Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification

We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep convolutional encoder–decoder network in a similar fashion to approaches considered in deep learning for image-to-image regression tasks. Since...

Full description

Saved in:
Bibliographic Details
Published in:Journal of computational physics Vol. 366; pp. 415 - 447
Main Authors: Zhu, Yinhao, Zabaras, Nicholas
Format: Journal Article
Language:English
Published: Cambridge Elsevier Inc 01.08.2018
Elsevier Science Ltd
Subjects:
ISSN:0021-9991, 1090-2716
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep convolutional encoder–decoder network in a similar fashion to approaches considered in deep learning for image-to-image regression tasks. Since normal neural networks are data-intensive and cannot provide predictive uncertainty, we propose a Bayesian approach to convolutional neural nets. A recently introduced variational gradient descent algorithm based on Stein's method is scaled to deep convolutional networks to perform approximate Bayesian inference on millions of uncertain network parameters. This approach achieves state of the art performance in terms of predictive accuracy and uncertainty quantification in comparison to other approaches in Bayesian neural networks as well as techniques that include Gaussian processes and ensemble methods even when the training data size is relatively small. To evaluate the performance of this approach, we consider standard uncertainty quantification tasks for flow in heterogeneous media using limited training data consisting of permeability realizations and the corresponding velocity and pressure fields. The performance of the surrogate model developed is very good even though there is no underlying structure shared between the input (permeability) and output (flow/pressure) fields as is often the case in the image-to-image regression models used in computer vision problems. Studies are performed with an underlying stochastic input dimensionality up to 4225 where most other uncertainty quantification methods fail. Uncertainty propagation tasks are considered and the predictive output Bayesian statistics are compared to those obtained with Monte Carlo estimates. •Bayesian Convolutional Encoder–Decoder Deep Networks for Uncertainty Quantification Tasks.•Integrating Stein variational inference for exploring the high-dimensional posterior distribution of the network parameters.•Addressing the curse of dimensionality showing applications in porous media flows with permeability dimensionality of 4225.
AbstractList We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep convolutional encoder–decoder network in a similar fashion to approaches considered in deep learning for image-to-image regression tasks. Since normal neural networks are data-intensive and cannot provide predictive uncertainty, we propose a Bayesian approach to convolutional neural nets. A recently introduced variational gradient descent algorithm based on Stein's method is scaled to deep convolutional networks to perform approximate Bayesian inference on millions of uncertain network parameters. This approach achieves state of the art performance in terms of predictive accuracy and uncertainty quantification in comparison to other approaches in Bayesian neural networks as well as techniques that include Gaussian processes and ensemble methods even when the training data size is relatively small. To evaluate the performance of this approach, we consider standard uncertainty quantification tasks for flow in heterogeneous media using limited training data consisting of permeability realizations and the corresponding velocity and pressure fields. The performance of the surrogate model developed is very good even though there is no underlying structure shared between the input (permeability) and output (flow/pressure) fields as is often the case in the image-to-image regression models used in computer vision problems. Studies are performed with an underlying stochastic input dimensionality up to 4225 where most other uncertainty quantification methods fail. Uncertainty propagation tasks are considered and the predictive output Bayesian statistics are compared to those obtained with Monte Carlo estimates.
We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep convolutional encoder–decoder network in a similar fashion to approaches considered in deep learning for image-to-image regression tasks. Since normal neural networks are data-intensive and cannot provide predictive uncertainty, we propose a Bayesian approach to convolutional neural nets. A recently introduced variational gradient descent algorithm based on Stein's method is scaled to deep convolutional networks to perform approximate Bayesian inference on millions of uncertain network parameters. This approach achieves state of the art performance in terms of predictive accuracy and uncertainty quantification in comparison to other approaches in Bayesian neural networks as well as techniques that include Gaussian processes and ensemble methods even when the training data size is relatively small. To evaluate the performance of this approach, we consider standard uncertainty quantification tasks for flow in heterogeneous media using limited training data consisting of permeability realizations and the corresponding velocity and pressure fields. The performance of the surrogate model developed is very good even though there is no underlying structure shared between the input (permeability) and output (flow/pressure) fields as is often the case in the image-to-image regression models used in computer vision problems. Studies are performed with an underlying stochastic input dimensionality up to 4225 where most other uncertainty quantification methods fail. Uncertainty propagation tasks are considered and the predictive output Bayesian statistics are compared to those obtained with Monte Carlo estimates. •Bayesian Convolutional Encoder–Decoder Deep Networks for Uncertainty Quantification Tasks.•Integrating Stein variational inference for exploring the high-dimensional posterior distribution of the network parameters.•Addressing the curse of dimensionality showing applications in porous media flows with permeability dimensionality of 4225.
Author Zhu, Yinhao
Zabaras, Nicholas
Author_xml – sequence: 1
  givenname: Yinhao
  surname: Zhu
  fullname: Zhu, Yinhao
  email: yzhu10@nd.edu
– sequence: 2
  givenname: Nicholas
  surname: Zabaras
  fullname: Zabaras, Nicholas
  email: nzabaras@gmail.com
BookMark eNp9kMFO3DAQhq0KpC5LH6A3Sz0n9TiJk6inFkFbCYlLOVuz9gQ5DfZiO6C98Q68YZ-E7G5PHDjNSPN_I_3fGTvxwRNjn0GUIEB9HcvRbEspoCtFXS7jA1uB6EUhW1AnbCWEhKLve_jIzlIahRBdU3crNv3AHSWHnluiLTfBP4Zpzi54nDh5EyzFf88vlg4b95SfQvyb-BAiT3OM4Q4z8fvlODl_x9FbPntDMaPzeccfZvTZDc7g_uU5Ox1wSvTp_1yz26vLPxe_iuubn78vvl8XppJNLpoGbd9aVbWyJoHQddL00JpNb2U7bCocFKlu0wyICkVPALVqJDQVgrKqhWrNvhz_bmN4mCllPYY5Lo2SlqKrukVP1S4pOKZMDClFGvQ2unuMOw1C76XqUS9S9V6qFrXeU2vWvmGMy4duOaKb3iW_HUlaij86ijoZtwgm6yKZrG1w79Cv9EiW0Q
CitedBy_id crossref_primary_10_1016_j_jcp_2022_111230
crossref_primary_10_1016_j_cma_2024_117061
crossref_primary_10_1016_j_petrol_2022_110111
crossref_primary_10_1029_2024WR037953
crossref_primary_10_1016_j_apenergy_2023_121576
crossref_primary_10_1007_s00158_020_02659_4
crossref_primary_10_1109_ACCESS_2020_3010800
crossref_primary_10_1016_j_cma_2022_114587
crossref_primary_10_1016_j_cma_2022_115436
crossref_primary_10_1017_jfm_2018_872
crossref_primary_10_1007_s12652_021_03017_y
crossref_primary_10_1016_j_apenergy_2021_116641
crossref_primary_10_1016_j_jhydrol_2024_130737
crossref_primary_10_1016_j_cma_2021_114087
crossref_primary_10_1063_5_0139857
crossref_primary_10_1002_hbm_25784
crossref_primary_10_1016_j_jhydrol_2023_130551
crossref_primary_10_1016_j_jcp_2019_06_042
crossref_primary_10_1016_j_envpol_2024_124820
crossref_primary_10_1016_j_jcp_2020_109942
crossref_primary_10_1007_s10915_022_01930_8
crossref_primary_10_1016_j_petrol_2022_110109
crossref_primary_10_1016_j_neunet_2025_107455
crossref_primary_10_1007_s00466_023_02331_w
crossref_primary_10_1007_s42967_023_00317_2
crossref_primary_10_1016_j_geoen_2022_211368
crossref_primary_10_1016_j_jcp_2022_111579
crossref_primary_10_1016_j_taml_2021_100252
crossref_primary_10_2118_205485_PA
crossref_primary_10_1109_TAI_2023_3268609
crossref_primary_10_1038_s41467_020_19448_8
crossref_primary_10_1016_j_jcp_2024_113194
crossref_primary_10_1117_1_JBO_28_3_036501
crossref_primary_10_1088_2632_2153_abd1cf
crossref_primary_10_1016_j_ifacol_2021_08_225
crossref_primary_10_1016_j_geoen_2022_211373
crossref_primary_10_1029_2019WR024833
crossref_primary_10_1016_j_jcp_2022_111008
crossref_primary_10_1016_j_jrmge_2024_10_025
crossref_primary_10_1016_j_knosys_2022_109998
crossref_primary_10_1002_nme_6958
crossref_primary_10_1002_tee_23745
crossref_primary_10_1029_2023WR034939
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126149
crossref_primary_10_1007_s42979_024_02874_6
crossref_primary_10_1007_s00371_025_03967_w
crossref_primary_10_1016_j_petrol_2021_110069
crossref_primary_10_1007_s10686_021_09827_4
crossref_primary_10_1016_j_petrol_2022_110244
crossref_primary_10_1016_j_enganabound_2023_09_009
crossref_primary_10_1016_j_jhydrol_2025_133285
crossref_primary_10_22331_q_2025_06_04_1761
crossref_primary_10_1007_s00158_023_03547_3
crossref_primary_10_1007_s10915_024_02711_1
crossref_primary_10_1016_j_nucengdes_2022_111716
crossref_primary_10_1016_j_ces_2023_119636
crossref_primary_10_1016_j_jcp_2022_111270
crossref_primary_10_1016_j_geoen_2024_213061
crossref_primary_10_1016_j_jhydrol_2022_129013
crossref_primary_10_1007_s10596_021_10126_2
crossref_primary_10_1371_journal_pcbi_1013330
crossref_primary_10_1016_j_jhydrol_2024_130641
crossref_primary_10_1016_j_petsci_2025_02_014
crossref_primary_10_2118_217456_PA
crossref_primary_10_1029_2019WR026082
crossref_primary_10_1016_j_cam_2023_115532
crossref_primary_10_1016_j_compfluid_2021_104947
crossref_primary_10_1002_sam_11610
crossref_primary_10_1016_j_advwatres_2023_104494
crossref_primary_10_1016_j_cma_2022_115236
crossref_primary_10_1016_j_eswa_2025_128820
crossref_primary_10_1016_j_jcp_2019_109056
crossref_primary_10_1007_s11356_020_09382_z
crossref_primary_10_2118_206755_PA
crossref_primary_10_1002_pc_29998
crossref_primary_10_1016_j_cma_2022_115594
crossref_primary_10_1016_j_jcp_2019_07_048
crossref_primary_10_1016_j_jcp_2024_113284
crossref_primary_10_1016_j_cma_2024_117493
crossref_primary_10_2118_208604_PA
crossref_primary_10_1016_j_watres_2020_116535
crossref_primary_10_1063_5_0253234
crossref_primary_10_1016_j_jconhyd_2024_104394
crossref_primary_10_1016_j_cma_2024_117486
crossref_primary_10_1007_s41939_025_01030_8
crossref_primary_10_1016_j_ijggc_2020_103223
crossref_primary_10_1029_2022WR031997
crossref_primary_10_1016_j_jappgeo_2020_104107
crossref_primary_10_1016_j_jcp_2019_109071
crossref_primary_10_3389_fams_2022_1021069
crossref_primary_10_1007_s10439_022_02967_4
crossref_primary_10_1137_20M1323151
crossref_primary_10_1016_j_cnsns_2025_109131
crossref_primary_10_1088_2632_2153_ace67c
crossref_primary_10_3390_math7050412
crossref_primary_10_1016_j_physd_2024_134304
crossref_primary_10_1016_j_applthermaleng_2024_123599
crossref_primary_10_1016_j_icheatmasstransfer_2025_108655
crossref_primary_10_1016_j_jcp_2023_112549
crossref_primary_10_1016_j_advwatres_2022_104180
crossref_primary_10_1016_j_jcp_2024_113379
crossref_primary_10_1002_cnm_3575
crossref_primary_10_1002_ghg_2333
crossref_primary_10_1007_s42452_022_04936_x
crossref_primary_10_1016_j_cma_2022_114871
crossref_primary_10_1007_s00158_020_02788_w
crossref_primary_10_1016_j_cageo_2022_105212
crossref_primary_10_1016_j_neucom_2021_01_135
crossref_primary_10_1063_5_0004631
crossref_primary_10_1515_icom_2023_0026
crossref_primary_10_1016_j_commatsci_2021_110883
crossref_primary_10_2118_206126_PA
crossref_primary_10_1002_gamm_201900008
crossref_primary_10_1016_j_compfluid_2020_104475
crossref_primary_10_1016_j_chaos_2022_112118
crossref_primary_10_1038_s41467_025_59847_3
crossref_primary_10_1016_j_advwatres_2022_104169
crossref_primary_10_1016_j_advwatres_2024_104726
crossref_primary_10_3390_math11214418
crossref_primary_10_2118_199357_PA
crossref_primary_10_1016_j_still_2023_105706
crossref_primary_10_1016_j_knosys_2021_106956
crossref_primary_10_1016_j_geoen_2023_212554
crossref_primary_10_1007_s10596_022_10160_8
crossref_primary_10_1016_j_jhydrol_2022_127844
crossref_primary_10_1155_2023_5499645
crossref_primary_10_1007_s10489_024_05834_y
crossref_primary_10_1016_j_jcp_2019_05_053
crossref_primary_10_1016_j_jcp_2024_112944
crossref_primary_10_3389_fncom_2019_00056
crossref_primary_10_1016_j_ijheatmasstransfer_2021_122131
crossref_primary_10_2118_218386_PA
crossref_primary_10_1007_s00466_023_02334_7
crossref_primary_10_1016_j_neunet_2021_11_022
crossref_primary_10_1137_20M133957X
crossref_primary_10_3390_w15173140
crossref_primary_10_1016_j_cnsns_2024_108103
crossref_primary_10_1007_s11004_025_10223_3
crossref_primary_10_1016_j_neunet_2024_106354
crossref_primary_10_1063_5_0203546
crossref_primary_10_1016_j_probengmech_2023_103421
crossref_primary_10_1007_s40747_023_01276_0
crossref_primary_10_1016_j_cageo_2024_105680
crossref_primary_10_1016_j_cma_2025_118022
crossref_primary_10_1016_j_taml_2020_01_031
crossref_primary_10_1007_s10596_023_10211_8
crossref_primary_10_1016_j_cja_2025_103768
crossref_primary_10_1016_j_advwatres_2023_104564
crossref_primary_10_1029_2018WR024592
crossref_primary_10_5194_hess_26_2923_2022
crossref_primary_10_1016_j_jcp_2021_110362
crossref_primary_10_1007_s00477_024_02814_z
crossref_primary_10_1029_2021WR031554
crossref_primary_10_1007_s00521_024_10132_2
crossref_primary_10_1016_j_jcp_2019_05_026
crossref_primary_10_1016_j_jcp_2019_05_024
crossref_primary_10_1016_j_eml_2023_102110
crossref_primary_10_1137_19M1267246
crossref_primary_10_1016_j_jcp_2022_111309
crossref_primary_10_3389_fmats_2022_1060744
crossref_primary_10_1016_j_asoc_2023_110872
crossref_primary_10_1016_j_jcp_2023_111945
crossref_primary_10_1029_2022WR032553
crossref_primary_10_1016_j_jhydrol_2023_130085
crossref_primary_10_1016_j_jcp_2022_111666
crossref_primary_10_1016_j_jcp_2021_110192
crossref_primary_10_1016_j_jcp_2021_110194
crossref_primary_10_1016_j_cma_2022_114784
crossref_primary_10_1109_TGRS_2024_3357797
crossref_primary_10_1016_j_jcp_2019_108939
crossref_primary_10_1016_j_cma_2024_117093
crossref_primary_10_1137_24M1636071
crossref_primary_10_1016_j_jcp_2022_111419
crossref_primary_10_1016_j_geoen_2023_212516
crossref_primary_10_1016_j_advwatres_2022_104243
crossref_primary_10_1016_j_petrol_2022_110548
crossref_primary_10_1016_j_cma_2021_114399
crossref_primary_10_1016_j_jcp_2022_111536
crossref_primary_10_1162_neco_a_01491
crossref_primary_10_1109_TGRS_2023_3249239
crossref_primary_10_1016_j_jhydrol_2024_131674
crossref_primary_10_1016_j_advwatres_2024_104837
crossref_primary_10_1029_2023WR035778
crossref_primary_10_1137_19M130981X
crossref_primary_10_2118_203997_PA
crossref_primary_10_1016_j_geoen_2023_211418
crossref_primary_10_1016_j_ijnonlinmec_2024_104819
crossref_primary_10_1016_j_jcp_2022_111202
crossref_primary_10_1016_j_cma_2020_112906
crossref_primary_10_1016_j_ces_2020_115949
crossref_primary_10_1029_2021WR031429
crossref_primary_10_1016_j_cma_2024_117195
crossref_primary_10_2166_hydro_2024_275
crossref_primary_10_1016_j_compfluid_2024_106239
crossref_primary_10_1061_JENMDT_EMENG_7617
crossref_primary_10_3390_jcs4020071
crossref_primary_10_1016_j_advwatres_2025_105098
crossref_primary_10_1007_s10596_021_10052_3
crossref_primary_10_1088_1741_2552_ac9646
crossref_primary_10_1016_j_petrol_2021_109046
crossref_primary_10_1016_j_jcp_2022_111313
crossref_primary_10_1016_j_envres_2023_117268
crossref_primary_10_1016_j_jcp_2019_108963
crossref_primary_10_1088_1361_6420_ace9d4
crossref_primary_10_3389_fphy_2022_890910
crossref_primary_10_1007_s10915_025_02791_7
crossref_primary_10_1029_2018WR024638
crossref_primary_10_1111_mice_12510
crossref_primary_10_1137_24M1648703
crossref_primary_10_1186_s12968_020_00650_y
crossref_primary_10_1016_j_cageo_2024_105611
crossref_primary_10_1016_j_jcp_2019_108968
crossref_primary_10_1016_j_ijggc_2021_103488
crossref_primary_10_1073_pnas_1916634117
crossref_primary_10_1016_j_cma_2021_114507
crossref_primary_10_1051_e3sconf_202122901048
crossref_primary_10_1016_j_ijggc_2024_104061
crossref_primary_10_1061_JHEND8_HYENG_13190
crossref_primary_10_1016_j_jcp_2021_110896
crossref_primary_10_1007_s00477_025_02954_w
crossref_primary_10_1155_2022_2013558
crossref_primary_10_1002_nme_7228
crossref_primary_10_1007_s00158_022_03411_w
crossref_primary_10_2118_209223_PA
crossref_primary_10_1109_TGRS_2020_3039165
crossref_primary_10_1111_gwat_13005
crossref_primary_10_1016_j_petrol_2020_107192
crossref_primary_10_1016_j_cma_2020_113492
crossref_primary_10_1016_j_fuel_2023_129353
crossref_primary_10_1016_j_jcp_2021_110668
crossref_primary_10_1016_j_neucom_2019_01_103
crossref_primary_10_1016_j_engappai_2025_110873
crossref_primary_10_3390_w15162890
crossref_primary_10_1029_2025WR040191
crossref_primary_10_2139_ssrn_5066408
crossref_primary_10_2118_217441_PA
crossref_primary_10_3934_fods_2021016
crossref_primary_10_1016_j_cma_2019_112732
crossref_primary_10_1007_s10483_023_2992_6
crossref_primary_10_1016_j_jenvman_2025_124708
crossref_primary_10_1029_2018WR023528
crossref_primary_10_1016_j_heliyon_2024_e38103
crossref_primary_10_1016_j_cageo_2019_01_012
crossref_primary_10_1016_j_jhydrol_2024_132323
crossref_primary_10_1016_j_cma_2023_116394
crossref_primary_10_1214_22_STS863
crossref_primary_10_1016_j_cageo_2024_105711
crossref_primary_10_1137_23M1562561
crossref_primary_10_1016_j_jhydrol_2020_124700
crossref_primary_10_1016_j_petrol_2020_107273
crossref_primary_10_1080_19942060_2024_2435457
crossref_primary_10_2118_215821_PA
crossref_primary_10_1016_j_ress_2019_106731
crossref_primary_10_1016_j_jcp_2022_111800
crossref_primary_10_1093_imanum_draf028
crossref_primary_10_1063_5_0168973
crossref_primary_10_1016_j_cma_2019_112623
crossref_primary_10_1145_3448125
crossref_primary_10_1016_j_advwatres_2023_104607
crossref_primary_10_1016_j_jhydrol_2024_132576
crossref_primary_10_1016_j_jhydrol_2024_132457
crossref_primary_10_1007_s11548_019_01939_9
crossref_primary_10_1016_j_engappai_2023_105945
crossref_primary_10_3390_math8081287
crossref_primary_10_1016_j_geoen_2024_213407
crossref_primary_10_1007_s10489_021_02686_8
crossref_primary_10_1016_j_dsp_2022_103605
crossref_primary_10_1137_21M1452512
crossref_primary_10_1016_j_petrol_2021_109880
crossref_primary_10_3390_agriculture14020217
crossref_primary_10_1088_1755_1315_647_1_012180
crossref_primary_10_1016_j_cam_2022_114963
crossref_primary_10_1016_j_jcp_2024_112760
crossref_primary_10_1016_j_geoderma_2024_116954
crossref_primary_10_1016_j_jhydrol_2021_127233
crossref_primary_10_1038_s41598_021_00773_x
crossref_primary_10_1088_1873_7005_acd7a0
crossref_primary_10_1016_j_ijggc_2021_103562
crossref_primary_10_1049_hve2_12435
crossref_primary_10_3390_en16186727
crossref_primary_10_1016_j_envsoft_2023_105658
crossref_primary_10_1080_01621459_2025_2529025
crossref_primary_10_1371_journal_pcbi_1009996
crossref_primary_10_1016_j_jcp_2021_110218
crossref_primary_10_1007_s11053_021_09948_9
crossref_primary_10_1051_e3sconf_202122901003
crossref_primary_10_1016_j_cma_2021_114424
crossref_primary_10_1016_j_jhydrol_2022_127639
crossref_primary_10_1007_s11004_024_10152_7
crossref_primary_10_1016_j_jhydrol_2021_126371
crossref_primary_10_2118_205000_PA
crossref_primary_10_1029_2022GL098944
crossref_primary_10_1007_s11837_019_03555_z
crossref_primary_10_1007_s10444_024_10110_1
crossref_primary_10_1145_3630098
crossref_primary_10_1016_j_egyai_2025_100553
crossref_primary_10_1029_2023WR036146
crossref_primary_10_1016_j_cma_2020_113047
crossref_primary_10_1016_j_ins_2020_08_090
crossref_primary_10_32604_ee_2022_019556
crossref_primary_10_1016_j_neucom_2019_09_101
crossref_primary_10_1029_2022MS003058
crossref_primary_10_1016_j_cpc_2022_108382
crossref_primary_10_1016_j_jcp_2024_113710
crossref_primary_10_1061_AJRUA6_RUENG_1538
crossref_primary_10_1016_j_geoen_2024_212990
crossref_primary_10_1088_2058_9565_ad42ce
crossref_primary_10_1016_j_ress_2024_110386
crossref_primary_10_1137_18M1225409
crossref_primary_10_1016_j_jhydrol_2024_132368
crossref_primary_10_1007_s10915_023_02328_w
crossref_primary_10_1038_s41598_023_41039_y
crossref_primary_10_1016_j_advwatres_2025_105002
crossref_primary_10_1016_j_jcp_2024_113709
crossref_primary_10_1016_j_jcp_2021_110550
crossref_primary_10_1109_TIM_2023_3256459
crossref_primary_10_1016_j_petrol_2021_109694
crossref_primary_10_1016_j_geoen_2023_212467
crossref_primary_10_1016_j_jcp_2022_111841
crossref_primary_10_1016_j_petrol_2021_109577
crossref_primary_10_1016_j_ress_2024_110392
crossref_primary_10_1016_j_egyr_2022_02_228
crossref_primary_10_3390_en17133097
crossref_primary_10_1016_j_jhydrol_2021_127244
crossref_primary_10_1002_nme_7207
crossref_primary_10_1016_j_advwatres_2021_103917
crossref_primary_10_1090_mcom_3781
crossref_primary_10_1063_5_0157763
crossref_primary_10_1093_jge_gxad061
crossref_primary_10_3390_su15010784
crossref_primary_10_1016_j_mechrescom_2019_103443
crossref_primary_10_1016_j_geoen_2024_212994
crossref_primary_10_1186_s12880_023_01121_3
crossref_primary_10_1016_j_scitotenv_2022_154701
crossref_primary_10_1016_j_cma_2024_117342
crossref_primary_10_1016_j_camwa_2022_02_004
crossref_primary_10_1016_j_compchemeng_2021_107365
crossref_primary_10_1016_j_trc_2024_104868
crossref_primary_10_3390_math12182933
crossref_primary_10_1016_j_jcp_2020_109307
crossref_primary_10_3389_fphy_2022_971722
crossref_primary_10_1029_2022WR032194
crossref_primary_10_1145_3514228
crossref_primary_10_1016_j_ymssp_2023_111014
crossref_primary_10_1007_s10596_024_10325_7
crossref_primary_10_1140_epjs_s11734_024_01263_7
crossref_primary_10_1016_j_jcp_2024_113121
crossref_primary_10_1039_D2EE04204E
crossref_primary_10_1017_dce_2023_19
crossref_primary_10_3390_w16101411
crossref_primary_10_1029_2021WR031808
crossref_primary_10_1016_j_engappai_2024_108656
crossref_primary_10_1016_j_cma_2023_116538
crossref_primary_10_1016_j_jcp_2024_113117
crossref_primary_10_1007_s00158_019_02413_5
crossref_primary_10_1016_j_ress_2025_111353
crossref_primary_10_1016_j_ymssp_2019_106399
crossref_primary_10_1016_j_uclim_2023_101499
crossref_primary_10_1016_j_advwatres_2020_103545
crossref_primary_10_1016_j_camwa_2025_07_013
crossref_primary_10_1016_j_jcp_2019_01_021
crossref_primary_10_1029_2019WR026731
crossref_primary_10_1109_ACCESS_2022_3148401
crossref_primary_10_1016_j_cma_2020_113636
crossref_primary_10_1016_j_cma_2023_116684
crossref_primary_10_1016_j_cma_2025_117732
crossref_primary_10_1016_j_jhydrol_2023_129944
crossref_primary_10_1016_j_cma_2022_115296
crossref_primary_10_1016_j_neucom_2020_06_146
crossref_primary_10_1016_j_compfluid_2023_105960
crossref_primary_10_1016_j_asoc_2025_113542
crossref_primary_10_1016_j_jcp_2022_111080
crossref_primary_10_1137_23M1549870
crossref_primary_10_1016_j_jconhyd_2021_103815
crossref_primary_10_1007_s10596_019_09850_7
crossref_primary_10_1016_j_apenergy_2024_123723
crossref_primary_10_1016_j_jhydrol_2022_128321
crossref_primary_10_1016_j_cma_2023_116214
crossref_primary_10_1007_s11222_025_10597_8
crossref_primary_10_1073_pnas_2310142120
crossref_primary_10_1109_TGRS_2022_3222507
crossref_primary_10_1016_j_jcp_2025_113726
crossref_primary_10_1109_TNNLS_2020_2987760
crossref_primary_10_2118_219732_PA
crossref_primary_10_1007_s12517_022_09575_5
crossref_primary_10_1016_j_earscirev_2023_104370
crossref_primary_10_1016_j_commatsci_2022_111493
crossref_primary_10_1016_j_cma_2024_117657
crossref_primary_10_1016_j_paerosci_2021_100725
crossref_primary_10_3390_en14020413
crossref_primary_10_1016_j_cma_2025_117953
crossref_primary_10_1016_j_probengmech_2024_103581
crossref_primary_10_1016_j_engstruct_2022_114901
crossref_primary_10_1109_ACCESS_2019_2957200
crossref_primary_10_1016_j_petrol_2021_108975
crossref_primary_10_1088_1748_9326_ab1b7d
crossref_primary_10_1016_j_apenergy_2024_124910
crossref_primary_10_1016_j_jcp_2023_112129
crossref_primary_10_1016_j_jcp_2023_112369
crossref_primary_10_1016_j_cma_2024_116793
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124671
crossref_primary_10_1061__ASCE_EM_1943_7889_0001947
crossref_primary_10_1016_j_combustflame_2023_112925
crossref_primary_10_12677_AAM_2024_132069
crossref_primary_10_1016_j_jcp_2020_109456
crossref_primary_10_1007_s10040_023_02713_7
crossref_primary_10_1007_s11538_020_00851_7
crossref_primary_10_1016_S1876_3804_25_60541_6
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124546
crossref_primary_10_1016_j_jcp_2023_112031
crossref_primary_10_3390_jimaging4120147
crossref_primary_10_1137_23M1560574
crossref_primary_10_1155_2023_2973249
crossref_primary_10_1016_j_cam_2024_116191
crossref_primary_10_2118_218000_PA
crossref_primary_10_1016_j_fuel_2023_127677
crossref_primary_10_1109_ACCESS_2022_3153056
crossref_primary_10_1016_j_jhydrol_2020_124631
crossref_primary_10_1093_imatrm_tnac001
crossref_primary_10_1016_j_jcp_2019_109120
crossref_primary_10_1016_j_commatsci_2025_114035
crossref_primary_10_1016_j_neucom_2024_128254
Cites_doi 10.1126/science.1127647
10.1016/j.jcp.2013.01.011
10.1016/j.jcp.2012.04.047
10.1017/jfm.2016.803
10.1038/ncomms5308
10.1007/s11222-010-9224-x
10.1038/nature14539
10.1561/2200000006
10.1137/S1064827501387826
10.1080/01621459.2017.1285773
10.1162/neco.2006.18.7.1527
10.1016/j.jcp.2017.10.034
10.1162/neco.1992.4.3.448
10.1111/gwat.12557
ContentType Journal Article
Copyright 2018 Elsevier Inc.
Copyright Elsevier Science Ltd. Aug 1, 2018
Copyright_xml – notice: 2018 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Aug 1, 2018
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2018.04.018
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
EndPage 447
ExternalDocumentID 10_1016_j_jcp_2018_04_018
S0021999118302341
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-55ad97d63724e0a1882c917cb9d27fb3af6e68b5faa6a09e114652153a16d6713
ISICitedReferencesCount 506
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436475100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Sun Nov 09 08:06:11 EST 2025
Tue Nov 18 21:32:34 EST 2025
Sat Nov 29 03:10:20 EST 2025
Fri Feb 23 02:17:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Uncertainty quantification
Porous media flows
Convolutional encoder–decoder networks
Bayesian neural networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-55ad97d63724e0a1882c917cb9d27fb3af6e68b5faa6a09e114652153a16d6713
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2083801837
PQPubID 2047462
PageCount 33
ParticipantIDs proquest_journals_2083801837
crossref_primary_10_1016_j_jcp_2018_04_018
crossref_citationtrail_10_1016_j_jcp_2018_04_018
elsevier_sciencedirect_doi_10_1016_j_jcp_2018_04_018
PublicationCentury 2000
PublicationDate 2018-08-01
2018-08-00
20180801
PublicationDateYYYYMMDD 2018-08-01
PublicationDate_xml – month: 08
  year: 2018
  text: 2018-08-01
  day: 01
PublicationDecade 2010
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2018
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Bilionis, Zabaras, Konomi, Lin (br0020) 2013; 241
Liu, Wang (br0300) 2016
Liu (br0590) 2017
Louizos, Welling (br0330)
de Oliveira, Paganini, Nachman (br0690)
MacKay (br0260) 1992; 4
Oord, Kalchbrenner, Kavukcuoglu (br0440)
Lawrence (br0100) 2004
Min, Lee, Yoon (br0240) 2017; 18
Raghu, Poole, Kleinberg, Ganguli, Sohl-Dickstein (br0200)
Bilionis, Zabaras (br0010) 2016
Kutz (br0210) 2017; 814
Arora, Ge, Neyshabur, Zhang (br0190)
Eigen, Puhrsch, Fergus (br0400) 2014
Zhang, Bengio, Hardt, Recht, Vinyals (br0170)
Long, Shelhamer, Darrell (br0490) 2015
Szegedy, Vanhoucke, Ioffe, Shlens, Wojna (br0370) 2016
Goyal, Dollár, Girshick, Noordhuis, Wesolowski, Kyrola, Tulloch, Jia, He (br0660)
Huang, Liu, Weinberger, van der Maaten (br0350)
Xiu, Karniadakis (br0040) 2002; 24
Srivastava, Greff, Schmidhuber (br0450) 2015
Le, Smola, Canu (br0560) 2005
Louizos, Ullrich, Welling (br0340)
Li, Jamieson, DeSalvo, Rostamizadeh, Talwalkar (br0640)
Glorot, Bordes, Bengio (br0470) 2011
Blundell, Cornebise, Kavukcuoglu, Wierstra (br0290)
Bengio (br0120) 2009; 2
Zeiler, Fergus (br0140) 2014
Rasmussen, Williams (br0610) 2006
LeCun, Bengio, Hinton (br0150) 2015; 521
Kingma, Ba (br0650)
Luo, Li, Urtasun, Zemel (br0700) 2016
Grigo, Koutsourelakis (br0110)
Kingma, Welling (br0090)
Kendall, Gal (br0570)
Bilionis, Zabaras (br0030) 2012; 231
Alnæs, Blechta, Hake, Johansson, Kehlet, Logg, Richardson, Ring, Rognes, Wells (br0620) 2015; 3
Jégou, Drozdzal, Vazquez, Romero, Bengio (br0510) 2017
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (br0420) 2014
Quinonero Candela, Rasmussen, Sinz, Bousquet, Schölkopf (br0670) 2006
Gal, Ghahramani (br0280) 2016
Blei, Kucukelbir, McAuliffe (br0580) 2017; 112
Isola, Zhu, Zhou, Efros (br0410)
br0480
Liu, Lee, Jordan (br0600) 2016
Krizhevsky, Sutskever, Hinton (br0130) 2012
Ronneberger, Fischer, Brox (br0390) 2015
Gramacy, Lee (br0540) 2012; 22
Poggio, Kawaguchi, Liao, Miranda, Rosasco, Boix, Hidary, Mhaskar (br0680)
Lakshminarayanan, Pritzel, Blundell (br0630)
Hinton, Osindero, Teh (br0160) 2006; 18
van der Maaten, Postma, van den Herik (br0060) 2009
Hernández-Lobato, Adams (br0320) 2015
Dziugaite, Roy (br0180)
Hinton, Salakhutdinov (br0080) 2006; 313
Han, Mao, Dally (br0520)
Kingma, Salimans, Welling (br0310) 2015
Marçais, de Dreuzy (br0220) 2017; 55
Neal (br0270) 2012
Lee, Caron, Doucet, Holmes (br0530)
Torquato (br0050) 2013
Maaten, Hinton (br0070) Nov 2008; 9
Nix, Weigend (br0550) 1994
Ioffe, Szegedy (br0460) 2015
Badrinarayanan, Kendall, Cipolla (br0500)
Baldi, Sadowski, Whiteson (br0250) 2014; 5
Simonyan, Zisserman (br0360)
Chan, Elsheikh (br0230) 2018; 354
He, Zhang, Ren, Sun (br0380) 2016
van den Oord, Kalchbrenner, Espeholt, Vinyals, Graves (br0430) 2016
Raghu (10.1016/j.jcp.2018.04.018_br0200)
Blei (10.1016/j.jcp.2018.04.018_br0580) 2017; 112
Hernández-Lobato (10.1016/j.jcp.2018.04.018_br0320) 2015
Isola (10.1016/j.jcp.2018.04.018_br0410)
Badrinarayanan (10.1016/j.jcp.2018.04.018_br0500)
Lakshminarayanan (10.1016/j.jcp.2018.04.018_br0630)
Dziugaite (10.1016/j.jcp.2018.04.018_br0180)
Louizos (10.1016/j.jcp.2018.04.018_br0330)
Quinonero Candela (10.1016/j.jcp.2018.04.018_br0670) 2006
Chan (10.1016/j.jcp.2018.04.018_br0230) 2018; 354
Long (10.1016/j.jcp.2018.04.018_br0490) 2015
Kingma (10.1016/j.jcp.2018.04.018_br0650)
Gal (10.1016/j.jcp.2018.04.018_br0280) 2016
van der Maaten (10.1016/j.jcp.2018.04.018_br0060) 2009
Krizhevsky (10.1016/j.jcp.2018.04.018_br0130) 2012
Liu (10.1016/j.jcp.2018.04.018_br0590) 2017
Jégou (10.1016/j.jcp.2018.04.018_br0510) 2017
Goyal (10.1016/j.jcp.2018.04.018_br0660)
Srivastava (10.1016/j.jcp.2018.04.018_br0450) 2015
Kingma (10.1016/j.jcp.2018.04.018_br0310) 2015
Nix (10.1016/j.jcp.2018.04.018_br0550) 1994
Kendall (10.1016/j.jcp.2018.04.018_br0570)
Bilionis (10.1016/j.jcp.2018.04.018_br0010) 2016
Bengio (10.1016/j.jcp.2018.04.018_br0120) 2009; 2
Simonyan (10.1016/j.jcp.2018.04.018_br0360)
Neal (10.1016/j.jcp.2018.04.018_br0270) 2012
Bilionis (10.1016/j.jcp.2018.04.018_br0030) 2012; 231
LeCun (10.1016/j.jcp.2018.04.018_br0150) 2015; 521
Glorot (10.1016/j.jcp.2018.04.018_br0470) 2011
Oord (10.1016/j.jcp.2018.04.018_br0440)
Szegedy (10.1016/j.jcp.2018.04.018_br0370) 2016
Maaten (10.1016/j.jcp.2018.04.018_br0070) 2008; 9
Marçais (10.1016/j.jcp.2018.04.018_br0220) 2017; 55
Rasmussen (10.1016/j.jcp.2018.04.018_br0610) 2006
de Oliveira (10.1016/j.jcp.2018.04.018_br0690)
Luo (10.1016/j.jcp.2018.04.018_br0700) 2016
Liu (10.1016/j.jcp.2018.04.018_br0300) 2016
Zeiler (10.1016/j.jcp.2018.04.018_br0140) 2014
Bilionis (10.1016/j.jcp.2018.04.018_br0020) 2013; 241
Goodfellow (10.1016/j.jcp.2018.04.018_br0420) 2014
Poggio (10.1016/j.jcp.2018.04.018_br0680)
Arora (10.1016/j.jcp.2018.04.018_br0190)
Zhang (10.1016/j.jcp.2018.04.018_br0170)
MacKay (10.1016/j.jcp.2018.04.018_br0260) 1992; 4
Kingma (10.1016/j.jcp.2018.04.018_br0090)
Louizos (10.1016/j.jcp.2018.04.018_br0340)
Torquato (10.1016/j.jcp.2018.04.018_br0050) 2013
Lawrence (10.1016/j.jcp.2018.04.018_br0100) 2004
Lee (10.1016/j.jcp.2018.04.018_br0530)
Xiu (10.1016/j.jcp.2018.04.018_br0040) 2002; 24
Baldi (10.1016/j.jcp.2018.04.018_br0250) 2014; 5
van den Oord (10.1016/j.jcp.2018.04.018_br0430) 2016
Liu (10.1016/j.jcp.2018.04.018_br0600) 2016
Huang (10.1016/j.jcp.2018.04.018_br0350)
Kutz (10.1016/j.jcp.2018.04.018_br0210) 2017; 814
Eigen (10.1016/j.jcp.2018.04.018_br0400) 2014
Hinton (10.1016/j.jcp.2018.04.018_br0160) 2006; 18
Gramacy (10.1016/j.jcp.2018.04.018_br0540) 2012; 22
Blundell (10.1016/j.jcp.2018.04.018_br0290)
He (10.1016/j.jcp.2018.04.018_br0380) 2016
Alnæs (10.1016/j.jcp.2018.04.018_br0620) 2015; 3
Ronneberger (10.1016/j.jcp.2018.04.018_br0390) 2015
Le (10.1016/j.jcp.2018.04.018_br0560) 2005
Min (10.1016/j.jcp.2018.04.018_br0240) 2017; 18
Li (10.1016/j.jcp.2018.04.018_br0640)
Hinton (10.1016/j.jcp.2018.04.018_br0080) 2006; 313
Grigo (10.1016/j.jcp.2018.04.018_br0110)
Ioffe (10.1016/j.jcp.2018.04.018_br0460) 2015
Han (10.1016/j.jcp.2018.04.018_br0520)
References_xml – volume: 4
  start-page: 448
  year: 1992
  end-page: 472
  ident: br0260
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Comput.
– volume: 5
  start-page: 4308
  year: 2014
  ident: br0250
  article-title: Searching for exotic particles in high-energy physics with deep learning
  publication-title: Nat. Commun.
– ident: br0440
  article-title: Pixel recurrent neural networks
– volume: 112
  start-page: 859
  year: 2017
  end-page: 877
  ident: br0580
  article-title: Variational inference: a review for statisticians
  publication-title: J. Am. Stat. Assoc.
– start-page: 448
  year: 2015
  end-page: 456
  ident: br0460
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: International Conference on Machine Learning
– ident: br0630
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: br0160
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– start-page: 1
  year: 2006
  end-page: 27
  ident: br0670
  article-title: Evaluating predictive uncertainty challenge
  publication-title: Machine Learning Challenges: Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Textual Entailment, Max-Planck-Gesellschaft
– volume: 18
  start-page: 851
  year: 2017
  end-page: 869
  ident: br0240
  article-title: Deep learning in bioinformatics
  publication-title: Brief. Bioinform.
– start-page: 770
  year: 2016
  end-page: 778
  ident: br0380
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 818
  year: 2014
  end-page: 833
  ident: br0140
  article-title: Visualizing and understanding convolutional networks
  publication-title: European Conference on Computer Vision
– ident: br0410
  article-title: Image-to-image translation with conditional adversarial networks
– ident: br0520
  article-title: Deep compression: compressing deep neural networks with pruning, trained quantization and Huffman coding
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: br0130
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– ident: br0290
  article-title: Weight uncertainty in neural networks
– ident: br0190
  article-title: Stronger generalization bounds for deep nets via a compression approach
– start-page: 2818
  year: 2016
  end-page: 2826
  ident: br0370
  article-title: Rethinking the inception architecture for computer vision
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– ident: br0650
  article-title: Adam: a method for stochastic optimization
– start-page: 329
  year: 2004
  end-page: 336
  ident: br0100
  article-title: Gaussian process latent variable models for visualisation of high dimensional data
  publication-title: Advances in Neural Information Processing Systems
– start-page: 2366
  year: 2014
  end-page: 2374
  ident: br0400
  article-title: Depth map prediction from a single image using a multi-scale deep network
  publication-title: Advances in Neural Information Processing Systems
– ident: br0660
  article-title: Accurate, large minibatch SGD: training ImageNet in 1 hour
– ident: br0480
  article-title: Theano: a Python framework for fast computation of mathematical expressions
– start-page: 234
  year: 2015
  end-page: 241
  ident: br0390
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– ident: br0690
  article-title: Learning particle physics by example: location-aware generative adversarial networks for physics synthesis
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: br0150
  article-title: Deep learning
  publication-title: Nature
– ident: br0680
  article-title: Theory of Deep Learning III: explaining the non-overfitting puzzle
– start-page: 1175
  year: 2017
  end-page: 1183
  ident: br0510
  article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops
– start-page: 2377
  year: 2015
  end-page: 2385
  ident: br0450
  article-title: Training very deep networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 354
  start-page: 493
  year: 2018
  end-page: 511
  ident: br0230
  article-title: A machine learning approach for efficient uncertainty quantification using multiscale methods
  publication-title: J. Comput. Phys.
– year: 2012
  ident: br0270
  article-title: Bayesian Learning for Neural Networks, vol. 118
– start-page: 55
  year: 1994
  end-page: 60
  ident: br0550
  article-title: Estimating the mean and variance of the target probability distribution
  publication-title: 1994 IEEE International Conference on Neural Networks, IEEE World Congress on Computational Intelligence, vol. 1
– ident: br0180
  article-title: Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data
– ident: br0570
  article-title: What uncertainties do we need in Bayesian deep learning for computer vision?
– start-page: 4898
  year: 2016
  end-page: 4906
  ident: br0700
  article-title: Understanding the effective receptive field in deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– ident: br0350
  article-title: Densely connected convolutional networks
– year: 2009
  ident: br0060
  article-title: Dimensionality Reduction: A Comparative Review
– volume: 231
  start-page: 5718
  year: 2012
  end-page: 5746
  ident: br0030
  article-title: Multi-output local Gaussian process regression: applications to uncertainty quantification
  publication-title: J. Comput. Phys.
– ident: br0500
  article-title: Segnet: a deep convolutional encoder–decoder architecture for image segmentation
– year: 2013
  ident: br0050
  article-title: Random Heterogeneous Materials: Microstructure and Macroscopic Properties, vol. 16
– ident: br0170
  article-title: Understanding deep learning requires rethinking generalization
– start-page: 276
  year: 2016
  end-page: 284
  ident: br0600
  article-title: A kernelized Stein discrepancy for goodness-of-fit tests
  publication-title: International Conference on Machine Learning
– volume: 241
  start-page: 212
  year: 2013
  end-page: 239
  ident: br0020
  article-title: Multi-output separable Gaussian process: towards an efficient, fully Bayesian paradigm for uncertainty quantification
  publication-title: J. Comput. Phys.
– ident: br0110
  article-title: Bayesian model and dimension reduction for uncertainty propagation: applications in random media
– volume: 814
  start-page: 1
  year: 2017
  end-page: 4
  ident: br0210
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
– start-page: 489
  year: 2005
  end-page: 496
  ident: br0560
  article-title: Heteroscedastic Gaussian process regression
  publication-title: Proceedings of the 22nd International Conference on Machine Learning
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: br0490
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 9
  start-page: 2579
  year: Nov 2008
  end-page: 2605
  ident: br0070
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: br0080
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– ident: br0640
  article-title: Hyperband: a novel bandit-based approach to hyperparameter optimization
– start-page: 1
  year: 2016
  end-page: 45
  ident: br0010
  article-title: Bayesian uncertainty propagation using Gaussian processes
  publication-title: Handbook of Uncertainty Quantification
– ident: br0330
  article-title: Multiplicative normalizing flows for variational bayesian neural networks
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: br0420
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– start-page: 3117
  year: 2017
  end-page: 3125
  ident: br0590
  article-title: Stein variational gradient descent as gradient flow
  publication-title: Advances in Neural Information Processing Systems
– ident: br0360
  article-title: Very deep convolutional networks for large-scale image recognition
– year: 2006
  ident: br0610
  article-title: Gaussian Processes for Machine Learning, vol. 1
– start-page: 4790
  year: 2016
  end-page: 4798
  ident: br0430
  article-title: Conditional image generation with pixelcnn decoders
  publication-title: Advances in Neural Information Processing Systems
– ident: br0090
  article-title: Auto-encoding variational bayes
– volume: 24
  start-page: 619
  year: 2002
  end-page: 644
  ident: br0040
  article-title: The Wiener–Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
– start-page: 315
  year: 2011
  end-page: 323
  ident: br0470
  article-title: Deep sparse rectifier neural networks
  publication-title: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics
– volume: 22
  start-page: 713
  year: 2012
  end-page: 722
  ident: br0540
  article-title: Cases for the nugget in modeling computer experiments
  publication-title: Stat. Comput.
– start-page: 2378
  year: 2016
  end-page: 2386
  ident: br0300
  article-title: Stein variational gradient descent: a general purpose Bayesian inference algorithm
  publication-title: Advances In Neural Information Processing Systems
– start-page: 1050
  year: 2016
  end-page: 1059
  ident: br0280
  article-title: Dropout as a Bayesian approximation: representing model uncertainty in deep learning
  publication-title: International Conference on Machine Learning
– start-page: 1861
  year: 2015
  end-page: 1869
  ident: br0320
  article-title: Probabilistic backpropagation for scalable learning of bayesian neural networks
  publication-title: International Conference on Machine Learning
– ident: br0340
  article-title: Bayesian compression for deep learning
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: br0120
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– volume: 3
  year: 2015
  ident: br0620
  article-title: The FEniCS Project version 1.5
  publication-title: Arch. Numer. Softw.
– ident: br0200
  article-title: On the expressive power of deep neural networks
– volume: 55
  start-page: 688
  year: 2017
  end-page: 692
  ident: br0220
  article-title: Prospective interest of deep learning for hydrological inference
  publication-title: Groundwater
– start-page: 2575
  year: 2015
  end-page: 2583
  ident: br0310
  article-title: Variational dropout and the local reparameterization trick
  publication-title: Advances in Neural Information Processing Systems
– ident: br0530
  article-title: A hierarchical Bayesian framework for constructing sparsity-inducing priors
– volume: 3
  issue: 100
  year: 2015
  ident: 10.1016/j.jcp.2018.04.018_br0620
  article-title: The FEniCS Project version 1.5
  publication-title: Arch. Numer. Softw.
– ident: 10.1016/j.jcp.2018.04.018_br0660
– start-page: 4898
  year: 2016
  ident: 10.1016/j.jcp.2018.04.018_br0700
  article-title: Understanding the effective receptive field in deep convolutional neural networks
– ident: 10.1016/j.jcp.2018.04.018_br0090
– ident: 10.1016/j.jcp.2018.04.018_br0170
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.jcp.2018.04.018_br0080
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 241
  start-page: 212
  year: 2013
  ident: 10.1016/j.jcp.2018.04.018_br0020
  article-title: Multi-output separable Gaussian process: towards an efficient, fully Bayesian paradigm for uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.01.011
– year: 2013
  ident: 10.1016/j.jcp.2018.04.018_br0050
– volume: 231
  start-page: 5718
  issue: 17
  year: 2012
  ident: 10.1016/j.jcp.2018.04.018_br0030
  article-title: Multi-output local Gaussian process regression: applications to uncertainty quantification
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.04.047
– ident: 10.1016/j.jcp.2018.04.018_br0500
– start-page: 770
  year: 2016
  ident: 10.1016/j.jcp.2018.04.018_br0380
  article-title: Deep residual learning for image recognition
– start-page: 1175
  year: 2017
  ident: 10.1016/j.jcp.2018.04.018_br0510
  article-title: The one hundred layers tiramisu: fully convolutional densenets for semantic segmentation
– start-page: 3117
  year: 2017
  ident: 10.1016/j.jcp.2018.04.018_br0590
  article-title: Stein variational gradient descent as gradient flow
– ident: 10.1016/j.jcp.2018.04.018_br0110
– year: 2012
  ident: 10.1016/j.jcp.2018.04.018_br0270
– volume: 814
  start-page: 1
  year: 2017
  ident: 10.1016/j.jcp.2018.04.018_br0210
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.803
– start-page: 2575
  year: 2015
  ident: 10.1016/j.jcp.2018.04.018_br0310
  article-title: Variational dropout and the local reparameterization trick
– volume: 5
  start-page: 4308
  year: 2014
  ident: 10.1016/j.jcp.2018.04.018_br0250
  article-title: Searching for exotic particles in high-energy physics with deep learning
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms5308
– ident: 10.1016/j.jcp.2018.04.018_br0440
– ident: 10.1016/j.jcp.2018.04.018_br0630
– start-page: 4790
  year: 2016
  ident: 10.1016/j.jcp.2018.04.018_br0430
  article-title: Conditional image generation with pixelcnn decoders
– ident: 10.1016/j.jcp.2018.04.018_br0690
– ident: 10.1016/j.jcp.2018.04.018_br0350
– volume: 22
  start-page: 713
  issue: 3
  year: 2012
  ident: 10.1016/j.jcp.2018.04.018_br0540
  article-title: Cases for the nugget in modeling computer experiments
  publication-title: Stat. Comput.
  doi: 10.1007/s11222-010-9224-x
– start-page: 3431
  year: 2015
  ident: 10.1016/j.jcp.2018.04.018_br0490
  article-title: Fully convolutional networks for semantic segmentation
– ident: 10.1016/j.jcp.2018.04.018_br0530
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.jcp.2018.04.018_br0070
  article-title: Visualizing data using t-sne
  publication-title: J. Mach. Learn. Res.
– start-page: 1050
  year: 2016
  ident: 10.1016/j.jcp.2018.04.018_br0280
  article-title: Dropout as a Bayesian approximation: representing model uncertainty in deep learning
– start-page: 315
  year: 2011
  ident: 10.1016/j.jcp.2018.04.018_br0470
  article-title: Deep sparse rectifier neural networks
– start-page: 2378
  year: 2016
  ident: 10.1016/j.jcp.2018.04.018_br0300
  article-title: Stein variational gradient descent: a general purpose Bayesian inference algorithm
– start-page: 55
  year: 1994
  ident: 10.1016/j.jcp.2018.04.018_br0550
  article-title: Estimating the mean and variance of the target probability distribution
– year: 2009
  ident: 10.1016/j.jcp.2018.04.018_br0060
– ident: 10.1016/j.jcp.2018.04.018_br0650
– ident: 10.1016/j.jcp.2018.04.018_br0330
– ident: 10.1016/j.jcp.2018.04.018_br0410
– ident: 10.1016/j.jcp.2018.04.018_br0640
– ident: 10.1016/j.jcp.2018.04.018_br0180
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.jcp.2018.04.018_br0150
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– start-page: 1
  year: 2006
  ident: 10.1016/j.jcp.2018.04.018_br0670
  article-title: Evaluating predictive uncertainty challenge
– volume: 18
  start-page: 851
  issue: 5
  year: 2017
  ident: 10.1016/j.jcp.2018.04.018_br0240
  article-title: Deep learning in bioinformatics
  publication-title: Brief. Bioinform.
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.jcp.2018.04.018_br0120
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
– volume: 24
  start-page: 619
  issue: 2
  year: 2002
  ident: 10.1016/j.jcp.2018.04.018_br0040
  article-title: The Wiener–Askey polynomial chaos for stochastic differential equations
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827501387826
– ident: 10.1016/j.jcp.2018.04.018_br0200
– start-page: 329
  year: 2004
  ident: 10.1016/j.jcp.2018.04.018_br0100
  article-title: Gaussian process latent variable models for visualisation of high dimensional data
– volume: 112
  start-page: 859
  issue: 518
  year: 2017
  ident: 10.1016/j.jcp.2018.04.018_br0580
  article-title: Variational inference: a review for statisticians
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.2017.1285773
– ident: 10.1016/j.jcp.2018.04.018_br0680
– ident: 10.1016/j.jcp.2018.04.018_br0190
– start-page: 818
  year: 2014
  ident: 10.1016/j.jcp.2018.04.018_br0140
  article-title: Visualizing and understanding convolutional networks
– start-page: 2672
  year: 2014
  ident: 10.1016/j.jcp.2018.04.018_br0420
  article-title: Generative adversarial nets
– start-page: 1097
  year: 2012
  ident: 10.1016/j.jcp.2018.04.018_br0130
  article-title: Imagenet classification with deep convolutional neural networks
– start-page: 234
  year: 2015
  ident: 10.1016/j.jcp.2018.04.018_br0390
  article-title: U-net: convolutional networks for biomedical image segmentation
– ident: 10.1016/j.jcp.2018.04.018_br0340
– start-page: 2377
  year: 2015
  ident: 10.1016/j.jcp.2018.04.018_br0450
  article-title: Training very deep networks
– ident: 10.1016/j.jcp.2018.04.018_br0520
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.jcp.2018.04.018_br0160
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– ident: 10.1016/j.jcp.2018.04.018_br0360
– start-page: 489
  year: 2005
  ident: 10.1016/j.jcp.2018.04.018_br0560
  article-title: Heteroscedastic Gaussian process regression
– volume: 354
  start-page: 493
  issue: Supplement C
  year: 2018
  ident: 10.1016/j.jcp.2018.04.018_br0230
  article-title: A machine learning approach for efficient uncertainty quantification using multiscale methods
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.10.034
– start-page: 276
  year: 2016
  ident: 10.1016/j.jcp.2018.04.018_br0600
  article-title: A kernelized Stein discrepancy for goodness-of-fit tests
– volume: 4
  start-page: 448
  issue: 3
  year: 1992
  ident: 10.1016/j.jcp.2018.04.018_br0260
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.448
– start-page: 2366
  year: 2014
  ident: 10.1016/j.jcp.2018.04.018_br0400
  article-title: Depth map prediction from a single image using a multi-scale deep network
– start-page: 1
  year: 2016
  ident: 10.1016/j.jcp.2018.04.018_br0010
  article-title: Bayesian uncertainty propagation using Gaussian processes
– ident: 10.1016/j.jcp.2018.04.018_br0290
– start-page: 448
  year: 2015
  ident: 10.1016/j.jcp.2018.04.018_br0460
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– year: 2006
  ident: 10.1016/j.jcp.2018.04.018_br0610
– start-page: 1861
  year: 2015
  ident: 10.1016/j.jcp.2018.04.018_br0320
  article-title: Probabilistic backpropagation for scalable learning of bayesian neural networks
– ident: 10.1016/j.jcp.2018.04.018_br0570
– volume: 55
  start-page: 688
  issue: 5
  year: 2017
  ident: 10.1016/j.jcp.2018.04.018_br0220
  article-title: Prospective interest of deep learning for hydrological inference
  publication-title: Groundwater
  doi: 10.1111/gwat.12557
– start-page: 2818
  year: 2016
  ident: 10.1016/j.jcp.2018.04.018_br0370
  article-title: Rethinking the inception architecture for computer vision
SSID ssj0008548
Score 2.7057197
Snippet We are interested in the development of surrogate models for uncertainty quantification and propagation in problems governed by stochastic PDEs using a deep...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 415
SubjectTerms Algorithms
Artificial neural networks
Bayesian analysis
Bayesian neural networks
Computational physics
Computer simulation
Computer vision
Convolutional encoder–decoder networks
Deep learning
Gaussian process
Machine learning
Neural networks
Parameter uncertainty
Permeability
Porous media flows
Propagation
Regression models
Statistical inference
Stochastic models
Training
Uncertainty quantification
Title Bayesian deep convolutional encoder–decoder networks for surrogate modeling and uncertainty quantification
URI https://dx.doi.org/10.1016/j.jcp.2018.04.018
https://www.proquest.com/docview/2083801837
Volume 366
WOSCitedRecordID wos000436475100021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZWLQcutLxEoSAfOFGlcuL3sUVFwKHiUKQVl8hxHLWrVXbZR9UekPgP_EN-CePYTptWVIDEHrK73sRZZb7MjCffzCD0urK1rcBSZ7kiKmO0tplpKpNpy7UwRgniQrMJeXysxmP9aTT6lnJhzqeybdXFhZ7_V1HDGAjbp87-hbj7SWEAPoPQYQtih-0fCf7QXLouM7J2bt6xyuPpQBi-aqWvGBIZDrR23fe9NpDBu9oMe8v1YjHz0bXQJidlMYIBDPQBcNu_rk0gGV3J9baDa7uGESnYGEIovQf_5XTdaf-z9tTM-kHPLwgZZoBQv-oeRCVy1XPiYqgspcsM2JyBD6JDe659FzQu0SQrZEi4TCqZiutKlYWEz2ifWajQeUv1hyjEZH9ifRnSXHUVbKNuH1bU9g-offUFWFv5lkm-7MFmIbkGvb558OFo_LE35YqzYMrj_06PxTuC4I0T_c6xuWHiO7_lZBs9iPLABwEoD9HItY_QVlx84Kjal4_RNOEGe9zgAW5wxM3P7z8iYnBCDAbE4B4xOCEGA2LwNcTgIWKeoM_vjk7evs9iK47M0oKvMs5NrWUtqCyYIyaHdZmFhb6tdF3IpqKmEU6oijfGCEO087nu4BhyanJRC5nTp2ijnbXuGcLcNDK33FonOIOX5g6cWJ4bmFaSiu0gkq5jaWOdet8uZVomQuKkhEtf-ktfElbC2w560x8yD0Va7tqZJeGU0csM3mMJSLrrsN0kyDLe7Uv4XVFw8RSVz_9t1hfo_tXds4s2Vou1e4nu2fPV2XLxKsLxFzs2sEs
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+deep+convolutional+encoder%E2%80%93decoder+networks+for+surrogate+modeling+and+uncertainty+quantification&rft.jtitle=Journal+of+computational+physics&rft.au=Zhu%2C+Yinhao&rft.au=Zabaras%2C+Nicholas&rft.date=2018-08-01&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=366&rft.spage=415&rft.epage=447&rft_id=info:doi/10.1016%2Fj.jcp.2018.04.018&rft.externalDocID=S0021999118302341
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon