_1016_j_commatsci_2025_114035 crossref_primary_10_1016_j_neucom_2024_128254 |
| Cites_doi | 10.1126/science.1127647 10.1016/j.jcp.2013.01.011 10.1016/j.jcp.2012.04.047 10.1017/jfm.2016.803 10.1038/ncomms5308 10.1007/s11222-010-9224-x 10.1038/nature14539 10.1561/2200000006 10.1137/S1064827501387826 10.1080/01621459.2017.1285773 10.1162/neco.2006.18.7.1527 10.1016/j.jcp.2017.10.034 10.1162/neco.1992.4.3.448 10.1111/gwat.12557 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Inc. Copyright Elsevier Science Ltd. Aug 1, 2018 |
| Copyright_xml | – notice: 2018 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Aug 1, 2018 |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.jcp.2018.04.018 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| EndPage | 447 |
| ExternalDocumentID | 10_1016_j_jcp_2018_04_018 S0021999118302341 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c325t-55ad97d63724e0a1882c917cb9d27fb3af6e68b5faa6a09e114652153a16d6713 |
| ISICitedReferencesCount | 506 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436475100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Sun Nov 09 08:06:11 EST 2025 Tue Nov 18 21:32:34 EST 2025 Sat Nov 29 03:10:20 EST 2025 Fri Feb 23 02:17:19 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Uncertainty quantification Porous media flows Convolutional encoder–decoder networks Bayesian neural networks |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-55ad97d63724e0a1882c917cb9d27fb3af6e68b5faa6a09e114652153a16d6713 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2083801837 |
| PQPubID | 2047462 |
| PageCount | 33 |
| ParticipantIDs | proquest_journals_2083801837 crossref_primary_10_1016_j_jcp_2018_04_018 crossref_citationtrail_10_1016_j_jcp_2018_04_018 elsevier_sciencedirect_doi_10_1016_j_jcp_2018_04_018 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-08-01 2018-08-00 20180801 |
| PublicationDateYYYYMMDD | 2018-08-01 |
| PublicationDate_xml | – month: 08 year: 2018 text: 2018-08-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2018 |
| Publisher | Elsevier Inc Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
| References | Bilionis, Zabaras, Konomi, Lin (br0020) 2013; 241 Liu, Wang (br0300) 2016 Liu (br0590) 2017 Louizos, Welling (br0330) de Oliveira, Paganini, Nachman (br0690) MacKay (br0260) 1992; 4 Oord, Kalchbrenner, Kavukcuoglu (br0440) Lawrence (br0100) 2004 Min, Lee, Yoon (br0240) 2017; 18 Raghu, Poole, Kleinberg, Ganguli, Sohl-Dickstein (br0200) Bilionis, Zabaras (br0010) 2016 Kutz (br0210) 2017; 814 Arora, Ge, Neyshabur, Zhang (br0190) Eigen, Puhrsch, Fergus (br0400) 2014 Zhang, Bengio, Hardt, Recht, Vinyals (br0170) Long, Shelhamer, Darrell (br0490) 2015 Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (br0370) 2016 Goyal, Dollár, Girshick, Noordhuis, Wesolowski, Kyrola, Tulloch, Jia, He (br0660) Huang, Liu, Weinberger, van der Maaten (br0350) Xiu, Karniadakis (br0040) 2002; 24 Srivastava, Greff, Schmidhuber (br0450) 2015 Le, Smola, Canu (br0560) 2005 Louizos, Ullrich, Welling (br0340) Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (br0640) Glorot, Bordes, Bengio (br0470) 2011 Blundell, Cornebise, Kavukcuoglu, Wierstra (br0290) Bengio (br0120) 2009; 2 Zeiler, Fergus (br0140) 2014 Rasmussen, Williams (br0610) 2006 LeCun, Bengio, Hinton (br0150) 2015; 521 Kingma, Ba (br0650) Luo, Li, Urtasun, Zemel (br0700) 2016 Grigo, Koutsourelakis (br0110) Kingma, Welling (br0090) Kendall, Gal (br0570) Bilionis, Zabaras (br0030) 2012; 231 Alnæs, Blechta, Hake, Johansson, Kehlet, Logg, Richardson, Ring, Rognes, Wells (br0620) 2015; 3 Jégou, Drozdzal, Vazquez, Romero, Bengio (br0510) 2017 Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (br0420) 2014 Quinonero Candela, Rasmussen, Sinz, Bousquet, Schölkopf (br0670) 2006 Gal, Ghahramani (br0280) 2016 Blei, Kucukelbir, McAuliffe (br0580) 2017; 112 Isola, Zhu, Zhou, Efros (br0410) br0480 Liu, Lee, Jordan (br0600) 2016 Krizhevsky, Sutskever, Hinton (br0130) 2012 Ronneberger, Fischer, Brox (br0390) 2015 Gramacy, Lee (br0540) 2012; 22 Poggio, Kawaguchi, Liao, Miranda, Rosasco, Boix, Hidary, Mhaskar (br0680) Lakshminarayanan, Pritzel, Blundell (br0630) Hinton, Osindero, Teh (br0160) 2006; 18 van der Maaten, Postma, van den Herik (br0060) 2009 Hernández-Lobato, Adams (br0320) 2015 Dziugaite, Roy (br0180) Hinton, Salakhutdinov (br0080) 2006; 313 Han, Mao, Dally (br0520) Kingma, Salimans, Welling (br0310) 2015 Marçais, de Dreuzy (br0220) 2017; 55 Neal (br0270) 2012 Lee, Caron, Doucet, Holmes (br0530) Torquato (br0050) 2013 Maaten, Hinton (br0070) Nov 2008; 9 Nix, Weigend (br0550) 1994 Ioffe, Szegedy (br0460) 2015 Badrinarayanan, Kendall, Cipolla (br0500) Baldi, Sadowski, Whiteson (br0250) 2014; 5 Simonyan, Zisserman (br0360) Chan, Elsheikh (br0230) 2018; 354 He, Zhang, Ren, Sun (br0380) 2016 van den Oord, Kalchbrenner, Espeholt, Vinyals, Graves (br0430) 2016 Raghu (10.1016/j.jcp.2018.04.018_br0200) Blei (10.1016/j.jcp.2018.04.018_br0580) 2017; 112 Hernández-Lobato (10.1016/j.jcp.2018.04.018_br0320) 2015 Isola (10.1016/j.jcp.2018.04.018_br0410) Badrinarayanan (10.1016/j.jcp.2018.04.018_br0500) Lakshminarayanan (10.1016/j.jcp.2018.04.018_br0630) Dziugaite (10.1016/j.jcp.2018.04.018_br0180) Louizos (10.1016/j.jcp.2018.04.018_br0330) Quinonero Candela (10.1016/j.jcp.2018.04.018_br0670) 2006 Chan (10.1016/j.jcp.2018.04.018_br0230) 2018; 354 Long (10.1016/j.jcp.2018.04.018_br0490) 2015 Kingma (10.1016/j.jcp.2018.04.018_br0650) Gal (10.1016/j.jcp.2018.04.018_br0280) 2016 van der Maaten (10.1016/j.jcp.2018.04.018_br0060) 2009 Krizhevsky (10.1016/j.jcp.2018.04.018_br0130) 2012 Liu (10.1016/j.jcp.2018.04.018_br0590) 2017 Jégou (10.1016/j.jcp.2018.04.018_br0510) 2017 Goyal (10.1016/j.jcp.2018.04.018_br0660) Srivastava (10.1016/j.jcp.2018.04.018_br0450) 2015 Kingma (10.1016/j.jcp.2018.04.018_br0310) 2015 Nix (10.1016/j.jcp.2018.04.018_br0550) 1994 Kendall (10.1016/j.jcp.2018.04.018_br0570) Bilionis (10.1016/j.jcp.2018.04.018_br0010) 2016 Bengio (10.1016/j.jcp.2018.04.018_br0120) 2009; 2 Simonyan (10.1016/j.jcp.2018.04.018_br0360) Neal (10.1016/j.jcp.2018.04.018_br0270) 2012 Bilionis (10.1016/j.jcp.2018.04.018_br0030) 2012; 231 LeCun (10.1016/j.jcp.2018.04.018_br0150) 2015; 521 Glorot (10.1016/j.jcp.2018.04.018_br0470) 2011 Oord (10.1016/j.jcp.2018.04.018_br0440) Szegedy (10.1016/j.jcp.2018.04.018_br0370) 2016 Maaten (10.1016/j.jcp.2018.04.018_br0070) 2008; 9 Marçais (10.1016/j.jcp.2018.04.018_br0220) 2017; 55 Rasmussen (10.1016/j.jcp.2018.04.018_br0610) 2006 de Oliveira (10.1016/j.jcp.2018.04.018_br0690) Luo (10.1016/j.jcp.2018.04.018_br0700) 2016 Liu (10.1016/j.jcp.2018.04.018_br0300) 2016 Zeiler (10.1016/j.jcp.2018.04.018_br0140) 2014 Bilionis (10.1016/j.jcp.2018.04.018_br0020) 2013; 241 Goodfellow (10.1016/j.jcp.2018.04.018_br0420) 2014 Poggio (10.1016/j.jcp.2018.04.018_br0680) Arora (10.1016/j.jcp.2018.04.018_br0190) Zhang (10.1016/j.jcp.2018.04.018_br0170) MacKay (10.1016/j.jcp.2018.04.018_br0260) 1992; 4 Kingma (10.1016/j.jcp.2018.04.018_br0090) Louizos (10.1016/j.jcp.2018.04.018_br0340) Torquato (10.1016/j.jcp.2018.04.018_br0050) 2013 Lawrence (10.1016/j.jcp.2018.04.018_br0100) 2004 Lee (10.1016/j.jcp.2018.04.018_br0530) Xiu (10.1016/j.jcp.2018.04.018_br0040) 2002; 24 Baldi (10.1016/j.jcp.2018.04.018_br0250) 2014; 5 van den Oord (10.1016/j.jcp.2018.04.018_br0430) 2016 Liu (10.1016/j.jcp.2018.04.018_br0600) 2016 Huang (10.1016/j.jcp.2018.04.018_br0350) Kutz (10.1016/j.jcp.2018.04.018_br0210) 2017; 814 Eigen (10.1016/j.jcp.2018.04.018_br0400) 2014 Hinton (10.1016/j.jcp.2018.04.018_br0160) 2006; 18 Gramacy (10.1016/j.jcp.2018.04.018_br0540) 2012; 22 Blundell (10.1016/j.jcp.2018.04.018_br0290) He (10.1016/j.jcp.2018.04.018_br0380) 2016 Alnæs (10.1016/j.jcp.2018.04.018_br0620) 2015; 3 Ronneberger (10.1016/j.jcp.2018.04.018_br0390) 2015 Le (10.1016/j.jcp.2018.04.018_br0560) 2005 Min (10.1016/j.jcp.2018.04.018_br0240) 2017; 18 Li (10.1016/j.jcp.2018.04.018_br0640) Hinton (10.1016/j.jcp.2018.04.018_br0080) 2006; 313 Grigo (10.1016/j.jcp.2018.04.018_br0110) Ioffe (10.1016/j.jcp.2018.04.018_br0460) 2015 Han (10.1016/j.jcp.2018.04.018_br0520) |
| References_xml | – volume: 4 start-page: 448 year: 1992 end-page: 472 ident: br0260 article-title: A practical Bayesian framework for backpropagation networks publication-title: Neural Comput. – volume: 5 start-page: 4308 year: 2014 ident: br0250 article-title: Searching for exotic particles in high-energy physics with deep learning publication-title: Nat. Commun. – ident: br0440 article-title: Pixel recurrent neural networks – volume: 112 start-page: 859 year: 2017 end-page: 877 ident: br0580 article-title: Variational inference: a review for statisticians publication-title: J. Am. Stat. Assoc. – start-page: 448 year: 2015 end-page: 456 ident: br0460 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift publication-title: International Conference on Machine Learning – ident: br0630 article-title: Simple and scalable predictive uncertainty estimation using deep ensembles – volume: 18 start-page: 1527 year: 2006 end-page: 1554 ident: br0160 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. – start-page: 1 year: 2006 end-page: 27 ident: br0670 article-title: Evaluating predictive uncertainty challenge publication-title: Machine Learning Challenges: Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Textual Entailment, Max-Planck-Gesellschaft – volume: 18 start-page: 851 year: 2017 end-page: 869 ident: br0240 article-title: Deep learning in bioinformatics publication-title: Brief. Bioinform. – start-page: 770 year: 2016 end-page: 778 ident: br0380 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 818 year: 2014 end-page: 833 ident: br0140 article-title: Visualizing and understanding convolutional networks publication-title: European Conference on Computer Vision – ident: br0410 article-title: Image-to-image translation with conditional adversarial networks – ident: br0520 article-title: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding – start-page: 1097 year: 2012 end-page: 1105 ident: br0130 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – ident: br0290 article-title: Weight uncertainty in neural networks – ident: br0190 article-title: Stronger generalization bounds for deep nets via a compression approach – start-page: 2818 year: 2016 end-page: 2826 ident: br0370 article-title: Rethinking the inception architecture for computer vision publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – ident: br0650 article-title: Adam: a method for stochastic optimization – start-page: 329 year: 2004 end-page: 336 ident: br0100 article-title: Gaussian process latent variable models for visualisation of high dimensional data publication-title: Advances in Neural Information Processing Systems – start-page: 2366 year: 2014 end-page: 2374 ident: br0400 article-title: Depth map prediction from a single image using a multi-scale deep network publication-title: Advances in Neural Information Processing Systems – ident: br0660 article-title: Accurate, large minibatch SGD: training ImageNet in 1 hour – ident: br0480 article-title: Theano: a Python framework for fast computation of mathematical expressions – start-page: 234 year: 2015 end-page: 241 ident: br0390 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention – ident: br0690 article-title: Learning particle physics by example: location-aware generative adversarial networks for physics synthesis – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: br0150 article-title: Deep learning publication-title: Nature – ident: br0680 article-title: Theory of Deep Learning III: explaining the non-overfitting puzzle – start-page: 1175 year: 2017 end-page: 1183 ident: br0510 article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops – start-page: 2377 year: 2015 end-page: 2385 ident: br0450 article-title: Training very deep networks publication-title: Advances in Neural Information Processing Systems – volume: 354 start-page: 493 year: 2018 end-page: 511 ident: br0230 article-title: A machine learning approach for efficient uncertainty quantification using multiscale methods publication-title: J. Comput. Phys. – year: 2012 ident: br0270 article-title: Bayesian Learning for Neural Networks, vol. 118 – start-page: 55 year: 1994 end-page: 60 ident: br0550 article-title: Estimating the mean and variance of the target probability distribution publication-title: 1994 IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence, vol. 1 – ident: br0180 article-title: Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data – ident: br0570 article-title: What uncertainties do we need in Bayesian deep learning for computer vision? – start-page: 4898 year: 2016 end-page: 4906 ident: br0700 article-title: Understanding the effective receptive field in deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – ident: br0350 article-title: Densely connected convolutional networks – year: 2009 ident: br0060 article-title: Dimensionality Reduction: A Comparative Review – volume: 231 start-page: 5718 year: 2012 end-page: 5746 ident: br0030 article-title: Multi-output local Gaussian process regression: applications to uncertainty quantification publication-title: J. Comput. Phys. – ident: br0500 article-title: Segnet: a deep convolutional encoder–decoder architecture for image segmentation – year: 2013 ident: br0050 article-title: Random Heterogeneous Materials: Microstructure and Macroscopic Properties, vol. 16 – ident: br0170 article-title: Understanding deep learning requires rethinking generalization – start-page: 276 year: 2016 end-page: 284 ident: br0600 article-title: A kernelized Stein discrepancy for goodness-of-fit tests publication-title: International Conference on Machine Learning – volume: 241 start-page: 212 year: 2013 end-page: 239 ident: br0020 article-title: Multi-output separable Gaussian process: towards an efficient, fully Bayesian paradigm for uncertainty quantification publication-title: J. Comput. Phys. – ident: br0110 article-title: Bayesian model and dimension reduction for uncertainty propagation: applications in random media – volume: 814 start-page: 1 year: 2017 end-page: 4 ident: br0210 article-title: Deep learning in fluid dynamics publication-title: J. Fluid Mech. – start-page: 489 year: 2005 end-page: 496 ident: br0560 article-title: Heteroscedastic Gaussian process regression publication-title: Proceedings of the 22nd International Conference on Machine Learning – start-page: 3431 year: 2015 end-page: 3440 ident: br0490 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 9 start-page: 2579 year: Nov 2008 end-page: 2605 ident: br0070 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: br0080 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – ident: br0640 article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization – start-page: 1 year: 2016 end-page: 45 ident: br0010 article-title: Bayesian uncertainty propagation using Gaussian processes publication-title: Handbook of Uncertainty Quantification – ident: br0330 article-title: Multiplicative normalizing flows for variational bayesian neural networks – start-page: 2672 year: 2014 end-page: 2680 ident: br0420 article-title: Generative adversarial nets publication-title: Advances in Neural Information Processing Systems – start-page: 3117 year: 2017 end-page: 3125 ident: br0590 article-title: Stein variational gradient descent as gradient flow publication-title: Advances in Neural Information Processing Systems – ident: br0360 article-title: Very deep convolutional networks for large-scale image recognition – year: 2006 ident: br0610 article-title: Gaussian Processes for Machine Learning, vol. 1 – start-page: 4790 year: 2016 end-page: 4798 ident: br0430 article-title: Conditional image generation with pixelcnn decoders publication-title: Advances in Neural Information Processing Systems – ident: br0090 article-title: Auto-encoding variational bayes – volume: 24 start-page: 619 year: 2002 end-page: 644 ident: br0040 article-title: The Wiener–Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. – start-page: 315 year: 2011 end-page: 323 ident: br0470 article-title: Deep sparse rectifier neural networks publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics – volume: 22 start-page: 713 year: 2012 end-page: 722 ident: br0540 article-title: Cases for the nugget in modeling computer experiments publication-title: Stat. Comput. – start-page: 2378 year: 2016 end-page: 2386 ident: br0300 article-title: Stein variational gradient descent: a general purpose Bayesian inference algorithm publication-title: Advances In Neural Information Processing Systems – start-page: 1050 year: 2016 end-page: 1059 ident: br0280 article-title: Dropout as a Bayesian approximation: representing model uncertainty in deep learning publication-title: International Conference on Machine Learning – start-page: 1861 year: 2015 end-page: 1869 ident: br0320 article-title: Probabilistic backpropagation for scalable learning of bayesian neural networks publication-title: International Conference on Machine Learning – ident: br0340 article-title: Bayesian compression for deep learning – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: br0120 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. – volume: 3 year: 2015 ident: br0620 article-title: The FEniCS Project version 1.5 publication-title: Arch. Numer. Softw. – ident: br0200 article-title: On the expressive power of deep neural networks – volume: 55 start-page: 688 year: 2017 end-page: 692 ident: br0220 article-title: Prospective interest of deep learning for hydrological inference publication-title: Groundwater – start-page: 2575 year: 2015 end-page: 2583 ident: br0310 article-title: Variational dropout and the local reparameterization trick publication-title: Advances in Neural Information Processing Systems – ident: br0530 article-title: A hierarchical Bayesian framework for constructing sparsity-inducing priors – volume: 3 issue: 100 year: 2015 ident: 10.1016/j.jcp.2018.04.018_br0620 article-title: The FEniCS Project version 1.5 publication-title: Arch. Numer. Softw. – ident: 10.1016/j.jcp.2018.04.018_br0660 – start-page: 4898 year: 2016 ident: 10.1016/j.jcp.2018.04.018_br0700 article-title: Understanding the effective receptive field in deep convolutional neural networks – ident: 10.1016/j.jcp.2018.04.018_br0090 – ident: 10.1016/j.jcp.2018.04.018_br0170 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.jcp.2018.04.018_br0080 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 241 start-page: 212 year: 2013 ident: 10.1016/j.jcp.2018.04.018_br0020 article-title: Multi-output separable Gaussian process: towards an efficient, fully Bayesian paradigm for uncertainty quantification publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.01.011 – year: 2013 ident: 10.1016/j.jcp.2018.04.018_br0050 – volume: 231 start-page: 5718 issue: 17 year: 2012 ident: 10.1016/j.jcp.2018.04.018_br0030 article-title: Multi-output local Gaussian process regression: applications to uncertainty quantification publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.04.047 – ident: 10.1016/j.jcp.2018.04.018_br0500 – start-page: 770 year: 2016 ident: 10.1016/j.jcp.2018.04.018_br0380 article-title: Deep residual learning for image recognition – start-page: 1175 year: 2017 ident: 10.1016/j.jcp.2018.04.018_br0510 article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation – start-page: 3117 year: 2017 ident: 10.1016/j.jcp.2018.04.018_br0590 article-title: Stein variational gradient descent as gradient flow – ident: 10.1016/j.jcp.2018.04.018_br0110 – year: 2012 ident: 10.1016/j.jcp.2018.04.018_br0270 – volume: 814 start-page: 1 year: 2017 ident: 10.1016/j.jcp.2018.04.018_br0210 article-title: Deep learning in fluid dynamics publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.803 – start-page: 2575 year: 2015 ident: 10.1016/j.jcp.2018.04.018_br0310 article-title: Variational dropout and the local reparameterization trick – volume: 5 start-page: 4308 year: 2014 ident: 10.1016/j.jcp.2018.04.018_br0250 article-title: Searching for exotic particles in high-energy physics with deep learning publication-title: Nat. Commun. doi: 10.1038/ncomms5308 – ident: 10.1016/j.jcp.2018.04.018_br0440 – ident: 10.1016/j.jcp.2018.04.018_br0630 – start-page: 4790 year: 2016 ident: 10.1016/j.jcp.2018.04.018_br0430 article-title: Conditional image generation with pixelcnn decoders – ident: 10.1016/j.jcp.2018.04.018_br0690 – ident: 10.1016/j.jcp.2018.04.018_br0350 – volume: 22 start-page: 713 issue: 3 year: 2012 ident: 10.1016/j.jcp.2018.04.018_br0540 article-title: Cases for the nugget in modeling computer experiments publication-title: Stat. Comput. doi: 10.1007/s11222-010-9224-x – start-page: 3431 year: 2015 ident: 10.1016/j.jcp.2018.04.018_br0490 article-title: Fully convolutional networks for semantic segmentation – ident: 10.1016/j.jcp.2018.04.018_br0530 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.jcp.2018.04.018_br0070 article-title: Visualizing data using t-sne publication-title: J. Mach. Learn. Res. – start-page: 1050 year: 2016 ident: 10.1016/j.jcp.2018.04.018_br0280 article-title: Dropout as a Bayesian approximation: representing model uncertainty in deep learning – start-page: 315 year: 2011 ident: 10.1016/j.jcp.2018.04.018_br0470 article-title: Deep sparse rectifier neural networks – start-page: 2378 year: 2016 ident: 10.1016/j.jcp.2018.04.018_br0300 article-title: Stein variational gradient descent: a general purpose Bayesian inference algorithm – start-page: 55 year: 1994 ident: 10.1016/j.jcp.2018.04.018_br0550 article-title: Estimating the mean and variance of the target probability distribution – year: 2009 ident: 10.1016/j.jcp.2018.04.018_br0060 – ident: 10.1016/j.jcp.2018.04.018_br0650 – ident: 10.1016/j.jcp.2018.04.018_br0330 – ident: 10.1016/j.jcp.2018.04.018_br0410 – ident: 10.1016/j.jcp.2018.04.018_br0640 – ident: 10.1016/j.jcp.2018.04.018_br0180 – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.jcp.2018.04.018_br0150 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: 1 year: 2006 ident: 10.1016/j.jcp.2018.04.018_br0670 article-title: Evaluating predictive uncertainty challenge – volume: 18 start-page: 851 issue: 5 year: 2017 ident: 10.1016/j.jcp.2018.04.018_br0240 article-title: Deep learning in bioinformatics publication-title: Brief. Bioinform. – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.jcp.2018.04.018_br0120 article-title: Learning deep architectures for AI publication-title: Found. Trends Mach. Learn. doi: 10.1561/2200000006 – volume: 24 start-page: 619 issue: 2 year: 2002 ident: 10.1016/j.jcp.2018.04.018_br0040 article-title: The Wiener–Askey polynomial chaos for stochastic differential equations publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827501387826 – ident: 10.1016/j.jcp.2018.04.018_br0200 – start-page: 329 year: 2004 ident: 10.1016/j.jcp.2018.04.018_br0100 article-title: Gaussian process latent variable models for visualisation of high dimensional data – volume: 112 start-page: 859 issue: 518 year: 2017 ident: 10.1016/j.jcp.2018.04.018_br0580 article-title: Variational inference: a review for statisticians publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.2017.1285773 – ident: 10.1016/j.jcp.2018.04.018_br0680 – ident: 10.1016/j.jcp.2018.04.018_br0190 – start-page: 818 year: 2014 ident: 10.1016/j.jcp.2018.04.018_br0140 article-title: Visualizing and understanding convolutional networks – start-page: 2672 year: 2014 ident: 10.1016/j.jcp.2018.04.018_br0420 article-title: Generative adversarial nets – start-page: 1097 year: 2012 ident: 10.1016/j.jcp.2018.04.018_br0130 article-title: Imagenet classification with deep convolutional neural networks – start-page: 234 year: 2015 ident: 10.1016/j.jcp.2018.04.018_br0390 article-title: U-net: convolutional networks for biomedical image segmentation – ident: 10.1016/j.jcp.2018.04.018_br0340 – start-page: 2377 year: 2015 ident: 10.1016/j.jcp.2018.04.018_br0450 article-title: Training very deep networks – ident: 10.1016/j.jcp.2018.04.018_br0520 – volume: 18 start-page: 1527 issue: 7 year: 2006 ident: 10.1016/j.jcp.2018.04.018_br0160 article-title: A fast learning algorithm for deep belief nets publication-title: Neural Comput. doi: 10.1162/neco.2006.18.7.1527 – ident: 10.1016/j.jcp.2018.04.018_br0360 – start-page: 489 year: 2005 ident: 10.1016/j.jcp.2018.04.018_br0560 article-title: Heteroscedastic Gaussian process regression – volume: 354 start-page: 493 issue: Supplement C year: 2018 ident: 10.1016/j.jcp.2018.04.018_br0230 article-title: A machine learning approach for efficient uncertainty quantification using multiscale methods publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.10.034 – start-page: 276 year: 2016 ident: 10.1016/j.jcp.2018.04.018_br0600 article-title: A kernelized Stein discrepancy for goodness-of-fit tests – volume: 4 start-page: 448 issue: 3 year: 1992 ident: 10.1016/j.jcp.2018.04.018_br0260 article-title: A practical Bayesian framework for backpropagation networks publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.448 – start-page: 2366 year: 2014 ident: 10.1016/j.jcp.2018.04.018_br0400 article-title: Depth map prediction from a single image using a multi-scale deep network – start-page: 1 year: 2016 ident: 10.1016/j.jcp.2018.04.018_br0010 article-title: Bayesian uncertainty propagation using Gaussian processes – ident: 10.1016/j.jcp.2018.04.018_br0290 – start-page: 448 year: 2015 ident: 10.1016/j.jcp.2018.04.018_br0460 article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift – year: 2006 ident: 10.1016/j.jcp.2018.04.018_br0610 – start-page: 1861 year: 2015 ident: 10.1016/j.jcp.2018.04.018_br0320 article-title: Probabilistic backpropagation for scalable learning of bayesian neural networks – ident: 10.1016/j.jcp.2018.04.018_br0570 – volume: 55 start-page: 688 issue: 5 year: 2017 ident: 10.1016/j.jcp.2018.04.018_br0220 article-title: Prospective interest of deep learning for hydrological inference publication-title: Groundwater doi: 10.1111/gwat.12557 – start-page: 2818 year: 2016 ident: 10.1016/j.jcp.2018.04.018_br0370 article-title: Rethinking the inception architecture for computer vision |
| SSID | ssj0008548 |
| Score | 2.7057197 |
| Snippet | We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 415 |
| SubjectTerms | Algorithms Artificial neural networks Bayesian analysis Bayesian neural networks Computational physics Computer simulation Computer vision Convolutional encoder–decoder networks Deep learning Gaussian process Machine learning Neural networks Parameter uncertainty Permeability Porous media flows Propagation Regression models Statistical inference Stochastic models Training Uncertainty quantification |
| Title | Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification |
| URI | https://dx.doi.org/10.1016/j.jcp.2018.04.018 https://www.proquest.com/docview/2083801837 |
| Volume | 366 |
| WOSCitedRecordID | wos000436475100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQcutLxEoSAfOFGlcuL3sUVFwKHiUKQVl8hxHLWrVXbZR9UekPgP_EN-CePYTptWVIDEHrK73sRZZb7MjCffzCD0urK1rcBSZ7kiKmO0tplpKpNpy7UwRgniQrMJeXysxmP9aTT6lnJhzqeybdXFhZ7_V1HDGAjbp87-hbj7SWEAPoPQYQtih-0fCf7QXLouM7J2bt6xyuPpQBi-aqWvGBIZDrR23fe9NpDBu9oMe8v1YjHz0bXQJidlMYIBDPQBcNu_rk0gGV3J9baDa7uGESnYGEIovQf_5XTdaf-z9tTM-kHPLwgZZoBQv-oeRCVy1XPiYqgspcsM2JyBD6JDe659FzQu0SQrZEi4TCqZiutKlYWEz2ifWajQeUv1hyjEZH9ifRnSXHUVbKNuH1bU9g-offUFWFv5lkm-7MFmIbkGvb558OFo_LE35YqzYMrj_06PxTuC4I0T_c6xuWHiO7_lZBs9iPLABwEoD9HItY_QVlx84Kjal4_RNOEGe9zgAW5wxM3P7z8iYnBCDAbE4B4xOCEGA2LwNcTgIWKeoM_vjk7evs9iK47M0oKvMs5NrWUtqCyYIyaHdZmFhb6tdF3IpqKmEU6oijfGCEO087nu4BhyanJRC5nTp2ijnbXuGcLcNDK33FonOIOX5g6cWJ4bmFaSiu0gkq5jaWOdet8uZVomQuKkhEtf-ktfElbC2w560x8yD0Va7tqZJeGU0csM3mMJSLrrsN0kyDLe7Uv4XVFw8RSVz_9t1hfo_tXds4s2Vou1e4nu2fPV2XLxKsLxFzs2sEs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+deep+convolutional+encoder%E2%80%93decoder+networks+for+surrogate+modeling+and+uncertainty+quantification&rft.jtitle=Journal+of+computational+physics&rft.au=Zhu%2C+Yinhao&rft.au=Zabaras%2C+Nicholas&rft.date=2018-08-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=366&rft.spage=415&rft.epage=447&rft_id=info:doi/10.1016%2Fj.jcp.2018.04.018&rft.externalDocID=S0021999118302341 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |