Graphical Inference in Linear-Gaussian State-Space Models
State-space models (SSM) are central to describe time-varying complex systems in countless signal processing applications such as remote sensing, networks, biomedicine, and finance to name a few. Inference and prediction in SSMs are possible when the model parameters are known, which is rarely the c...
Uložené v:
| Vydané v: | IEEE transactions on signal processing Ročník 70; s. 4757 - 4771 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.01.2022
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Predmet: | |
| ISSN: | 1053-587X, 1941-0476 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | State-space models (SSM) are central to describe time-varying complex systems in countless signal processing applications such as remote sensing, networks, biomedicine, and finance to name a few. Inference and prediction in SSMs are possible when the model parameters are known, which is rarely the case. The estimation of these parameters is crucial, not only for performing statistical analysis, but also for uncovering the underlying structure of complex phenomena. In this paper, we focus on the linear-Gaussian model, arguably the most celebrated SSM, and particularly in the challenging task of estimating the transition matrix that encodes the Markovian dependencies in the evolution of the multi-variate state. We introduce a novel perspective by relating this matrix to the adjacency matrix of a directed graph, also interpreted as the causal relationship among state dimensions in the Granger-causality sense. Under this perspective, we propose a new method called GraphEM based on the well sounded expectation-maximization (EM) methodology for inferring the transition matrix jointly with the smoothing/filtering of the observed data. We propose an advanced convex optimization solver relying on a consensus-based implementation of a proximal splitting strategy for solving the M-step. This approach enables an efficient and versatile processing of various sophisticated priors on the graph structure, such as parsimony constraints, while benefiting from convergence guarantees. We demonstrate the good performance and the interpretable results of GraphEM by means of two sets of numerical examples. |
|---|---|
| AbstractList | State-space models (SSM) are central to describe time-varying complex systems in countless signal processing applications such as remote sensing, networks, biomedicine, and finance to name a few. Inference and prediction in SSMs are possible when the model parameters are known, which is rarely the case. The estimation of these parameters is crucial, not only for performing statistical analysis, but also for uncovering the underlying structure of complex phenomena. In this paper, we focus on the linear-Gaussian model, arguably the most celebrated SSM, and particularly in the challenging task of estimating the transition matrix that encodes the Markovian dependencies in the evolution of the multi-variate state. We introduce a novel perspective by relating this matrix to the adjacency matrix of a directed graph, also interpreted as the causal relationship among state dimensions in the Granger-causality sense. Under this perspective, we propose a new method called GraphEM based on the well sounded expectation-maximization (EM) methodology for inferring the transition matrix jointly with the smoothing/filtering of the observed data. We propose an advanced convex optimization solver relying on a consensus-based implementation of a proximal splitting strategy for solving the M-step. This approach enables an efficient and versatile processing of various sophisticated priors on the graph structure, such as parsimony constraints, while benefiting from convergence guarantees. We demonstrate the good performance and the interpretable results of GraphEM by means of two sets of numerical examples. |
| Author | Chouzenoux, Emilie Elvira, Victor |
| Author_xml | – sequence: 1 givenname: Victor orcidid: 0000-0002-8967-4866 surname: Elvira fullname: Elvira, Victor email: victor.elvira@ed.ac.uk organization: School of Mathematics, University of Edinburgh, Edinburgh, U.K – sequence: 2 givenname: Emilie orcidid: 0000-0003-3631-6093 surname: Chouzenoux fullname: Chouzenoux, Emilie email: emilie.chouzenoux@centralesupelec.fr organization: Inria, CentraleSupélec, Centre de Vision Numérique, Université Paris-Saclay, Gif-sur-Yvette, France |
| BackLink | https://hal.science/hal-03783425$$DView record in HAL |
| BookMark | eNp9kL1LA0EQxRdR0ER7wSZgZXFx9vu2DEGTQEQhKeyWucseWTn34u5F8L_3joQUFlYzzLz3ZvgNyHlogiPklsKYUjCP69XbmAFjY87AAFVn5IoaQTMQWp13PUieyVy_X5JBSh8AVAijroiZRdxtfYn1aBEqF10o3ciH0dIHhzGb4T4lj2G0arF12WqH3fql2bg6XZOLCuvkbo51SNbPT-vpPFu-zhbTyTIrOZNtJsFhVRVa5bmSaFRhIFdUFqWQcoPFRjCBpaaSOlag5JrlSrNSGJaD0hvDh-ThELvF2u6i_8T4Yxv0dj5Z2n4GXOdcMPlNO-39QbuLzdfepdZ-NPsYuu8s04wbACH7RDioytikFF11iqVge5a2Y2l7lvbIsrOoP5bSd0B8E9qIvv7PeHcweufc6Y7pPzHAfwGmdX_J |
| CODEN | ITPRED |
| CitedBy_id | crossref_primary_10_3934_fods_2023014 crossref_primary_10_1109_TSP_2024_3435935 crossref_primary_10_1016_j_energy_2023_127952 crossref_primary_10_1109_TSP_2023_3278867 crossref_primary_10_1016_j_sigpro_2025_110070 crossref_primary_10_1109_TSP_2025_3554876 crossref_primary_10_1109_TSP_2025_3585825 |
| Cites_doi | 10.1109/MSP.2012.2233865 10.1109/MSP.2014.2377273 10.1007/0-387-28982-8 10.1007/s00440-011-0345-8 10.1093/biostatistics/kxm045 10.1198/0003130042836 10.1214/aos/1176346060 10.1109/JBHI.2018.2805773 10.1109/TPWRS.2020.3018623 10.1038/nature14956 10.1109/TASE.2018.2882641 10.1109/MSP.2019.2938026 10.1007/978-1-4419-9569-8_10 10.1111/j.1467-9868.2006.00553.x 10.1109/MSP.2003.1236770 10.1109/TSP.2021.3055961 10.1111/j.2517-6161.1996.tb02080.x 10.1214/15-STS534 10.1111/j.1467-9868.2005.00503.x 10.2307/1912791 10.1017/cbo9781139344203 10.1137/18M1224763 10.1109/TSP.2004.831032 10.1088/0266-5611/23/4/008 10.1109/18.30995 10.1137/120872802 10.1016/j.sigpro.2019.107417 10.1109/LSP.2019.2892835 10.1137/10081602X 10.1049/ip-f-2.1993.0015 10.1016/j.neuroimage.2010.02.059 10.23919/EUSIPCO.2018.8553361 10.1002/cpa.20042 10.1561/2200000015 10.1007/s10851-010-0251-1 10.1109/MSP.2010.938028 10.1016/S1573-4412(05)80019-4 10.1080/01621459.1999.10474153 10.1007/s10463-009-0236-2 10.1137/080716542 10.1162/neco.2007.19.4.1097 10.1111/j.1467-9892.1982.tb00349.x 10.1007/978-3-319-48311-5 10.3390/jimaging7030058 10.1109/79.543975 10.1109/TSP.2021.3069677 10.1115/1.3662552 10.3182/20090706-3-FR-2004.00129 10.1186/s13634-020-00675-6 10.1016/j.envsoft.2021.105189 10.1109/TCNS.2017.2781367 10.1007/978-1-4612-0679-8 10.1038/30918 10.1111/j.1467-9868.2009.00736.x 10.1109/9.1295 10.2307/2984875 10.1109/78.740104 10.1016/j.acha.2009.05.006 10.7551/mitpress/6444.001.0001 10.1109/TAC.1974.1100714 10.1109/TIT.2011.2112070 10.1098/rsta.2011.0613 10.1016/j.sigpro.2013.09.026 10.1016/j.neucom.2021.03.111 10.1109/IPIN.2016.7743582 10.1109/TCBB.2017.2688355 10.1109/ICASSP40776.2020.9053646 10.1007/978-1-4419-7865-3 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 Distributed under a Creative Commons Attribution 4.0 International License |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022 – notice: Distributed under a Creative Commons Attribution 4.0 International License |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES |
| DOI | 10.1109/TSP.2022.3209016 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0476 |
| EndPage | 4771 |
| ExternalDocumentID | oai:HAL:hal-03783425v1 10_1109_TSP_2022_3209016 9900490 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: European Research Council Starting grantid: ERC-2019-STG-850925 – fundername: MAJIC grantid: ANR-17-CE40-0004-01 – fundername: Agence Nationale de la Recherche grantid: ANR-17-CE40-0031-01 funderid: 10.13039/501100001665 – fundername: Leverhulme Research Fellowship grantid: RF-2021-593 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 53G 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACIWK ACKIV ACNCT AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AJQPL AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 E.L EBS EJD F5P HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D 1XC VOOES |
| ID | FETCH-LOGICAL-c325t-50eaffb768865a96b908615bc455dabd424ac7151e2ba53728672c4928067d93 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 13 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000866500400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1053-587X |
| IngestDate | Tue Oct 28 06:37:41 EDT 2025 Mon Jun 30 10:15:30 EDT 2025 Tue Nov 18 22:18:35 EST 2025 Sat Nov 29 04:10:56 EST 2025 Wed Aug 27 02:18:44 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | graphical inference proximal methods primal-dual algorithms sparsity Kalman filtering EM algorithm State-space modeling |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-50eaffb768865a96b908615bc455dabd424ac7151e2ba53728672c4928067d93 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-8967-4866 0000-0003-3631-6093 |
| OpenAccessLink | https://hal.science/hal-03783425 |
| PQID | 2723900459 |
| PQPubID | 85478 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_2723900459 crossref_primary_10_1109_TSP_2022_3209016 crossref_citationtrail_10_1109_TSP_2022_3209016 hal_primary_oai_HAL_hal_03783425v1 ieee_primary_9900490 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on signal processing |
| PublicationTitleAbbrev | TSP |
| PublicationYear | 2022 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Institute of Electrical and Electronics Engineers |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) – name: Institute of Electrical and Electronics Engineers |
| References | ref13 ref57 ref15 ref59 ref14 ref53 ref52 ref11 ref55 ref10 ref54 ref17 ref16 ref19 ref18 Thiesson (ref45) Doucet (ref8) 2009; 12 ref51 ref50 ref46 ref48 ref47 Briceo-Arias (ref56) 2021 ref42 ref41 Chiu (ref38) 2021 ref44 ref43 Pesquet (ref58) 2015; 16 ref49 ref7 ref9 ref4 ref3 ref6 ref5 ref40 ref35 ref34 ref37 ref36 ref31 ref75 ref30 ref74 Branchini (ref12) ref33 ref32 ref2 ref1 ref39 ref71 ref70 ref73 Bird (ref61) 2019 ref72 ref24 ref68 ref23 ref67 ref26 ref25 ref69 ref20 ref64 ref63 ref22 ref66 ref21 ref65 ref28 ref27 ref29 ref60 ref62 |
| References_xml | – ident: ref36 doi: 10.1109/MSP.2012.2233865 – ident: ref50 doi: 10.1109/MSP.2014.2377273 – ident: ref22 doi: 10.1007/0-387-28982-8 – ident: ref30 doi: 10.1007/s00440-011-0345-8 – ident: ref37 doi: 10.1093/biostatistics/kxm045 – ident: ref49 doi: 10.1198/0003130042836 – volume-title: Proc. Adv. Neural Inf. Process. Syst. year: 2021 ident: ref38 article-title: Low-rank constraints for fast inference in structured models – ident: ref29 doi: 10.1214/aos/1176346060 – ident: ref34 doi: 10.1109/JBHI.2018.2805773 – ident: ref25 doi: 10.1109/TPWRS.2020.3018623 – ident: ref5 doi: 10.1038/nature14956 – ident: ref17 doi: 10.1109/TASE.2018.2882641 – ident: ref13 doi: 10.1109/MSP.2019.2938026 – start-page: 552 volume-title: Proc. 20th Conf. Uncertainty Artif. Intell. ident: ref45 article-title: ARMA time-series modeling with graphical models – ident: ref51 doi: 10.1007/978-1-4419-9569-8_10 – ident: ref70 doi: 10.1111/j.1467-9868.2006.00553.x – ident: ref7 doi: 10.1109/MSP.2003.1236770 – ident: ref71 doi: 10.1109/TSP.2021.3055961 – ident: ref64 doi: 10.1111/j.2517-6161.1996.tb02080.x – ident: ref18 doi: 10.1214/15-STS534 – ident: ref68 doi: 10.1111/j.1467-9868.2005.00503.x – start-page: 1289 volume-title: Proc. Uncertainty Artif. Intell. ident: ref12 article-title: Optimized auxiliary particle filters: Adapting mixture proposals via convex optimization – ident: ref39 doi: 10.2307/1912791 – ident: ref3 doi: 10.1017/cbo9781139344203 – ident: ref55 doi: 10.1137/18M1224763 – ident: ref31 doi: 10.1109/TSP.2004.831032 – year: 2021 ident: ref56 article-title: Proximal or gradient steps for cocoercive operators – ident: ref65 doi: 10.1088/0266-5611/23/4/008 – ident: ref21 doi: 10.1109/18.30995 – ident: ref52 doi: 10.1137/120872802 – ident: ref66 doi: 10.1016/j.sigpro.2019.107417 – ident: ref75 doi: 10.1109/LSP.2019.2892835 – ident: ref57 doi: 10.1137/10081602X – ident: ref9 doi: 10.1049/ip-f-2.1993.0015 – ident: ref69 doi: 10.1016/j.neuroimage.2010.02.059 – ident: ref11 doi: 10.23919/EUSIPCO.2018.8553361 – ident: ref60 doi: 10.1002/cpa.20042 – ident: ref63 doi: 10.1561/2200000015 – ident: ref53 doi: 10.1007/s10851-010-0251-1 – ident: ref32 doi: 10.1109/MSP.2010.938028 – ident: ref1 doi: 10.1016/S1573-4412(05)80019-4 – ident: ref10 doi: 10.1080/01621459.1999.10474153 – ident: ref44 doi: 10.1007/s10463-009-0236-2 – ident: ref59 doi: 10.1137/080716542 – ident: ref23 doi: 10.1162/neco.2007.19.4.1097 – ident: ref24 doi: 10.1111/j.1467-9892.1982.tb00349.x – ident: ref42 doi: 10.1007/978-3-319-48311-5 – ident: ref72 doi: 10.3390/jimaging7030058 – ident: ref48 doi: 10.1109/79.543975 – ident: ref54 doi: 10.1109/TSP.2021.3069677 – ident: ref43 doi: 10.1115/1.3662552 – ident: ref46 doi: 10.3182/20090706-3-FR-2004.00129 – volume: 16 issue: 12 year: 2015 ident: ref58 article-title: A class of randomized primal-dual algorithms for distributed optimization publication-title: J. Nonlinear Convex Anal. – ident: ref47 doi: 10.1186/s13634-020-00675-6 – ident: ref6 doi: 10.1016/j.envsoft.2021.105189 – ident: ref35 doi: 10.1109/TCNS.2017.2781367 – ident: ref15 doi: 10.1007/978-1-4612-0679-8 – ident: ref4 doi: 10.1038/30918 – ident: ref14 doi: 10.1111/j.1467-9868.2009.00736.x – ident: ref20 doi: 10.1109/9.1295 – ident: ref28 doi: 10.2307/2984875 – ident: ref27 doi: 10.1109/78.740104 – ident: ref67 doi: 10.1016/j.acha.2009.05.006 – ident: ref2 doi: 10.7551/mitpress/6444.001.0001 – ident: ref19 doi: 10.1109/TAC.1974.1100714 – ident: ref74 doi: 10.1109/TIT.2011.2112070 – ident: ref40 doi: 10.1098/rsta.2011.0613 – ident: ref73 doi: 10.1016/j.sigpro.2013.09.026 – ident: ref26 doi: 10.1016/j.neucom.2021.03.111 – ident: ref16 doi: 10.1109/IPIN.2016.7743582 – year: 2019 ident: ref61 article-title: Customizing sequence generation with multi-task dynamical systems – ident: ref33 doi: 10.1109/TCBB.2017.2688355 – volume: 12 start-page: 656 volume-title: Handbook Nonlinear Filtering year: 2009 ident: ref8 article-title: A tutorial on particle filtering and smoothing: Fifteen years later – ident: ref41 doi: 10.1109/ICASSP40776.2020.9053646 – ident: ref62 doi: 10.1007/978-1-4419-7865-3 |
| SSID | ssj0014496 |
| Score | 2.451798 |
| Snippet | State-space models (SSM) are central to describe time-varying complex systems in countless signal processing applications such as remote sensing, networks,... |
| SourceID | hal proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 4757 |
| SubjectTerms | Complex systems Convexity EM algorithm Engineering Sciences Estimation Graph theory graphical inference Inference Kalman filtering Kalman filters Mathematical models Numerical models Optimization Parameters primal-dual algorithms proximal methods Remote sensing Signal and Image processing Signal processing Signal processing algorithms Sparse matrices sparsity State space models State-space methods State-space modeling Statistical analysis Time series analysis |
| Title | Graphical Inference in Linear-Gaussian State-Space Models |
| URI | https://ieeexplore.ieee.org/document/9900490 https://www.proquest.com/docview/2723900459 https://hal.science/hal-03783425 |
| Volume | 70 |
| WOSCitedRecordID | wos000866500400004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1941-0476 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014496 issn: 1053-587X databaseCode: RIE dateStart: 19910101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-24YM--DXF6ZQivghm65KmaR6HuE0YY7A97K0kbYoD2WRff7-5tCuKIvhW2guEuzR3l8vvfgAPHV9bL6YkYamQJGCGEWUkJSbLpGayo1nmgMJDMRpFs5kcV-CpxMIYY9zlM9PCR1fLT5fJFo_K2nbnxEJVFapChDlWq6wYBIHj4rLhAiM8ErN9SdKX7elkbBNBSluM-tb9hd9cUPUNL0A6ZpUf27HzMb2T_83uFI6LWNLr5sY_g4pZnMPRlw6DdZB9bEiNhvBe99A-b77wbApqlzjpq-0aUZSeiznJxCbQxkN6tPf1BUx7L9PnASnYEkjCKN8Q7huVZdqmD1FolR9qabOVDtdJwHmqdBrQQCXCOnhDteJM0CgUNAkkllZFKtkl1BbLhbkCLwxpxjVVIYJibcCgtRa-1FTISFKugga09_qLk6KTOBJavMcuo_BlbDUeo8bjQuMNeCxHfORdNP6QvbcmKcWw_fWgO4zxnc-QFoTyXacBdTRAKVXovgHNvQXj4l9cx1RQhp-5vP591A0c4gTyg5Um1DarrbmFg2S3ma9Xd26ZfQKOscuS |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED_8AvXBb3E6tYgvgnFt0jTNo4g6cQ5he9hbSNoUhbHJvv5-c1lXFEXwrbQXCHdp7n653P0ALqPQOC-mJWG5kCRmlhFtJSW2KKRhMjKs8IXCLdFup72efF2C66oWxlrrL5_ZG3z0ufx8mE3xqKzhdk5MVC3DKjJnRfNqrSpnEMeejcsFDIzwVPQWSclQNrqdVwcFKb1hNHQOMPnmhJbf8Aqk51b5sSF7L_Ow_b_57cBWGU0Gt3Pz78KSHezB5pceg_sgH7ElNZoieFoU9wXvg8CBULfIyaOejrGOMvBRJ-k4CG0DJEjrjw-g-3DfvWuSki-BZIzyCeGh1UVhHIBIE6f-xEiHVyJuspjzXJs8prHOhHPxlhrNmaBpImgWS0yuilyyQ1gZDAf2CIIkoQU3VCdYFutCBmOMCKWhQqaSch3XoLHQn8rKXuJIadFXHlOEUjmNK9S4KjVeg6tqxMe8j8YfshfOJJUYNsBu3rYUvgsZEoNQPotqsI8GqKRK3degvrCgKv_GsaKCMvzM5fHvo85hvdl9aanWU_v5BDZwMvNjljqsTEZTewpr2WzyPh6d-SX3CVSEztk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Graphical+Inference+in+Linear-Gaussian+State-Space+Models&rft.jtitle=IEEE+transactions+on+signal+processing&rft.au=Elvira%2C+Victor&rft.au=Chouzenoux%2C+Emilie&rft.date=2022-01-01&rft.issn=1053-587X&rft.eissn=1941-0476&rft.volume=70&rft.spage=4757&rft.epage=4771&rft_id=info:doi/10.1109%2FTSP.2022.3209016&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TSP_2022_3209016 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1053-587X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1053-587X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1053-587X&client=summon |