Graphical Inference in Linear-Gaussian State-Space Models

State-space models (SSM) are central to describe time-varying complex systems in countless signal processing applications such as remote sensing, networks, biomedicine, and finance to name a few. Inference and prediction in SSMs are possible when the model parameters are known, which is rarely the c...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on signal processing Ročník 70; s. 4757 - 4771
Hlavní autori: Elvira, Victor, Chouzenoux, Emilie
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Predmet:
ISSN:1053-587X, 1941-0476
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract State-space models (SSM) are central to describe time-varying complex systems in countless signal processing applications such as remote sensing, networks, biomedicine, and finance to name a few. Inference and prediction in SSMs are possible when the model parameters are known, which is rarely the case. The estimation of these parameters is crucial, not only for performing statistical analysis, but also for uncovering the underlying structure of complex phenomena. In this paper, we focus on the linear-Gaussian model, arguably the most celebrated SSM, and particularly in the challenging task of estimating the transition matrix that encodes the Markovian dependencies in the evolution of the multi-variate state. We introduce a novel perspective by relating this matrix to the adjacency matrix of a directed graph, also interpreted as the causal relationship among state dimensions in the Granger-causality sense. Under this perspective, we propose a new method called GraphEM based on the well sounded expectation-maximization (EM) methodology for inferring the transition matrix jointly with the smoothing/filtering of the observed data. We propose an advanced convex optimization solver relying on a consensus-based implementation of a proximal splitting strategy for solving the M-step. This approach enables an efficient and versatile processing of various sophisticated priors on the graph structure, such as parsimony constraints, while benefiting from convergence guarantees. We demonstrate the good performance and the interpretable results of GraphEM by means of two sets of numerical examples.
AbstractList State-space models (SSM) are central to describe time-varying complex systems in countless signal processing applications such as remote sensing, networks, biomedicine, and finance to name a few. Inference and prediction in SSMs are possible when the model parameters are known, which is rarely the case. The estimation of these parameters is crucial, not only for performing statistical analysis, but also for uncovering the underlying structure of complex phenomena. In this paper, we focus on the linear-Gaussian model, arguably the most celebrated SSM, and particularly in the challenging task of estimating the transition matrix that encodes the Markovian dependencies in the evolution of the multi-variate state. We introduce a novel perspective by relating this matrix to the adjacency matrix of a directed graph, also interpreted as the causal relationship among state dimensions in the Granger-causality sense. Under this perspective, we propose a new method called GraphEM based on the well sounded expectation-maximization (EM) methodology for inferring the transition matrix jointly with the smoothing/filtering of the observed data. We propose an advanced convex optimization solver relying on a consensus-based implementation of a proximal splitting strategy for solving the M-step. This approach enables an efficient and versatile processing of various sophisticated priors on the graph structure, such as parsimony constraints, while benefiting from convergence guarantees. We demonstrate the good performance and the interpretable results of GraphEM by means of two sets of numerical examples.
Author Chouzenoux, Emilie
Elvira, Victor
Author_xml – sequence: 1
  givenname: Victor
  orcidid: 0000-0002-8967-4866
  surname: Elvira
  fullname: Elvira, Victor
  email: victor.elvira@ed.ac.uk
  organization: School of Mathematics, University of Edinburgh, Edinburgh, U.K
– sequence: 2
  givenname: Emilie
  orcidid: 0000-0003-3631-6093
  surname: Chouzenoux
  fullname: Chouzenoux, Emilie
  email: emilie.chouzenoux@centralesupelec.fr
  organization: Inria, CentraleSupélec, Centre de Vision Numérique, Université Paris-Saclay, Gif-sur-Yvette, France
BackLink https://hal.science/hal-03783425$$DView record in HAL
BookMark eNp9kL1LA0EQxRdR0ER7wSZgZXFx9vu2DEGTQEQhKeyWucseWTn34u5F8L_3joQUFlYzzLz3ZvgNyHlogiPklsKYUjCP69XbmAFjY87AAFVn5IoaQTMQWp13PUieyVy_X5JBSh8AVAijroiZRdxtfYn1aBEqF10o3ciH0dIHhzGb4T4lj2G0arF12WqH3fql2bg6XZOLCuvkbo51SNbPT-vpPFu-zhbTyTIrOZNtJsFhVRVa5bmSaFRhIFdUFqWQcoPFRjCBpaaSOlag5JrlSrNSGJaD0hvDh-ThELvF2u6i_8T4Yxv0dj5Z2n4GXOdcMPlNO-39QbuLzdfepdZ-NPsYuu8s04wbACH7RDioytikFF11iqVge5a2Y2l7lvbIsrOoP5bSd0B8E9qIvv7PeHcweufc6Y7pPzHAfwGmdX_J
CODEN ITPRED
CitedBy_id crossref_primary_10_3934_fods_2023014
crossref_primary_10_1109_TSP_2024_3435935
crossref_primary_10_1016_j_energy_2023_127952
crossref_primary_10_1109_TSP_2023_3278867
crossref_primary_10_1016_j_sigpro_2025_110070
crossref_primary_10_1109_TSP_2025_3554876
crossref_primary_10_1109_TSP_2025_3585825
Cites_doi 10.1109/MSP.2012.2233865
10.1109/MSP.2014.2377273
10.1007/0-387-28982-8
10.1007/s00440-011-0345-8
10.1093/biostatistics/kxm045
10.1198/0003130042836
10.1214/aos/1176346060
10.1109/JBHI.2018.2805773
10.1109/TPWRS.2020.3018623
10.1038/nature14956
10.1109/TASE.2018.2882641
10.1109/MSP.2019.2938026
10.1007/978-1-4419-9569-8_10
10.1111/j.1467-9868.2006.00553.x
10.1109/MSP.2003.1236770
10.1109/TSP.2021.3055961
10.1111/j.2517-6161.1996.tb02080.x
10.1214/15-STS534
10.1111/j.1467-9868.2005.00503.x
10.2307/1912791
10.1017/cbo9781139344203
10.1137/18M1224763
10.1109/TSP.2004.831032
10.1088/0266-5611/23/4/008
10.1109/18.30995
10.1137/120872802
10.1016/j.sigpro.2019.107417
10.1109/LSP.2019.2892835
10.1137/10081602X
10.1049/ip-f-2.1993.0015
10.1016/j.neuroimage.2010.02.059
10.23919/EUSIPCO.2018.8553361
10.1002/cpa.20042
10.1561/2200000015
10.1007/s10851-010-0251-1
10.1109/MSP.2010.938028
10.1016/S1573-4412(05)80019-4
10.1080/01621459.1999.10474153
10.1007/s10463-009-0236-2
10.1137/080716542
10.1162/neco.2007.19.4.1097
10.1111/j.1467-9892.1982.tb00349.x
10.1007/978-3-319-48311-5
10.3390/jimaging7030058
10.1109/79.543975
10.1109/TSP.2021.3069677
10.1115/1.3662552
10.3182/20090706-3-FR-2004.00129
10.1186/s13634-020-00675-6
10.1016/j.envsoft.2021.105189
10.1109/TCNS.2017.2781367
10.1007/978-1-4612-0679-8
10.1038/30918
10.1111/j.1467-9868.2009.00736.x
10.1109/9.1295
10.2307/2984875
10.1109/78.740104
10.1016/j.acha.2009.05.006
10.7551/mitpress/6444.001.0001
10.1109/TAC.1974.1100714
10.1109/TIT.2011.2112070
10.1098/rsta.2011.0613
10.1016/j.sigpro.2013.09.026
10.1016/j.neucom.2021.03.111
10.1109/IPIN.2016.7743582
10.1109/TCBB.2017.2688355
10.1109/ICASSP40776.2020.9053646
10.1007/978-1-4419-7865-3
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/TSP.2022.3209016
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1941-0476
EndPage 4771
ExternalDocumentID oai:HAL:hal-03783425v1
10_1109_TSP_2022_3209016
9900490
Genre orig-research
GrantInformation_xml – fundername: European Research Council Starting
  grantid: ERC-2019-STG-850925
– fundername: MAJIC
  grantid: ANR-17-CE40-0004-01
– fundername: Agence Nationale de la Recherche
  grantid: ANR-17-CE40-0031-01
  funderid: 10.13039/501100001665
– fundername: Leverhulme Research Fellowship
  grantid: RF-2021-593
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
53G
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACIWK
ACKIV
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AJQPL
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
1XC
VOOES
ID FETCH-LOGICAL-c325t-50eaffb768865a96b908615bc455dabd424ac7151e2ba53728672c4928067d93
IEDL.DBID RIE
ISICitedReferencesCount 13
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866500400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1053-587X
IngestDate Tue Oct 28 06:37:41 EDT 2025
Mon Jun 30 10:15:30 EDT 2025
Tue Nov 18 22:18:35 EST 2025
Sat Nov 29 04:10:56 EST 2025
Wed Aug 27 02:18:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords graphical inference
proximal methods
primal-dual algorithms
sparsity
Kalman filtering
EM algorithm
State-space modeling
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-50eaffb768865a96b908615bc455dabd424ac7151e2ba53728672c4928067d93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8967-4866
0000-0003-3631-6093
OpenAccessLink https://hal.science/hal-03783425
PQID 2723900459
PQPubID 85478
PageCount 15
ParticipantIDs proquest_journals_2723900459
crossref_primary_10_1109_TSP_2022_3209016
crossref_citationtrail_10_1109_TSP_2022_3209016
hal_primary_oai_HAL_hal_03783425v1
ieee_primary_9900490
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on signal processing
PublicationTitleAbbrev TSP
PublicationYear 2022
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref13
ref57
ref15
ref59
ref14
ref53
ref52
ref11
ref55
ref10
ref54
ref17
ref16
ref19
ref18
Thiesson (ref45)
Doucet (ref8) 2009; 12
ref51
ref50
ref46
ref48
ref47
Briceo-Arias (ref56) 2021
ref42
ref41
Chiu (ref38) 2021
ref44
ref43
Pesquet (ref58) 2015; 16
ref49
ref7
ref9
ref4
ref3
ref6
ref5
ref40
ref35
ref34
ref37
ref36
ref31
ref75
ref30
ref74
Branchini (ref12)
ref33
ref32
ref2
ref1
ref39
ref71
ref70
ref73
Bird (ref61) 2019
ref72
ref24
ref68
ref23
ref67
ref26
ref25
ref69
ref20
ref64
ref63
ref22
ref66
ref21
ref65
ref28
ref27
ref29
ref60
ref62
References_xml – ident: ref36
  doi: 10.1109/MSP.2012.2233865
– ident: ref50
  doi: 10.1109/MSP.2014.2377273
– ident: ref22
  doi: 10.1007/0-387-28982-8
– ident: ref30
  doi: 10.1007/s00440-011-0345-8
– ident: ref37
  doi: 10.1093/biostatistics/kxm045
– ident: ref49
  doi: 10.1198/0003130042836
– volume-title: Proc. Adv. Neural Inf. Process. Syst.
  year: 2021
  ident: ref38
  article-title: Low-rank constraints for fast inference in structured models
– ident: ref29
  doi: 10.1214/aos/1176346060
– ident: ref34
  doi: 10.1109/JBHI.2018.2805773
– ident: ref25
  doi: 10.1109/TPWRS.2020.3018623
– ident: ref5
  doi: 10.1038/nature14956
– ident: ref17
  doi: 10.1109/TASE.2018.2882641
– ident: ref13
  doi: 10.1109/MSP.2019.2938026
– start-page: 552
  volume-title: Proc. 20th Conf. Uncertainty Artif. Intell.
  ident: ref45
  article-title: ARMA time-series modeling with graphical models
– ident: ref51
  doi: 10.1007/978-1-4419-9569-8_10
– ident: ref70
  doi: 10.1111/j.1467-9868.2006.00553.x
– ident: ref7
  doi: 10.1109/MSP.2003.1236770
– ident: ref71
  doi: 10.1109/TSP.2021.3055961
– ident: ref64
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– ident: ref18
  doi: 10.1214/15-STS534
– ident: ref68
  doi: 10.1111/j.1467-9868.2005.00503.x
– start-page: 1289
  volume-title: Proc. Uncertainty Artif. Intell.
  ident: ref12
  article-title: Optimized auxiliary particle filters: Adapting mixture proposals via convex optimization
– ident: ref39
  doi: 10.2307/1912791
– ident: ref3
  doi: 10.1017/cbo9781139344203
– ident: ref55
  doi: 10.1137/18M1224763
– ident: ref31
  doi: 10.1109/TSP.2004.831032
– year: 2021
  ident: ref56
  article-title: Proximal or gradient steps for cocoercive operators
– ident: ref65
  doi: 10.1088/0266-5611/23/4/008
– ident: ref21
  doi: 10.1109/18.30995
– ident: ref52
  doi: 10.1137/120872802
– ident: ref66
  doi: 10.1016/j.sigpro.2019.107417
– ident: ref75
  doi: 10.1109/LSP.2019.2892835
– ident: ref57
  doi: 10.1137/10081602X
– ident: ref9
  doi: 10.1049/ip-f-2.1993.0015
– ident: ref69
  doi: 10.1016/j.neuroimage.2010.02.059
– ident: ref11
  doi: 10.23919/EUSIPCO.2018.8553361
– ident: ref60
  doi: 10.1002/cpa.20042
– ident: ref63
  doi: 10.1561/2200000015
– ident: ref53
  doi: 10.1007/s10851-010-0251-1
– ident: ref32
  doi: 10.1109/MSP.2010.938028
– ident: ref1
  doi: 10.1016/S1573-4412(05)80019-4
– ident: ref10
  doi: 10.1080/01621459.1999.10474153
– ident: ref44
  doi: 10.1007/s10463-009-0236-2
– ident: ref59
  doi: 10.1137/080716542
– ident: ref23
  doi: 10.1162/neco.2007.19.4.1097
– ident: ref24
  doi: 10.1111/j.1467-9892.1982.tb00349.x
– ident: ref42
  doi: 10.1007/978-3-319-48311-5
– ident: ref72
  doi: 10.3390/jimaging7030058
– ident: ref48
  doi: 10.1109/79.543975
– ident: ref54
  doi: 10.1109/TSP.2021.3069677
– ident: ref43
  doi: 10.1115/1.3662552
– ident: ref46
  doi: 10.3182/20090706-3-FR-2004.00129
– volume: 16
  issue: 12
  year: 2015
  ident: ref58
  article-title: A class of randomized primal-dual algorithms for distributed optimization
  publication-title: J. Nonlinear Convex Anal.
– ident: ref47
  doi: 10.1186/s13634-020-00675-6
– ident: ref6
  doi: 10.1016/j.envsoft.2021.105189
– ident: ref35
  doi: 10.1109/TCNS.2017.2781367
– ident: ref15
  doi: 10.1007/978-1-4612-0679-8
– ident: ref4
  doi: 10.1038/30918
– ident: ref14
  doi: 10.1111/j.1467-9868.2009.00736.x
– ident: ref20
  doi: 10.1109/9.1295
– ident: ref28
  doi: 10.2307/2984875
– ident: ref27
  doi: 10.1109/78.740104
– ident: ref67
  doi: 10.1016/j.acha.2009.05.006
– ident: ref2
  doi: 10.7551/mitpress/6444.001.0001
– ident: ref19
  doi: 10.1109/TAC.1974.1100714
– ident: ref74
  doi: 10.1109/TIT.2011.2112070
– ident: ref40
  doi: 10.1098/rsta.2011.0613
– ident: ref73
  doi: 10.1016/j.sigpro.2013.09.026
– ident: ref26
  doi: 10.1016/j.neucom.2021.03.111
– ident: ref16
  doi: 10.1109/IPIN.2016.7743582
– year: 2019
  ident: ref61
  article-title: Customizing sequence generation with multi-task dynamical systems
– ident: ref33
  doi: 10.1109/TCBB.2017.2688355
– volume: 12
  start-page: 656
  volume-title: Handbook Nonlinear Filtering
  year: 2009
  ident: ref8
  article-title: A tutorial on particle filtering and smoothing: Fifteen years later
– ident: ref41
  doi: 10.1109/ICASSP40776.2020.9053646
– ident: ref62
  doi: 10.1007/978-1-4419-7865-3
SSID ssj0014496
Score 2.451798
Snippet State-space models (SSM) are central to describe time-varying complex systems in countless signal processing applications such as remote sensing, networks,...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 4757
SubjectTerms Complex systems
Convexity
EM algorithm
Engineering Sciences
Estimation
Graph theory
graphical inference
Inference
Kalman filtering
Kalman filters
Mathematical models
Numerical models
Optimization
Parameters
primal-dual algorithms
proximal methods
Remote sensing
Signal and Image processing
Signal processing
Signal processing algorithms
Sparse matrices
sparsity
State space models
State-space methods
State-space modeling
Statistical analysis
Time series analysis
Title Graphical Inference in Linear-Gaussian State-Space Models
URI https://ieeexplore.ieee.org/document/9900490
https://www.proquest.com/docview/2723900459
https://hal.science/hal-03783425
Volume 70
WOSCitedRecordID wos000866500400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0476
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014496
  issn: 1053-587X
  databaseCode: RIE
  dateStart: 19910101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM--DXF6ZQivghm65KmaR6HuE0YY7A97K0kbYoD2WRff7-5tCuKIvhW2guEuzR3l8vvfgAPHV9bL6YkYamQJGCGEWUkJSbLpGayo1nmgMJDMRpFs5kcV-CpxMIYY9zlM9PCR1fLT5fJFo_K2nbnxEJVFapChDlWq6wYBIHj4rLhAiM8ErN9SdKX7elkbBNBSluM-tb9hd9cUPUNL0A6ZpUf27HzMb2T_83uFI6LWNLr5sY_g4pZnMPRlw6DdZB9bEiNhvBe99A-b77wbApqlzjpq-0aUZSeiznJxCbQxkN6tPf1BUx7L9PnASnYEkjCKN8Q7huVZdqmD1FolR9qabOVDtdJwHmqdBrQQCXCOnhDteJM0CgUNAkkllZFKtkl1BbLhbkCLwxpxjVVIYJibcCgtRa-1FTISFKugga09_qLk6KTOBJavMcuo_BlbDUeo8bjQuMNeCxHfORdNP6QvbcmKcWw_fWgO4zxnc-QFoTyXacBdTRAKVXovgHNvQXj4l9cx1RQhp-5vP591A0c4gTyg5Um1DarrbmFg2S3ma9Xd26ZfQKOscuS
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AvXBb3E6tYgvgnFt0jTNo4g6cQ5he9hbSNoUhbHJvv5-c1lXFEXwrbQXCHdp7n653P0ALqPQOC-mJWG5kCRmlhFtJSW2KKRhMjKs8IXCLdFup72efF2C66oWxlrrL5_ZG3z0ufx8mE3xqKzhdk5MVC3DKjJnRfNqrSpnEMeejcsFDIzwVPQWSclQNrqdVwcFKb1hNHQOMPnmhJbf8Aqk51b5sSF7L_Ow_b_57cBWGU0Gt3Pz78KSHezB5pceg_sgH7ElNZoieFoU9wXvg8CBULfIyaOejrGOMvBRJ-k4CG0DJEjrjw-g-3DfvWuSki-BZIzyCeGh1UVhHIBIE6f-xEiHVyJuspjzXJs8prHOhHPxlhrNmaBpImgWS0yuilyyQ1gZDAf2CIIkoQU3VCdYFutCBmOMCKWhQqaSch3XoLHQn8rKXuJIadFXHlOEUjmNK9S4KjVeg6tqxMe8j8YfshfOJJUYNsBu3rYUvgsZEoNQPotqsI8GqKRK3degvrCgKv_GsaKCMvzM5fHvo85hvdl9aanWU_v5BDZwMvNjljqsTEZTewpr2WzyPh6d-SX3CVSEztk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphical+Inference+in+Linear-Gaussian+State-Space+Models&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Elvira%2C+Victor&rft.au=Chouzenoux%2C+Emilie&rft.date=2022-01-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=70&rft.spage=4757&rft.epage=4771&rft_id=info:doi/10.1109%2FTSP.2022.3209016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2022_3209016
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon