Dwarf Mongoose Optimization Algorithm
This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode...
Gespeichert in:
| Veröffentlicht in: | Computer methods in applied mechanics and engineering Jg. 391; S. 114570 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Amsterdam
Elsevier B.V
01.03.2022
Elsevier BV |
| Schlagworte: | |
| ISSN: | 0045-7825 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses’ social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms. Matlab codes of DMO are available at https://www.mathworks.com/matlabcentral/fileexchange/105125-dwarf-mongoose-optimization-algorithm. |
|---|---|
| AbstractList | This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses’ social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms. Matlab codes of DMO are available at https://www.mathworks.com/matlabcentral/fileexchange/105125-dwarf-mongoose-optimization-algorithm. |
| ArticleNumber | 114570 |
| Author | Abualigah, Laith Ezugwu, Absalom E. Agushaka, Jeffrey O. |
| Author_xml | – sequence: 1 givenname: Jeffrey O. surname: Agushaka fullname: Agushaka, Jeffrey O. email: 208088307@stu.ukzn.ac.za organization: School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Road, Pietermaritzburg, KwaZulu-Natal 3201, South Africa – sequence: 2 givenname: Absalom E. orcidid: 0000-0002-3721-3400 surname: Ezugwu fullname: Ezugwu, Absalom E. email: Ezugwua@ukzn.ac.za organization: School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Road, Pietermaritzburg, KwaZulu-Natal 3201, South Africa – sequence: 3 givenname: Laith orcidid: 0000-0002-2203-4549 surname: Abualigah fullname: Abualigah, Laith email: aligah.2020@gmail.com organization: Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan |
| BookMark | eNp9kD9PwzAQxT0UibbwAdgqIcYE-xzbqZiq8lcq6gKz5ThOcdTExXZB8OlxCRNDb7nh3u_e3ZugUe96g9AFwTnBhF-3ue5UDhggJ6RgAo_QGOOCZaIEdoomIbQ4VUlgjK5uP5VvZs-u3zgXzGy9i7az3ypa188W243zNr51Z-ikUdtgzv_6FL3e370sH7PV-uFpuVhlmgKLWdFo0FCBYlVJ9JxWNSMs-TeF5qJKU0wVZjXnqhFGacKrCgpaMqC4rkFwOkWXw96dd-97E6Js3d73yVICp3MuyjkmSSUGlfYuBG8aqW38vTh6ZbeSYHnIQbYy5SAPOcghh0SSf-TO2075r6PMzcCY9PiHNV4GbU2vTW290VHWzh6hfwB6ZXe_ |
| CitedBy_id | crossref_primary_10_1016_j_cma_2025_118318 crossref_primary_10_1038_s41598_022_27144_4 crossref_primary_10_1038_s41598_024_67197_1 crossref_primary_10_1080_02664763_2024_2307535 crossref_primary_10_1016_j_compbiomed_2024_108780 crossref_primary_10_3390_biomimetics9090509 crossref_primary_10_1007_s10586_024_04689_9 crossref_primary_10_1007_s12652_023_04707_5 crossref_primary_10_1016_j_heliyon_2024_e35771 crossref_primary_10_1007_s10462_022_10340_z crossref_primary_10_1016_j_swevo_2023_101360 crossref_primary_10_1063_5_0137562 crossref_primary_10_1007_s11831_023_09912_1 crossref_primary_10_1016_j_asoc_2025_112854 crossref_primary_10_1016_j_chaos_2024_115111 crossref_primary_10_1155_2024_8913560 crossref_primary_10_1007_s10586_024_04982_7 crossref_primary_10_1007_s41939_024_00446_y crossref_primary_10_1016_j_swevo_2023_101353 crossref_primary_10_1142_S0219467825500536 crossref_primary_10_1016_j_heliyon_2024_e34326 crossref_primary_10_1109_ACCESS_2023_3304889 crossref_primary_10_3390_math11183886 crossref_primary_10_1016_j_apm_2023_10_013 crossref_primary_10_3390_math10234565 crossref_primary_10_3390_en15207603 crossref_primary_10_1016_j_enconman_2024_118264 crossref_primary_10_3390_math10203821 crossref_primary_10_3390_biomimetics10050260 crossref_primary_10_1016_j_engappai_2023_106014 crossref_primary_10_1038_s41598_023_50959_8 crossref_primary_10_1371_journal_pone_0272861 crossref_primary_10_1007_s00521_024_10541_3 crossref_primary_10_1016_j_ins_2023_02_059 crossref_primary_10_1038_s41598_025_91635_3 crossref_primary_10_1109_TITS_2023_3327157 crossref_primary_10_1016_j_eswa_2023_120639 crossref_primary_10_32604_cmc_2024_047989 crossref_primary_10_1016_j_swevo_2024_101746 crossref_primary_10_1016_j_heliyon_2023_e23394 crossref_primary_10_1016_j_swevo_2023_101244 crossref_primary_10_1016_j_injury_2024_111658 crossref_primary_10_1016_j_ins_2023_01_103 crossref_primary_10_1016_j_mtcomm_2024_109394 crossref_primary_10_1016_j_bspc_2025_108136 crossref_primary_10_3390_math11051077 crossref_primary_10_1016_j_ins_2023_119986 crossref_primary_10_1016_j_knosys_2022_109529 crossref_primary_10_1007_s11042_024_18110_5 crossref_primary_10_1016_j_ins_2023_119743 crossref_primary_10_1016_j_eswa_2025_127714 crossref_primary_10_1109_ACCESS_2025_3562367 crossref_primary_10_1177_18758967251360039 crossref_primary_10_1016_j_ins_2023_119749 crossref_primary_10_1016_j_knosys_2022_109762 crossref_primary_10_1007_s00500_024_10315_y crossref_primary_10_1007_s10586_024_04328_3 crossref_primary_10_1371_journal_pone_0316326 crossref_primary_10_3390_biomimetics10040232 crossref_primary_10_1007_s10586_024_04271_3 crossref_primary_10_1007_s10723_024_09779_x crossref_primary_10_1016_j_iot_2024_101085 crossref_primary_10_3390_sym14030458 crossref_primary_10_1007_s13755_025_00340_y crossref_primary_10_1109_TSMC_2025_3541002 crossref_primary_10_1016_j_applthermaleng_2023_122037 crossref_primary_10_1038_s41598_024_68239_4 crossref_primary_10_1007_s10586_025_05266_4 crossref_primary_10_1016_j_jii_2024_100677 crossref_primary_10_1038_s41598_024_57518_9 crossref_primary_10_1038_s41598_025_12307_w crossref_primary_10_1007_s00034_025_03000_4 crossref_primary_10_1007_s00371_023_03219_9 crossref_primary_10_1016_j_knosys_2022_110206 crossref_primary_10_1007_s11227_024_05905_4 crossref_primary_10_1088_1402_4896_ad86f7 crossref_primary_10_1007_s00521_022_07369_0 crossref_primary_10_1007_s12530_023_09539_4 crossref_primary_10_1016_j_engappai_2024_107865 crossref_primary_10_1109_ACCESS_2023_3332902 crossref_primary_10_1016_j_knosys_2025_113420 crossref_primary_10_1007_s12293_022_00386_5 crossref_primary_10_1007_s00521_024_09552_x crossref_primary_10_1016_j_asoc_2025_112968 crossref_primary_10_1016_j_iot_2024_101096 crossref_primary_10_1016_j_compeleceng_2023_108697 crossref_primary_10_1016_j_knosys_2025_113306 crossref_primary_10_1016_j_iot_2023_100942 crossref_primary_10_3390_biomimetics8020191 crossref_primary_10_3390_w16172458 crossref_primary_10_3390_biomimetics9080500 crossref_primary_10_1007_s11831_023_10060_9 crossref_primary_10_3390_app15189955 crossref_primary_10_1016_j_bspc_2025_108151 crossref_primary_10_1109_LSENS_2025_3539186 crossref_primary_10_3390_biomimetics9040205 crossref_primary_10_1007_s42235_022_00323_9 crossref_primary_10_1007_s00500_023_09297_0 crossref_primary_10_3390_drones7070452 crossref_primary_10_1038_s41598_022_22170_8 crossref_primary_10_3390_sym14051021 crossref_primary_10_1007_s12065_024_00937_4 crossref_primary_10_3390_math10132329 crossref_primary_10_1016_j_cma_2023_115878 crossref_primary_10_1007_s00500_023_08014_1 crossref_primary_10_1038_s41598_024_70881_x crossref_primary_10_3390_su152014821 crossref_primary_10_32604_cmc_2024_049717 crossref_primary_10_1007_s13369_022_06746_0 crossref_primary_10_1038_s41598_022_23121_z crossref_primary_10_1007_s44196_025_00824_5 crossref_primary_10_1007_s00521_022_07530_9 crossref_primary_10_1016_j_engappai_2022_105069 crossref_primary_10_1016_j_cma_2024_117251 crossref_primary_10_1007_s42235_024_00634_z crossref_primary_10_3390_app12199513 crossref_primary_10_1016_j_istruc_2024_106239 crossref_primary_10_3390_en16176122 crossref_primary_10_1016_j_engappai_2022_105075 crossref_primary_10_1080_2573234X_2023_2202691 crossref_primary_10_1007_s00500_022_07318_y crossref_primary_10_1016_j_engappai_2022_105190 crossref_primary_10_1007_s13198_024_02605_3 crossref_primary_10_1016_j_patcog_2022_109240 crossref_primary_10_1016_j_eswa_2025_126425 crossref_primary_10_1016_j_heliyon_2024_e33490 crossref_primary_10_1016_j_bspc_2025_108057 crossref_primary_10_1016_j_dajour_2023_100266 crossref_primary_10_1016_j_engappai_2023_106544 crossref_primary_10_3233_JIFS_223224 crossref_primary_10_1007_s00034_025_03166_x crossref_primary_10_1007_s13369_022_06857_8 crossref_primary_10_1016_j_iot_2024_101161 crossref_primary_10_1007_s12530_023_09526_9 crossref_primary_10_1007_s13198_023_01902_7 crossref_primary_10_1038_s41598_024_63746_w crossref_primary_10_1007_s11042_023_17886_2 crossref_primary_10_1016_j_ecmx_2025_101209 crossref_primary_10_3233_JIFS_233029 crossref_primary_10_1016_j_eswa_2023_121975 crossref_primary_10_1016_j_ijepes_2024_110266 crossref_primary_10_3390_rs15194747 crossref_primary_10_1007_s10115_023_01931_5 crossref_primary_10_1016_j_future_2024_06_051 crossref_primary_10_1109_ACCESS_2024_3455550 crossref_primary_10_1007_s41939_024_00577_2 crossref_primary_10_1038_s41598_024_65292_x crossref_primary_10_1007_s10586_024_04674_2 crossref_primary_10_1016_j_cie_2023_109777 crossref_primary_10_1016_j_envres_2025_121634 crossref_primary_10_7717_peerj_cs_2805 crossref_primary_10_1007_s00371_023_03119_y crossref_primary_10_1007_s11277_023_10434_z crossref_primary_10_1016_j_jksuci_2023_101779 crossref_primary_10_1016_j_neunet_2022_11_018 crossref_primary_10_1007_s00521_023_08449_5 crossref_primary_10_1007_s00521_024_10346_4 crossref_primary_10_3390_biomimetics8060490 crossref_primary_10_1016_j_jestch_2024_101686 crossref_primary_10_1007_s10462_025_11351_2 crossref_primary_10_1016_j_cma_2023_116097 crossref_primary_10_1016_j_bspc_2025_108513 crossref_primary_10_1007_s00521_025_11228_z crossref_primary_10_1038_s41598_025_93073_7 crossref_primary_10_1109_ACCESS_2022_3172789 crossref_primary_10_4271_13_06_01_0004 crossref_primary_10_1016_j_knosys_2025_113252 crossref_primary_10_1080_01969722_2024_2343994 crossref_primary_10_1007_s40747_023_01069_5 crossref_primary_10_1007_s40745_025_00642_8 crossref_primary_10_1109_ACCESS_2024_3397402 crossref_primary_10_1002_oca_3284 crossref_primary_10_1007_s00521_022_07405_z crossref_primary_10_1007_s13198_024_02367_y crossref_primary_10_1007_s12065_024_00911_0 crossref_primary_10_3390_s24030865 crossref_primary_10_1016_j_patcog_2022_109034 crossref_primary_10_1007_s11042_022_13404_y crossref_primary_10_1016_j_jestch_2025_102053 crossref_primary_10_1111_exsy_13380 crossref_primary_10_3389_fenrg_2022_1011887 crossref_primary_10_1016_j_eswa_2023_122413 crossref_primary_10_1016_j_eswa_2025_127660 crossref_primary_10_1016_j_swevo_2022_101222 crossref_primary_10_1007_s10586_022_03650_y crossref_primary_10_1007_s40430_024_05114_3 crossref_primary_10_1007_s00500_025_10419_z crossref_primary_10_1002_suco_202300525 crossref_primary_10_1515_mt_2022_0055 crossref_primary_10_1007_s11831_024_10109_3 crossref_primary_10_1016_j_measurement_2023_113032 crossref_primary_10_32604_cmes_2025_059738 crossref_primary_10_1007_s00500_023_07982_8 crossref_primary_10_1007_s12530_023_09547_4 crossref_primary_10_1007_s42235_023_00433_y crossref_primary_10_32604_cmes_2023_029404 crossref_primary_10_1016_j_enconman_2023_117621 crossref_primary_10_1016_j_energy_2024_131405 crossref_primary_10_1016_j_knosys_2022_109484 crossref_primary_10_1038_s41598_025_16528_x crossref_primary_10_3233_JIFS_233508 crossref_primary_10_1007_s13198_024_02331_w crossref_primary_10_1016_j_engappai_2023_107713 crossref_primary_10_1016_j_phycom_2023_102068 crossref_primary_10_1016_j_swevo_2023_101417 crossref_primary_10_1016_j_asr_2025_06_028 crossref_primary_10_1007_s10462_023_10470_y crossref_primary_10_1016_j_knosys_2022_109360 crossref_primary_10_1007_s12065_022_00750_x crossref_primary_10_3390_bdcc6010029 crossref_primary_10_3390_buildings14092842 crossref_primary_10_1038_s41598_022_24840_z crossref_primary_10_1007_s11831_022_09817_5 crossref_primary_10_1016_j_cma_2022_115734 crossref_primary_10_1177_18724981251333610 crossref_primary_10_1002_suco_202400163 crossref_primary_10_1007_s10668_023_04457_6 crossref_primary_10_1007_s12065_023_00822_6 crossref_primary_10_1016_j_eswa_2025_127206 crossref_primary_10_1016_j_knosys_2022_110048 crossref_primary_10_1016_j_knosys_2022_110169 crossref_primary_10_1007_s12652_022_03898_7 crossref_primary_10_1007_s00500_024_09884_9 crossref_primary_10_1016_j_jclepro_2023_140239 crossref_primary_10_1515_mt_2022_0049 crossref_primary_10_1016_j_jksuci_2022_08_004 crossref_primary_10_1016_j_jnca_2023_103617 crossref_primary_10_1016_j_jocs_2022_101873 crossref_primary_10_7717_peerj_cs_1526 crossref_primary_10_1007_s12065_024_00945_4 crossref_primary_10_1080_00051144_2022_2140392 crossref_primary_10_1007_s10586_024_04491_7 crossref_primary_10_1016_j_suscom_2024_100956 crossref_primary_10_1007_s00500_022_07668_7 crossref_primary_10_11648_j_ijiis_20251402_12 crossref_primary_10_1038_s41598_025_91203_9 crossref_primary_10_1007_s12065_022_00761_8 crossref_primary_10_1007_s12065_022_00784_1 crossref_primary_10_1007_s00500_024_10322_z crossref_primary_10_3233_JIFS_223933 crossref_primary_10_1002_dac_5473 crossref_primary_10_1007_s11831_022_09780_1 crossref_primary_10_1007_s00500_022_07777_3 crossref_primary_10_1002_dac_5896 crossref_primary_10_1007_s43995_024_00071_3 crossref_primary_10_1002_oca_3131 crossref_primary_10_1016_j_asoc_2025_113071 crossref_primary_10_1007_s13246_024_01419_8 crossref_primary_10_1038_s41598_025_01835_0 crossref_primary_10_1002_cpe_7383 crossref_primary_10_1371_journal_pone_0270933 crossref_primary_10_1016_j_iot_2024_101301 crossref_primary_10_1109_ACCESS_2024_3401129 crossref_primary_10_1016_j_jksuci_2023_101904 crossref_primary_10_1016_j_swevo_2024_101557 crossref_primary_10_3390_biomimetics10060388 crossref_primary_10_3390_math12162570 crossref_primary_10_1016_j_eswa_2023_122200 crossref_primary_10_1016_j_swevo_2023_101314 crossref_primary_10_3233_JIFS_221348 crossref_primary_10_3390_app12094359 crossref_primary_10_1007_s10586_025_05241_z crossref_primary_10_1007_s11276_024_03847_6 crossref_primary_10_1007_s13369_024_09702_2 crossref_primary_10_1007_s42235_023_00447_6 crossref_primary_10_30939_ijastech__1749077 crossref_primary_10_1007_s10462_025_11360_1 crossref_primary_10_1007_s10586_024_04501_8 crossref_primary_10_1002_oca_3007 crossref_primary_10_1016_j_engappai_2023_106979 crossref_primary_10_1038_s41598_024_63908_w crossref_primary_10_1007_s40314_024_02744_0 crossref_primary_10_1007_s11042_022_12001_3 crossref_primary_10_1016_j_compbiomed_2022_105458 crossref_primary_10_1016_j_heliyon_2024_e28063 crossref_primary_10_1007_s13246_024_01397_x crossref_primary_10_1016_j_asoc_2024_111838 crossref_primary_10_1016_j_knosys_2023_110454 crossref_primary_10_1007_s42979_025_03752_5 crossref_primary_10_1038_s41598_024_77120_3 crossref_primary_10_1016_j_egyr_2022_12_044 crossref_primary_10_1016_j_jclepro_2023_140267 crossref_primary_10_1016_j_engappai_2022_105579 crossref_primary_10_1007_s12530_024_09588_3 crossref_primary_10_1515_mt_2022_0259 crossref_primary_10_3233_AIS_230408 crossref_primary_10_32604_cmc_2024_045660 crossref_primary_10_1007_s10462_023_10403_9 crossref_primary_10_3233_JIFS_233428 crossref_primary_10_1007_s11227_022_04590_5 crossref_primary_10_1016_j_patcog_2024_110439 crossref_primary_10_1007_s10462_024_11023_7 crossref_primary_10_3390_pr10050858 crossref_primary_10_1038_s41598_024_77517_0 crossref_primary_10_1007_s12065_022_00794_z crossref_primary_10_1016_j_eswa_2023_121218 crossref_primary_10_1007_s00500_023_08033_y crossref_primary_10_3390_biomimetics8040377 crossref_primary_10_1016_j_eswa_2023_120367 crossref_primary_10_1016_j_engappai_2022_105581 crossref_primary_10_1016_j_knosys_2025_113076 crossref_primary_10_1371_journal_pone_0282812 crossref_primary_10_1007_s10586_023_04020_y crossref_primary_10_1109_JSEN_2023_3244831 crossref_primary_10_1007_s13369_022_07124_6 crossref_primary_10_1016_j_engappai_2022_105202 crossref_primary_10_1038_s41598_025_91784_5 crossref_primary_10_1515_mt_2022_0123 crossref_primary_10_1007_s41939_025_00740_3 crossref_primary_10_3390_biomimetics9050280 crossref_primary_10_1016_j_advengsoft_2024_103671 crossref_primary_10_1007_s00202_024_02415_7 crossref_primary_10_1007_s13042_025_02609_w crossref_primary_10_1007_s42235_022_00316_8 crossref_primary_10_1007_s00500_022_07302_6 crossref_primary_10_1016_j_engappai_2023_106839 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1007_s00500_022_07510_0 crossref_primary_10_1007_s00500_023_08934_y crossref_primary_10_1007_s11831_023_10030_1 crossref_primary_10_1016_j_swevo_2023_101349 crossref_primary_10_1080_21681015_2023_2276108 crossref_primary_10_1007_s10462_024_10919_8 crossref_primary_10_1002_ett_5019 crossref_primary_10_1007_s00500_024_09761_5 crossref_primary_10_1007_s00521_024_10694_1 crossref_primary_10_1007_s13369_023_08183_z crossref_primary_10_1016_j_conbuildmat_2025_143499 crossref_primary_10_1371_journal_pone_0275346 crossref_primary_10_1007_s11042_024_20113_1 crossref_primary_10_1007_s10586_025_05348_3 crossref_primary_10_1371_journal_pone_0275594 crossref_primary_10_1007_s10462_025_11269_9 crossref_primary_10_1016_j_rineng_2025_105984 crossref_primary_10_1007_s00477_022_02361_5 crossref_primary_10_1007_s00371_023_02993_w crossref_primary_10_1016_j_eswa_2025_129554 crossref_primary_10_1016_j_knosys_2023_111351 crossref_primary_10_1007_s42235_025_00703_x crossref_primary_10_1007_s42235_022_00253_6 crossref_primary_10_1016_j_cma_2022_114901 crossref_primary_10_1016_j_knosys_2023_111352 crossref_primary_10_3390_electronics11050831 crossref_primary_10_1109_ACCESS_2022_3223388 crossref_primary_10_1109_JSEN_2023_3335621 crossref_primary_10_1177_18758967251353036 crossref_primary_10_1016_j_neunet_2023_08_011 crossref_primary_10_32604_cmc_2024_052401 crossref_primary_10_3390_pr10122703 crossref_primary_10_1080_02664763_2024_2348634 crossref_primary_10_1016_j_ecoinf_2024_102663 crossref_primary_10_1016_j_cogsys_2024_101237 crossref_primary_10_1007_s00500_022_07572_0 crossref_primary_10_1007_s11227_024_06559_y crossref_primary_10_1038_s41598_024_81144_0 crossref_primary_10_1016_j_compbiomed_2022_106221 crossref_primary_10_1016_j_heliyon_2024_e31629 crossref_primary_10_1016_j_knosys_2023_111102 crossref_primary_10_1007_s10462_024_10767_6 crossref_primary_10_1016_j_cma_2025_117908 crossref_primary_10_1109_ACCESS_2023_3287896 crossref_primary_10_1016_j_heliyon_2024_e25390 crossref_primary_10_1007_s40430_022_03911_2 crossref_primary_10_1016_j_knosys_2025_113089 crossref_primary_10_1016_j_jclepro_2022_133353 crossref_primary_10_1007_s12530_023_09566_1 crossref_primary_10_1002_cpe_7364 crossref_primary_10_1016_j_cosrev_2025_100740 crossref_primary_10_1016_j_jclepro_2023_139396 crossref_primary_10_1016_j_jclepro_2024_142848 crossref_primary_10_3389_fevo_2023_1122682 crossref_primary_10_1007_s42235_024_00608_1 crossref_primary_10_1016_j_energy_2025_137194 crossref_primary_10_1007_s12065_022_00753_8 crossref_primary_10_1016_j_aei_2023_102210 crossref_primary_10_1007_s00500_023_07842_5 crossref_primary_10_1016_j_ins_2024_121673 crossref_primary_10_1007_s13755_024_00297_4 crossref_primary_10_1007_s12065_022_00776_1 crossref_primary_10_1007_s10462_023_10398_3 crossref_primary_10_1016_j_knosys_2024_111850 crossref_primary_10_1016_j_knosys_2024_111970 crossref_primary_10_1016_j_neunet_2023_10_052 crossref_primary_10_1063_5_0108340 crossref_primary_10_1016_j_neucom_2023_03_059 crossref_primary_10_1186_s44147_025_00738_1 crossref_primary_10_1016_j_knosys_2024_111737 crossref_primary_10_3390_app15158462 crossref_primary_10_1016_j_jclepro_2024_142714 crossref_primary_10_1016_j_knosys_2023_111317 crossref_primary_10_1109_TITS_2022_3172241 crossref_primary_10_1007_s11518_024_5627_7 crossref_primary_10_1007_s11581_025_06200_9 crossref_primary_10_1016_j_bspc_2024_106324 crossref_primary_10_3390_math11040862 crossref_primary_10_1109_JSYST_2023_3321676 crossref_primary_10_1007_s12065_022_00765_4 crossref_primary_10_1007_s12065_023_00839_x crossref_primary_10_1007_s10115_025_02479_2 crossref_primary_10_1016_j_engappai_2024_109370 crossref_primary_10_1016_j_ijhydene_2024_01_356 crossref_primary_10_1016_j_neunet_2023_10_040 crossref_primary_10_62050_fscp2024_481 crossref_primary_10_1007_s00371_024_03439_7 crossref_primary_10_1007_s41365_023_01267_3 crossref_primary_10_1016_j_eswa_2024_124622 crossref_primary_10_1016_j_cosrev_2025_100727 crossref_primary_10_1080_01969722_2022_2073703 crossref_primary_10_1088_1748_9326_ad7278 crossref_primary_10_1080_01969722_2022_2122002 crossref_primary_10_1016_j_engappai_2024_109202 crossref_primary_10_1007_s12065_022_00751_w crossref_primary_10_1007_s42235_024_00510_w crossref_primary_10_1093_jcde_qwad006 crossref_primary_10_1007_s11042_023_16890_w crossref_primary_10_1109_ACCESS_2022_3201147 crossref_primary_10_1007_s00500_022_07080_1 crossref_primary_10_1016_j_energy_2023_126705 crossref_primary_10_1109_JAS_2022_105821 crossref_primary_10_1007_s11276_024_03782_6 crossref_primary_10_1016_j_cma_2024_116964 crossref_primary_10_1016_j_engappai_2022_105622 crossref_primary_10_1007_s12530_025_09680_2 crossref_primary_10_1038_s41598_022_22242_9 crossref_primary_10_3390_diagnostics13010162 crossref_primary_10_1016_j_neunet_2024_106460 crossref_primary_10_1038_s41598_025_13539_6 crossref_primary_10_1016_j_engstruct_2025_121261 crossref_primary_10_1007_s12065_024_00997_6 crossref_primary_10_1016_j_bspc_2024_106024 crossref_primary_10_1007_s13198_024_02349_0 crossref_primary_10_1016_j_cma_2023_116062 crossref_primary_10_1007_s12065_022_00786_z crossref_primary_10_1007_s00500_024_09789_7 crossref_primary_10_1038_s41598_025_11492_y crossref_primary_10_3390_pr11020498 crossref_primary_10_1007_s12065_022_00762_7 crossref_primary_10_1038_s41598_022_11938_7 crossref_primary_10_1007_s00521_022_07854_6 crossref_primary_10_1016_j_jclepro_2022_134363 crossref_primary_10_3390_biomimetics10060411 crossref_primary_10_1007_s42235_024_00545_z crossref_primary_10_3233_JCM_226866 crossref_primary_10_1016_j_cma_2023_116199 crossref_primary_10_32604_cmes_2023_045170 crossref_primary_10_1016_j_patcog_2023_109566 crossref_primary_10_1007_s00521_024_09436_0 crossref_primary_10_1007_s11042_023_16411_9 crossref_primary_10_1016_j_asoc_2024_112084 crossref_primary_10_1016_j_measurement_2025_118725 crossref_primary_10_1038_s41598_022_18993_0 crossref_primary_10_1016_j_eswa_2022_117993 crossref_primary_10_1186_s44147_025_00638_4 crossref_primary_10_1007_s11277_024_11674_3 crossref_primary_10_1016_j_ins_2024_121590 crossref_primary_10_1007_s42235_024_00579_3 crossref_primary_10_1007_s11063_024_11467_6 crossref_primary_10_1016_j_ecoinf_2024_102718 crossref_primary_10_1007_s00500_023_09563_1 crossref_primary_10_1007_s11694_024_02897_w crossref_primary_10_1016_j_knosys_2024_111412 crossref_primary_10_1016_j_swevo_2024_101493 crossref_primary_10_1007_s10614_024_10813_z crossref_primary_10_1007_s10462_023_10581_6 crossref_primary_10_1007_s12530_023_09552_7 crossref_primary_10_1016_j_patcog_2023_109436 crossref_primary_10_1016_j_sciaf_2023_e01720 crossref_primary_10_1080_17455030_2022_2155319 crossref_primary_10_1007_s42452_025_07008_y crossref_primary_10_1016_j_enbuild_2024_113942 crossref_primary_10_1007_s10586_024_04713_y crossref_primary_10_1016_j_bspc_2024_106244 crossref_primary_10_1007_s12065_022_00787_y crossref_primary_10_1016_j_compbiomed_2023_107558 crossref_primary_10_1038_s41598_025_06380_4 crossref_primary_10_1007_s10586_022_03694_0 crossref_primary_10_1007_s11276_024_03815_0 crossref_primary_10_1007_s11831_022_09801_z crossref_primary_10_1007_s42235_022_00263_4 crossref_primary_10_3233_JIFS_222804 crossref_primary_10_1007_s00500_022_07149_x crossref_primary_10_1007_s10586_024_04892_8 crossref_primary_10_1016_j_jer_2023_08_019 crossref_primary_10_1109_TFUZZ_2023_3267405 crossref_primary_10_2478_jaiscr_2023_0011 crossref_primary_10_1016_j_cma_2024_117588 crossref_primary_10_1007_s12530_023_09541_w crossref_primary_10_1007_s00500_022_07526_6 crossref_primary_10_1007_s00500_024_09911_9 crossref_primary_10_3390_eng6080174 crossref_primary_10_1016_j_suscom_2024_101012 crossref_primary_10_1016_j_dajour_2022_100125 crossref_primary_10_1038_s41598_025_85142_8 crossref_primary_10_1007_s00500_024_09890_x crossref_primary_10_1016_j_sysarc_2023_102871 crossref_primary_10_3390_info14020066 crossref_primary_10_1016_j_aei_2024_102354 crossref_primary_10_1007_s00500_022_07199_1 crossref_primary_10_1007_s10462_025_11118_9 crossref_primary_10_1016_j_matcom_2022_12_001 crossref_primary_10_1007_s00500_022_07251_0 crossref_primary_10_1080_17455030_2022_2164377 crossref_primary_10_1016_j_cie_2024_110568 crossref_primary_10_1007_s11227_025_07007_1 crossref_primary_10_1016_j_cma_2023_116664 crossref_primary_10_3390_math11153297 crossref_primary_10_1080_09540091_2023_2246703 crossref_primary_10_1007_s00500_022_07079_8 crossref_primary_10_1016_j_seta_2023_103025 crossref_primary_10_1016_j_engappai_2022_105701 crossref_primary_10_1016_j_eswa_2023_120904 crossref_primary_10_1371_journal_pone_0302880 crossref_primary_10_1016_j_ecoinf_2024_102704 crossref_primary_10_1016_j_compbiomed_2023_107217 crossref_primary_10_1007_s11227_025_07410_8 crossref_primary_10_1080_02664763_2024_2315451 crossref_primary_10_1016_j_rineng_2025_105599 crossref_primary_10_3390_math11183913 crossref_primary_10_1016_j_compbiomed_2023_107212 crossref_primary_10_1002_ett_4744 crossref_primary_10_1007_s10462_024_11104_7 crossref_primary_10_1038_s41598_024_76010_y crossref_primary_10_1016_j_jclepro_2023_139798 crossref_primary_10_1007_s41939_024_00552_x crossref_primary_10_1016_j_knosys_2022_108833 crossref_primary_10_3390_app13053273 crossref_primary_10_1007_s11760_024_03145_w crossref_primary_10_1016_j_knosys_2024_111449 crossref_primary_10_1016_j_engappai_2023_106069 crossref_primary_10_1371_journal_pone_0285211 crossref_primary_10_3390_atmos13122051 crossref_primary_10_3390_math10132278 crossref_primary_10_1007_s11042_023_16764_1 crossref_primary_10_1016_j_heliyon_2024_e26799 crossref_primary_10_1002_widm_1548 crossref_primary_10_1186_s40645_023_00550_6 crossref_primary_10_1016_j_asoc_2025_113527 crossref_primary_10_1016_j_knosys_2023_111172 crossref_primary_10_1007_s11831_024_10135_1 crossref_primary_10_1007_s40430_023_04457_7 crossref_primary_10_1007_s10115_023_01859_w crossref_primary_10_1016_j_ins_2024_120867 crossref_primary_10_1063_5_0251549 crossref_primary_10_1007_s10586_024_04881_x crossref_primary_10_1016_j_jclepro_2023_136393 crossref_primary_10_1007_s12530_024_09571_y crossref_primary_10_1007_s44196_025_00823_6 crossref_primary_10_1093_jcde_qwad094 crossref_primary_10_1109_ACCESS_2024_3466529 crossref_primary_10_1016_j_cie_2024_110103 crossref_primary_10_1007_s10586_025_05558_9 crossref_primary_10_3390_electronics12244990 crossref_primary_10_3390_en16020850 crossref_primary_10_1007_s42235_024_00524_4 crossref_primary_10_1016_j_eswa_2022_118515 crossref_primary_10_1016_j_apenergy_2023_120797 crossref_primary_10_1007_s10586_023_04221_5 crossref_primary_10_3390_en18082024 crossref_primary_10_1016_j_cma_2024_117429 crossref_primary_10_1142_S0218126625502226 crossref_primary_10_1007_s11227_022_04781_0 crossref_primary_10_3390_biomimetics9120727 crossref_primary_10_1007_s00521_024_09602_4 crossref_primary_10_1016_j_ins_2024_121409 crossref_primary_10_1007_s44196_025_00855_y crossref_primary_10_1109_ACCESS_2023_3295242 crossref_primary_10_1109_ACCESS_2024_3428328 crossref_primary_10_1007_s12652_022_04412_9 crossref_primary_10_1007_s42044_025_00245_9 crossref_primary_10_1007_s00500_022_07484_z crossref_primary_10_1007_s10614_024_10709_y crossref_primary_10_1007_s12530_023_09487_z crossref_primary_10_1016_j_jclepro_2023_138435 crossref_primary_10_1007_s10462_024_10716_3 crossref_primary_10_1007_s10462_024_10946_5 crossref_primary_10_1016_j_iot_2023_100973 crossref_primary_10_3390_pr10112254 crossref_primary_10_1016_j_eswa_2024_124333 crossref_primary_10_1109_ACCESS_2024_3351721 crossref_primary_10_1016_j_cma_2023_116582 crossref_primary_10_1016_j_heliyon_2024_e39301 crossref_primary_10_1007_s44163_025_00401_x crossref_primary_10_1016_j_cie_2023_109359 crossref_primary_10_1007_s10115_023_01911_9 crossref_primary_10_1007_s00500_025_10412_6 crossref_primary_10_1007_s40747_023_01082_8 crossref_primary_10_1016_j_dsp_2024_104750 crossref_primary_10_1016_j_heliyon_2024_e29830 crossref_primary_10_1371_journal_pone_0274850 crossref_primary_10_1007_s00500_024_09858_x crossref_primary_10_1108_COMPEL_05_2025_0217 crossref_primary_10_1002_dac_6065 crossref_primary_10_1007_s42484_023_00110_7 crossref_primary_10_1016_j_neunet_2023_11_024 crossref_primary_10_1016_j_cie_2024_110775 crossref_primary_10_3389_fnint_2022_1028986 crossref_primary_10_1007_s00521_024_10009_4 crossref_primary_10_1007_s10462_025_11291_x crossref_primary_10_1016_j_ijhydene_2025_02_401 crossref_primary_10_1007_s12530_022_09475_9 crossref_primary_10_1038_s41598_024_66187_7 crossref_primary_10_1038_s41598_025_92983_w crossref_primary_10_1007_s12530_023_09519_8 crossref_primary_10_3390_biomimetics10010014 crossref_primary_10_1016_j_econmod_2025_107288 crossref_primary_10_1007_s12351_024_00862_5 crossref_primary_10_1080_01969722_2022_2157609 crossref_primary_10_3390_sym14112282 crossref_primary_10_1007_s41939_025_00790_7 crossref_primary_10_1016_j_knosys_2022_108743 crossref_primary_10_1016_j_eswa_2024_124114 crossref_primary_10_1029_2023RS007744 crossref_primary_10_1038_s41598_025_11129_0 crossref_primary_10_1007_s12530_024_09591_8 crossref_primary_10_1016_j_engappai_2023_106156 crossref_primary_10_1016_j_engappai_2023_106277 crossref_primary_10_1016_j_eswa_2025_126955 crossref_primary_10_1007_s13369_022_07480_3 crossref_primary_10_1109_ACCESS_2023_3346533 crossref_primary_10_1007_s12008_024_01851_w crossref_primary_10_1007_s41939_025_00800_8 crossref_primary_10_1007_s10115_024_02105_7 crossref_primary_10_1177_24056456251325289 crossref_primary_10_1007_s11235_023_01063_9 crossref_primary_10_1016_j_iot_2023_100981 crossref_primary_10_1007_s00521_022_07571_0 crossref_primary_10_1016_j_knosys_2023_111081 crossref_primary_10_1007_s12065_022_00767_2 crossref_primary_10_1007_s00607_024_01397_5 crossref_primary_10_1007_s10462_022_10324_z crossref_primary_10_1007_s13198_023_01861_z crossref_primary_10_1016_j_heliyon_2023_e21828 crossref_primary_10_1016_j_cma_2023_116238 crossref_primary_10_3390_biomimetics10090581 |
| Cites_doi | 10.1111/j.1439-0310.1977.tb00487.x 10.1007/s00500-019-03949-w 10.3390/e23121637 10.1016/j.engappai.2019.103249 10.1007/s00521-020-05145-6 10.1007/s10462-020-09867-w 10.1115/1.2912596 10.1109/CDC.1990.203904 10.1016/j.eswa.2020.113246 10.1371/journal.pone.0255703 10.1007/11579427_66 10.1016/j.asoc.2020.106503 10.1016/j.knosys.2015.12.022 10.1061/(ASCE)0733-9445(1989)115:3(626) 10.2307/1378840 10.1016/j.engappai.2019.01.001 10.1109/ACCESS.2020.3039602 10.1016/j.future.2019.02.028 10.1016/j.advengsoft.2013.12.007 10.1111/j.1439-0310.1979.tb00295.x 10.1007/s00521-019-04132-w 10.1109/ACCESS.2019.2942169 10.1007/BF00296927 10.1109/TE.2020.3008878 10.1016/j.future.2020.03.055 10.1016/j.eswa.2020.114353 10.1016/j.compstruc.2009.01.003 10.1007/s10462-019-09732-5 10.1016/S0166-3615(99)00046-9 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U 10.1007/s12293-016-0212-3 10.1007/s00521-015-1923-y 10.1016/j.cma.2020.113609 10.1016/j.asoc.2020.106734 10.1016/S0065-3454(08)60178-3 10.1109/TEVC.2008.927706 10.3934/mbe.2022023 10.1007/s10462-020-09893-8 10.1109/ACCESS.2018.2872110 10.1007/s42107-020-00282-8 10.1109/ICNN.1995.488968 10.1504/IJBIC.2018.093328 10.1016/j.cie.2021.107250 10.1016/j.ifacol.2021.10.032 10.1080/03052150108940941 10.1016/j.cnsns.2012.06.009 10.1002/cpe.6321 10.1016/j.apm.2020.12.021 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier BV Mar 1, 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier BV Mar 1, 2022 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cma.2022.114570 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering |
| ExternalDocumentID | 10_1016_j_cma_2022_114570 S0045782522000019 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSH SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c325t-4fc2c2b2a5b81c93bd515570f4c67b4fc03a05d66af7eac16bb24385230dd2763 |
| ISICitedReferencesCount | 684 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777768100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Fri Jul 25 06:49:47 EDT 2025 Sat Nov 29 07:27:14 EST 2025 Tue Nov 18 22:36:30 EST 2025 Sun Apr 06 06:53:41 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Dwarf Mongoose Optimization Algorithm Metaheuristic Global optimization Engineering design problems Nature-inspired algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-4fc2c2b2a5b81c93bd515570f4c67b4fc03a05d66af7eac16bb24385230dd2763 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-2203-4549 0000-0002-3721-3400 |
| PQID | 2639678901 |
| PQPubID | 2045269 |
| ParticipantIDs | proquest_journals_2639678901 crossref_citationtrail_10_1016_j_cma_2022_114570 crossref_primary_10_1016_j_cma_2022_114570 elsevier_sciencedirect_doi_10_1016_j_cma_2022_114570 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-03-01 2022-03-00 20220301 |
| PublicationDateYYYYMMDD | 2022-03-01 |
| PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Tzanetos, Dounias (b19) 2021; 54 Kaveh, Talatahari (b33) 2009; 87 Hayyolalam, Kazem (b36) 2020; 87 Qiao, Yang (b41) 2019; 7 Abualigah, Diabat, Elaziz (b21) 2021 Precup, Hedrea, Roman, Petriu, Szedlak-Stinean, Bojan-Dragos (b26) 2020; 64 Bojan-Dragos, Precup, Preitl, Roman, Hedrea, Szedlak-Stinean (b25) 2021; 54 Feng, Niu, Liu (b49) 2021; 98 Ezugwu, Adeleke, Akinyelu, Viriri (b1) 2020; 32 Z. Michalewicz, J. Krawczyk, M. Kazemi, C.Z. Janikow, Genetic algorithms and optimal control problems, in: Proc. 29th IEEE Conf. Decis. Control, Dec. 1990. Chou, Truong (b40) 2021; 389 Braik, Sheta, Al-Hiary (b47) 2021; 33 Wang, Deb, Coelho (b16) 2015 Holland (b2) 1975 Talatahari, Azizi (b37) 2021; 54 M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) (Vol. 2), 1999. Wang (b17) 2018; 10 Rasa (b56) 1979; 49 Mirjalili (b64) 2016; 96 Nematollahi, Rahiminejad, Vahidi (b44) 2020; 24 Precup, David, Roman, Szedlak-Stinean, Petriu (b27) 2021 Amir, Hasegawa (b77) 1989; 115 Coello (b67) 2000; 41 T. Johnson, P. Husbands, System identification using genetic algorithms, in: Proc. Int. Conf. Parallel Problem Solving Nature, Berlin, Germany, 1990. Wang, Deb, Coelho (b18) 2018; 12 Liang, Qu, Suganthan (b12) 2013 Preitl, Precup, Tar, Takács (b23) 2006; 3 Agushaka, Ezugwu (b9) 2021; 31 Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b42) 2021; 376 E. Mezura-Montes, C.A.C. Coello, Useful infeasible solutions in engineering optimization with evolutionary algorithms, in: Mexican International Conference on Artificial Intelligence, Berlin, Heidelberg, 2005. Rashid (b48) 2020 Bayzidi, Talatahari, Saraee, Lamarche (b52) 2021 Rao (b74) 2009 Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (b20) 2021; 191 Abed-alguni (b34) 2019; 17 Abualigah, Alkhrabsheh (b22) 2021 Chickermane, Gea (b73) 1996; 39 Zheng, Jia, Abualigah, Liu, Wang (b7) 2021; 19 Azizi (b39) 2021; 93 Agushaka, Ezugwu (b60) 2020; 8 Ezugwu, Akutsah (b28) 2018; 6 Nadimi-Shahraki, Fatahi, Zamani, Mirjalili, Abualigah (b8) 2021; 23 J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, 1995. Qin, Huang, Suganthan (b13) 2009; 13 Wang, Deb, Cui (b15) 2019; 31 Rasa (b54) 1977; 43 Bogar, Beyhan (b38) 2020; 95 Mirjalili, Mirjalili, Lewis (b63) 2014; 69 Ray, Saini (b71) 2001; 33 Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b65) 2017 Kazemzadeh-Parsi (b68) 2014; 38 Gandomi, Yang, Talatahari, Alavi (b32) 2013; 18 Oyelade, Ezugwu (b29) 2021 Kaveh, Seddighian, Ghanadpour (b46) 2020; 21 Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b79) 2019; 97 Meier, Rasa, Scheich (b59) 1983; 12 Rasa (b53) 1972; 53 Li, Chen, Wang, Heidari, Mirjalili (b78) 2020; 111 Achary, Pillay, Pillai, Mqadi, Genders, Ezugwu (b30) 2021 Parkinson, Balling, Hedengren (b75) 2018 Li, Liu, Yang (b61) 2020 Oyelade, Ezugwu (b6) 2021 Zapata, Perozo, Angulo, Contreras (b11) 2020; 18 Rasa (b57) 1986; 8 Govender, Ezugwu (b31) 2021 Zhang, Jin (b35) 2020; 148 Agushaka, Ezugwu (b43) 2021; 16 Ezugwu, Shukla, Nath, Akinyelu, Agushaka, Chiroma, Muhuri (b10) 2021 Rasa (b55) 1977; 42 Rather, Bala (b62) 2019 Shadravan, Naji, Bardsiri (b51) 2019; 80 Sandgren (b72) 1990; 112 Rasa (b58) 1987; 17 Ravindran, Ragsdell, Reklaitis (b76) 2006 Plevris, Papadrakakis (b24) 2011; 26 Abualigah, Yousri, Abd Elaziz, Ewees, Al-qaness, Gandomi (b50) 2021; 157 Alsattar, Zaidan, Zaidan (b45) 2020; 53 Jerebic, Mernik, Liu, Ravber, Baketarić, Mernik, Črepinšek (b14) 2021; 167 Sandgren (b69) 1990; 112 Tzanetos (10.1016/j.cma.2022.114570_b19) 2021; 54 Ezugwu (10.1016/j.cma.2022.114570_b28) 2018; 6 Rasa (10.1016/j.cma.2022.114570_b56) 1979; 49 Precup (10.1016/j.cma.2022.114570_b26) 2020; 64 Ravindran (10.1016/j.cma.2022.114570_b76) 2006 Achary (10.1016/j.cma.2022.114570_b30) 2021 Oyelade (10.1016/j.cma.2022.114570_b29) 2021 Abualigah (10.1016/j.cma.2022.114570_b22) 2021 Wang (10.1016/j.cma.2022.114570_b16) 2015 Ezugwu (10.1016/j.cma.2022.114570_b1) 2020; 32 Zapata (10.1016/j.cma.2022.114570_b11) 2020; 18 Alsattar (10.1016/j.cma.2022.114570_b45) 2020; 53 Kaveh (10.1016/j.cma.2022.114570_b46) 2020; 21 Sandgren (10.1016/j.cma.2022.114570_b72) 1990; 112 Shadravan (10.1016/j.cma.2022.114570_b51) 2019; 80 Rasa (10.1016/j.cma.2022.114570_b57) 1986; 8 Holland (10.1016/j.cma.2022.114570_b2) 1975 Amir (10.1016/j.cma.2022.114570_b77) 1989; 115 Agushaka (10.1016/j.cma.2022.114570_b60) 2020; 8 Kaveh (10.1016/j.cma.2022.114570_b33) 2009; 87 Azizi (10.1016/j.cma.2022.114570_b39) 2021; 93 Rasa (10.1016/j.cma.2022.114570_b53) 1972; 53 Braik (10.1016/j.cma.2022.114570_b47) 2021; 33 Ray (10.1016/j.cma.2022.114570_b71) 2001; 33 Jerebic (10.1016/j.cma.2022.114570_b14) 2021; 167 Nadimi-Shahraki (10.1016/j.cma.2022.114570_b8) 2021; 23 Rather (10.1016/j.cma.2022.114570_b62) 2019 Agushaka (10.1016/j.cma.2022.114570_b43) 2021; 16 Meier (10.1016/j.cma.2022.114570_b59) 1983; 12 Abualigah (10.1016/j.cma.2022.114570_b21) 2021 Bojan-Dragos (10.1016/j.cma.2022.114570_b25) 2021; 54 Chou (10.1016/j.cma.2022.114570_b40) 2021; 389 Rao (10.1016/j.cma.2022.114570_b74) 2009 Precup (10.1016/j.cma.2022.114570_b27) 2021 Sandgren (10.1016/j.cma.2022.114570_b69) 1990; 112 Parkinson (10.1016/j.cma.2022.114570_b75) 2018 Mirjalili (10.1016/j.cma.2022.114570_b64) 2016; 96 Ezugwu (10.1016/j.cma.2022.114570_b10) 2021 Qiao (10.1016/j.cma.2022.114570_b41) 2019; 7 10.1016/j.cma.2022.114570_b66 Chickermane (10.1016/j.cma.2022.114570_b73) 1996; 39 Govender (10.1016/j.cma.2022.114570_b31) 2021 Plevris (10.1016/j.cma.2022.114570_b24) 2011; 26 10.1016/j.cma.2022.114570_b70 Gandomi (10.1016/j.cma.2022.114570_b32) 2013; 18 Coello (10.1016/j.cma.2022.114570_b67) 2000; 41 Bogar (10.1016/j.cma.2022.114570_b38) 2020; 95 Zhang (10.1016/j.cma.2022.114570_b35) 2020; 148 Bayzidi (10.1016/j.cma.2022.114570_b52) 2021 Wang (10.1016/j.cma.2022.114570_b18) 2018; 12 Agushaka (10.1016/j.cma.2022.114570_b9) 2021; 31 Rasa (10.1016/j.cma.2022.114570_b55) 1977; 42 Abualigah (10.1016/j.cma.2022.114570_b50) 2021; 157 Li (10.1016/j.cma.2022.114570_b61) 2020 Li (10.1016/j.cma.2022.114570_b78) 2020; 111 Mirjalili (10.1016/j.cma.2022.114570_b63) 2014; 69 Abed-alguni (10.1016/j.cma.2022.114570_b34) 2019; 17 Heidari (10.1016/j.cma.2022.114570_b79) 2019; 97 Rasa (10.1016/j.cma.2022.114570_b58) 1987; 17 Kazemzadeh-Parsi (10.1016/j.cma.2022.114570_b68) 2014; 38 Feng (10.1016/j.cma.2022.114570_b49) 2021; 98 10.1016/j.cma.2022.114570_b3 Nematollahi (10.1016/j.cma.2022.114570_b44) 2020; 24 10.1016/j.cma.2022.114570_b5 10.1016/j.cma.2022.114570_b4 Wang (10.1016/j.cma.2022.114570_b17) 2018; 10 Rasa (10.1016/j.cma.2022.114570_b54) 1977; 43 Qin (10.1016/j.cma.2022.114570_b13) 2009; 13 Hayyolalam (10.1016/j.cma.2022.114570_b36) 2020; 87 Zheng (10.1016/j.cma.2022.114570_b7) 2021; 19 Liang (10.1016/j.cma.2022.114570_b12) 2013 Wang (10.1016/j.cma.2022.114570_b15) 2019; 31 Abualigah (10.1016/j.cma.2022.114570_b20) 2021; 191 Preitl (10.1016/j.cma.2022.114570_b23) 2006; 3 Abualigah (10.1016/j.cma.2022.114570_b42) 2021; 376 Rashid (10.1016/j.cma.2022.114570_b48) 2020 Mirjalili (10.1016/j.cma.2022.114570_b65) 2017 Talatahari (10.1016/j.cma.2022.114570_b37) 2021; 54 Oyelade (10.1016/j.cma.2022.114570_b6) 2021 |
| References_xml | – volume: 112 start-page: 223 year: 1990 end-page: 229 ident: b72 article-title: Nonlinear integer and discrete programming in mechanical design optimization publication-title: J. Mech. Des. – year: 2021 ident: b30 article-title: A performance study of meta-heuristic approaches for quadratic assignment problem publication-title: Concurr. Comput.: Pract. Exper. – volume: 16 year: 2021 ident: b43 article-title: Advanced Arithmetic Optimization Algorithm for solving mechanical engineering design problems publication-title: Plos One – volume: 33 start-page: 2515 year: 2021 end-page: 2547 ident: b47 article-title: A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm publication-title: Neural Comput. Appl. – year: 2020 ident: b48 article-title: Tiki-taka algorithm: a novel metaheuristic inspired by football playing style publication-title: Eng. Comput. – volume: 54 start-page: 1841 year: 2021 end-page: 1862 ident: b19 article-title: Nature inspired optimization algorithms or simply variations of metaheuristics? publication-title: Artif. Intell. Rev. – year: 2021 ident: b29 article-title: Characterization of abnormalities in breast cancer images using nature-inspired metaheuristic optimized convolutional neural networks model publication-title: Concurr. Comput.: Pract. Exper. – volume: 6 start-page: 54459 year: 2018 end-page: 54478 ident: b28 article-title: An improved firefly algorithm for the unrelated parallel machines scheduling problem with sequence-dependent setup times publication-title: IEEE Access – volume: 157 year: 2021 ident: b50 article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm publication-title: Comput. Ind. Eng. – volume: 115 start-page: 626 year: 1989 end-page: 646 ident: b77 article-title: Nonlinear mixed-discrete structural optimization publication-title: J. Struct. Eng. – volume: 7 start-page: 138972 year: 2019 end-page: 138989 ident: b41 article-title: Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm publication-title: IEEE Access – volume: 18 start-page: 89 year: 2013 end-page: 98 ident: b32 article-title: Firefly algorithm with chaos publication-title: Commun. Nonlinear Sci. Numer. Simul. – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: b13 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. – volume: 111 start-page: 300 year: 2020 end-page: 323 ident: b78 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. – volume: 18 start-page: 1 year: 2020 end-page: 18 ident: b11 article-title: A hybrid swarm algorithm for collective construction of 3D structures publication-title: Int. J. Artif. Intell. – volume: 191 year: 2021 ident: b20 article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. – volume: 8 start-page: 15 year: 1986 end-page: 21 ident: b57 article-title: Ecological factors and their relationship to group size, mortality and behaviour in the dwarf mongoose publication-title: Cimbebasiu – volume: 32 start-page: 6207 year: 2020 end-page: 6251 ident: b1 article-title: A conceptual comparison of several metaheuristic algorithms on continuous optimization problems publication-title: Neural Comput. Appl. – volume: 167 year: 2021 ident: b14 article-title: A novel direct measure of exploration and exploitation based on attraction basins publication-title: Expert Syst. Appl. – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b63 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. – year: 2018 ident: b75 article-title: Optimization Methods for Engineering Design – volume: 98 year: 2021 ident: b49 article-title: Cooperation search algorithm: a novel metaheuristic evolutionary intelligence algorithm for numerical optimization and engineering optimization problems publication-title: Appl. Soft Comput. – year: 2019 ident: b62 article-title: Hybridization of constriction coefficient based particle swarm optimization and gravitational search algorithm for function optimization publication-title: International Conference on Advances in Electronics, Electrical, and Computational Intelligence (ICAEEC- 2019) – volume: 112 start-page: 223 year: 1990 end-page: 229 ident: b69 article-title: NIDP in mechanical design optimization publication-title: J. Mech. Des. – reference: Z. Michalewicz, J. Krawczyk, M. Kazemi, C.Z. Janikow, Genetic algorithms and optimal control problems, in: Proc. 29th IEEE Conf. Decis. Control, Dec. 1990. – year: 2021 ident: b6 article-title: Ebola Optimization Search Algorithm (EOSA): A new metaheuristic algorithm based on the propagation model of Ebola virus disease – volume: 19 start-page: 473 year: 2021 end-page: 512 ident: b7 article-title: An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems publication-title: Math. Biosci. Eng. – start-page: 1 year: 2021 end-page: 16 ident: b27 article-title: Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using Slime Mould Algorithm publication-title: Internat. J. Systems Sci. – volume: 53 start-page: 18I year: 1972 end-page: 185 ident: b53 article-title: Aspectsof social organization in captive dwarf mongooses publication-title: J. Mammal. – volume: 17 start-page: 121 year: 1987 end-page: 163 ident: b58 article-title: The dwarf mongoose: a study of behavior and social structure in relation to ecology in a small, social carnivore publication-title: Adv. Study Behav. – volume: 41 start-page: 113 year: 2000 end-page: 127 ident: b67 article-title: Use of self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. – volume: 21 start-page: 1129 year: 2020 end-page: 1149 ident: b46 article-title: Black Hole Mechanics Optimization: a novel meta-heuristic algorithm publication-title: Asian J. Civ. Eng. – volume: 23 start-page: 1637 year: 2021 ident: b8 article-title: An improved moth–flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems publication-title: Entropy – volume: 64 start-page: 88 year: 2020 end-page: 94 ident: b26 article-title: Experiment-based approach to teach optimization techniques publication-title: IEEE Trans. Educ. – volume: 39 start-page: 829 year: 1996 end-page: 846 ident: b73 article-title: Structural optimization using a new local approximation method publication-title: Internat. J. Numer. Methods Engrg. – volume: 12 start-page: 1 year: 2018 end-page: 22 ident: b18 article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems publication-title: Int. J. Bio-Inspired Comput. – volume: 148 year: 2020 ident: b35 article-title: Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems publication-title: Expert Syst. Appl. – volume: 80 start-page: 20 year: 2019 end-page: 34 ident: b51 article-title: The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – volume: 17 start-page: 57 year: 2019 end-page: 82 ident: b34 article-title: Island-based cuckoo search with highly disruptive polynomial mutation publication-title: Int. J. Artif. Intell. – volume: 8 start-page: 210886 year: 2020 end-page: 210909 ident: b60 article-title: Influence of initializing Krill Herd algorithm with low-discrepancy sequences publication-title: IEEE Access – year: 2013 ident: b12 article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization – volume: 54 start-page: 917 year: 2021 end-page: 1004 ident: b37 article-title: Chaos Game Optimization: a novel metaheuristic algorithm publication-title: Artif. Intell. Rev. – volume: 389 year: 2021 ident: b40 article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean publication-title: Appl. Math. Comput. – year: 2009 ident: b74 article-title: Engineering Optimization – volume: 87 start-page: 267 year: 2009 end-page: 283 ident: b33 article-title: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures publication-title: Comput. Struct. – volume: 97 start-page: 849 year: 2019 end-page: 872 ident: b79 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. – reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, 1995. – volume: 10 start-page: 151 year: 2018 end-page: 164 ident: b17 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memet. Comput. – volume: 87 year: 2020 ident: b36 article-title: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. – start-page: 1 year: 2021 end-page: 33 ident: b31 article-title: Boosting symbiotic organism search algorithm with ecosystem service for dynamic blood allocation in blood banking system publication-title: J. Exp. Theor. Artif. Intell. – reference: T. Johnson, P. Husbands, System identification using genetic algorithms, in: Proc. Int. Conf. Parallel Problem Solving Nature, Berlin, Germany, 1990. – volume: 53 start-page: 2237 year: 2020 end-page: 2264 ident: b45 article-title: Novel meta-heuristic bald eagle search optimisation algorithm publication-title: Artif. Intell. Rev. – volume: 42 start-page: 108 year: 1977 end-page: 112 ident: b55 article-title: Differences in group member response to intruding conspecifics and potentially dangerous stimuli in dwarf mongooses (Helogule undulura rufulu) publication-title: Z. Suugerierkd. – volume: 33 start-page: 735 year: 2001 end-page: 748 ident: b71 article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals publication-title: Eng. Optim. – start-page: 1 year: 2021 end-page: 40 ident: b21 article-title: Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems publication-title: J. Ambient Intell. Humaniz. Comput. – start-page: 1 year: 2021 end-page: 80 ident: b10 article-title: Metaheuristics: a comprehensive overview and classification along with bibliometric analysis publication-title: Artif. Intell. Rev. – volume: 95 year: 2020 ident: b38 article-title: Adolescent Identity Search Algorithm (AISA): A novel metaheuristic approach for solving optimization problems publication-title: Appl. Soft Comput. – volume: 43 start-page: 337 year: 1977 end-page: 406 ident: b54 article-title: The ethology and sociology of the dwarf mongoose (Helogule unduluru rufulu) publication-title: Z. Tierpsychol. – year: 2020 ident: b61 article-title: Influence of initialization on the performance of metaheuristic optimizers publication-title: Appl. Soft Comput. – reference: E. Mezura-Montes, C.A.C. Coello, Useful infeasible solutions in engineering optimization with evolutionary algorithms, in: Mexican International Conference on Artificial Intelligence, Berlin, Heidelberg, 2005. – start-page: 2021 year: 2021 ident: b52 article-title: Social network search for solving engineering optimization problems publication-title: Comput. Intell. Neurosci. – year: 2015 ident: b16 article-title: Elephant herding optimization publication-title: 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI) – volume: 54 start-page: 189 year: 2021 end-page: 194 ident: b25 article-title: GWO-based optimal tuning of type-1 and type-2 fuzzy controllers for electromagnetic actuated clutch systems publication-title: IFAC-PapersOnLine – volume: 93 start-page: 657 year: 2021 end-page: 683 ident: b39 article-title: Atomic orbital search: A novel metaheuristic algorithm publication-title: Appl. Math. Model. – volume: 26 start-page: 48 year: 2011 end-page: 68 ident: b24 article-title: A hybrid particle swarm—gradient algorithm for global structural optimization publication-title: Comput.-Aided Civ. Infrastruct. Eng. – start-page: 1 year: 2021 end-page: 26 ident: b22 article-title: Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing publication-title: J. Supercomput. – volume: 376 year: 2021 ident: b42 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. – year: 1975 ident: b2 article-title: Adaptation in Natural and Artificial Systems – volume: 96 start-page: 120 year: 2016 end-page: 133 ident: b64 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. – volume: 3 start-page: 29 year: 2006 end-page: 43 ident: b23 article-title: Use of multi-parametric quadratic programming in fuzzy control systems publication-title: Acta Polytech. Hung. – volume: 31 start-page: 70 year: 2021 end-page: 94 ident: b9 article-title: Evaluation of several initialization methods on arithmetic optimization algorithm performance publication-title: J. Intell. Syst. – volume: 31 start-page: 1995 year: 2019 end-page: 2014 ident: b15 article-title: Monarch butterfly optimization publication-title: Neural Comput. Appl. – volume: 49 start-page: 317 year: 1979 end-page: 329 ident: b56 article-title: The effects of crowding on the social relationships and behaviour of the dwarf mongoose (Helogule unduluru rufulu) publication-title: Z. Tierpsychol. – start-page: 1 year: 2017 end-page: 29 ident: b65 article-title: Salp swarm algorithm: a bioinspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – volume: 38 start-page: 403 year: 2014 ident: b68 article-title: A modified firefly algorithm for engineering design optimization problems publication-title: Iran. J. Sci. Technol. Trans. Mech. Eng. – reference: M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) (Vol. 2), 1999. – year: 2006 ident: b76 article-title: Engineering Optimization – volume: 12 start-page: 5 year: 1983 end-page: 9 ident: b59 article-title: Call-system similarity in a ground-living social bird and a mammal in the bush habitat publication-title: Eehav. Ecol. Sociobiol. – volume: 24 start-page: 1117 year: 2020 end-page: 1151 ident: b44 article-title: A novel meta-heuristic optimization method based on golden ratio in nature publication-title: Soft Comput. – volume: 43 start-page: 337 year: 1977 ident: 10.1016/j.cma.2022.114570_b54 article-title: The ethology and sociology of the dwarf mongoose (Helogule unduluru rufulu) publication-title: Z. Tierpsychol. doi: 10.1111/j.1439-0310.1977.tb00487.x – volume: 24 start-page: 1117 issue: 2 year: 2020 ident: 10.1016/j.cma.2022.114570_b44 article-title: A novel meta-heuristic optimization method based on golden ratio in nature publication-title: Soft Comput. doi: 10.1007/s00500-019-03949-w – volume: 23 start-page: 1637 issue: 12 year: 2021 ident: 10.1016/j.cma.2022.114570_b8 article-title: An improved moth–flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems publication-title: Entropy doi: 10.3390/e23121637 – volume: 87 year: 2020 ident: 10.1016/j.cma.2022.114570_b36 article-title: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.103249 – start-page: 2021 year: 2021 ident: 10.1016/j.cma.2022.114570_b52 article-title: Social network search for solving engineering optimization problems publication-title: Comput. Intell. Neurosci. – volume: 191 year: 2021 ident: 10.1016/j.cma.2022.114570_b20 article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer publication-title: Expert Syst. Appl. – year: 2021 ident: 10.1016/j.cma.2022.114570_b6 – volume: 3 start-page: 29 issue: 3 year: 2006 ident: 10.1016/j.cma.2022.114570_b23 article-title: Use of multi-parametric quadratic programming in fuzzy control systems publication-title: Acta Polytech. Hung. – volume: 33 start-page: 2515 issue: 7 year: 2021 ident: 10.1016/j.cma.2022.114570_b47 article-title: A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm publication-title: Neural Comput. Appl. doi: 10.1007/s00521-020-05145-6 – volume: 54 start-page: 917 issue: 2 year: 2021 ident: 10.1016/j.cma.2022.114570_b37 article-title: Chaos Game Optimization: a novel metaheuristic algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09867-w – volume: 389 year: 2021 ident: 10.1016/j.cma.2022.114570_b40 article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean publication-title: Appl. Math. Comput. – volume: 112 start-page: 223 issue: 2 year: 1990 ident: 10.1016/j.cma.2022.114570_b72 article-title: Nonlinear integer and discrete programming in mechanical design optimization publication-title: J. Mech. Des. doi: 10.1115/1.2912596 – ident: 10.1016/j.cma.2022.114570_b5 doi: 10.1109/CDC.1990.203904 – volume: 31 start-page: 70 issue: 1 year: 2021 ident: 10.1016/j.cma.2022.114570_b9 article-title: Evaluation of several initialization methods on arithmetic optimization algorithm performance publication-title: J. Intell. Syst. – volume: 148 year: 2020 ident: 10.1016/j.cma.2022.114570_b35 article-title: Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.113246 – start-page: 1 year: 2017 ident: 10.1016/j.cma.2022.114570_b65 article-title: Salp swarm algorithm: a bioinspired optimizer for engineering design problems publication-title: Adv. Eng. Softw. – year: 2009 ident: 10.1016/j.cma.2022.114570_b74 – volume: 16 issue: 8 year: 2021 ident: 10.1016/j.cma.2022.114570_b43 article-title: Advanced Arithmetic Optimization Algorithm for solving mechanical engineering design problems publication-title: Plos One doi: 10.1371/journal.pone.0255703 – start-page: 1 year: 2021 ident: 10.1016/j.cma.2022.114570_b27 article-title: Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using Slime Mould Algorithm publication-title: Internat. J. Systems Sci. – ident: 10.1016/j.cma.2022.114570_b70 doi: 10.1007/11579427_66 – start-page: 1 year: 2021 ident: 10.1016/j.cma.2022.114570_b21 article-title: Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 95 year: 2020 ident: 10.1016/j.cma.2022.114570_b38 article-title: Adolescent Identity Search Algorithm (AISA): A novel metaheuristic approach for solving optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106503 – year: 1975 ident: 10.1016/j.cma.2022.114570_b2 – year: 2021 ident: 10.1016/j.cma.2022.114570_b29 article-title: Characterization of abnormalities in breast cancer images using nature-inspired metaheuristic optimized convolutional neural networks model publication-title: Concurr. Comput.: Pract. Exper. – volume: 96 start-page: 120 year: 2016 ident: 10.1016/j.cma.2022.114570_b64 article-title: SCA: a sine cosine algorithm for solving optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.022 – volume: 115 start-page: 626 issue: 3 year: 1989 ident: 10.1016/j.cma.2022.114570_b77 article-title: Nonlinear mixed-discrete structural optimization publication-title: J. Struct. Eng. doi: 10.1061/(ASCE)0733-9445(1989)115:3(626) – volume: 53 start-page: 18I year: 1972 ident: 10.1016/j.cma.2022.114570_b53 article-title: Aspectsof social organization in captive dwarf mongooses publication-title: J. Mammal. doi: 10.2307/1378840 – volume: 80 start-page: 20 year: 2019 ident: 10.1016/j.cma.2022.114570_b51 article-title: The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.01.001 – volume: 8 start-page: 210886 year: 2020 ident: 10.1016/j.cma.2022.114570_b60 article-title: Influence of initializing Krill Herd algorithm with low-discrepancy sequences publication-title: IEEE Access doi: 10.1109/ACCESS.2020.3039602 – volume: 97 start-page: 849 year: 2019 ident: 10.1016/j.cma.2022.114570_b79 article-title: Harris hawks optimization: Algorithm and applications publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.02.028 – year: 2019 ident: 10.1016/j.cma.2022.114570_b62 article-title: Hybridization of constriction coefficient based particle swarm optimization and gravitational search algorithm for function optimization – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.cma.2022.114570_b63 article-title: Grey wolf optimizer publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2013.12.007 – volume: 18 start-page: 1 year: 2020 ident: 10.1016/j.cma.2022.114570_b11 article-title: A hybrid swarm algorithm for collective construction of 3D structures publication-title: Int. J. Artif. Intell. – year: 2013 ident: 10.1016/j.cma.2022.114570_b12 – volume: 49 start-page: 317 year: 1979 ident: 10.1016/j.cma.2022.114570_b56 article-title: The effects of crowding on the social relationships and behaviour of the dwarf mongoose (Helogule unduluru rufulu) publication-title: Z. Tierpsychol. doi: 10.1111/j.1439-0310.1979.tb00295.x – volume: 32 start-page: 6207 issue: 10 year: 2020 ident: 10.1016/j.cma.2022.114570_b1 article-title: A conceptual comparison of several metaheuristic algorithms on continuous optimization problems publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04132-w – volume: 7 start-page: 138972 year: 2019 ident: 10.1016/j.cma.2022.114570_b41 article-title: Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942169 – volume: 8 start-page: 15 year: 1986 ident: 10.1016/j.cma.2022.114570_b57 article-title: Ecological factors and their relationship to group size, mortality and behaviour in the dwarf mongoose publication-title: Cimbebasiu – volume: 12 start-page: 5 year: 1983 ident: 10.1016/j.cma.2022.114570_b59 article-title: Call-system similarity in a ground-living social bird and a mammal in the bush habitat publication-title: Eehav. Ecol. Sociobiol. doi: 10.1007/BF00296927 – ident: 10.1016/j.cma.2022.114570_b66 – volume: 38 start-page: 403 issue: M2 year: 2014 ident: 10.1016/j.cma.2022.114570_b68 article-title: A modified firefly algorithm for engineering design optimization problems publication-title: Iran. J. Sci. Technol. Trans. Mech. Eng. – volume: 64 start-page: 88 issue: 2 year: 2020 ident: 10.1016/j.cma.2022.114570_b26 article-title: Experiment-based approach to teach optimization techniques publication-title: IEEE Trans. Educ. doi: 10.1109/TE.2020.3008878 – year: 2020 ident: 10.1016/j.cma.2022.114570_b48 article-title: Tiki-taka algorithm: a novel metaheuristic inspired by football playing style publication-title: Eng. Comput. – volume: 111 start-page: 300 year: 2020 ident: 10.1016/j.cma.2022.114570_b78 article-title: Slime mould algorithm: A new method for stochastic optimization publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2020.03.055 – volume: 167 year: 2021 ident: 10.1016/j.cma.2022.114570_b14 article-title: A novel direct measure of exploration and exploitation based on attraction basins publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2020.114353 – ident: 10.1016/j.cma.2022.114570_b4 – volume: 87 start-page: 267 issue: 5–6 year: 2009 ident: 10.1016/j.cma.2022.114570_b33 article-title: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2009.01.003 – volume: 17 start-page: 57 issue: 1 year: 2019 ident: 10.1016/j.cma.2022.114570_b34 article-title: Island-based cuckoo search with highly disruptive polynomial mutation publication-title: Int. J. Artif. Intell. – volume: 53 start-page: 2237 issue: 3 year: 2020 ident: 10.1016/j.cma.2022.114570_b45 article-title: Novel meta-heuristic bald eagle search optimisation algorithm publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-019-09732-5 – volume: 41 start-page: 113 issue: 2 year: 2000 ident: 10.1016/j.cma.2022.114570_b67 article-title: Use of self-adaptive penalty approach for engineering optimization problems publication-title: Comput. Ind. doi: 10.1016/S0166-3615(99)00046-9 – volume: 39 start-page: 829 issue: 5 year: 1996 ident: 10.1016/j.cma.2022.114570_b73 article-title: Structural optimization using a new local approximation method publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U – volume: 10 start-page: 151 issue: 2 year: 2018 ident: 10.1016/j.cma.2022.114570_b17 article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems publication-title: Memet. Comput. doi: 10.1007/s12293-016-0212-3 – volume: 31 start-page: 1995 issue: 7 year: 2019 ident: 10.1016/j.cma.2022.114570_b15 article-title: Monarch butterfly optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-015-1923-y – volume: 376 year: 2021 ident: 10.1016/j.cma.2022.114570_b42 article-title: The arithmetic optimization algorithm publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113609 – volume: 42 start-page: 108 year: 1977 ident: 10.1016/j.cma.2022.114570_b55 article-title: Differences in group member response to intruding conspecifics and potentially dangerous stimuli in dwarf mongooses (Helogule undulura rufulu) publication-title: Z. Suugerierkd. – volume: 26 start-page: 48 issue: 1 year: 2011 ident: 10.1016/j.cma.2022.114570_b24 article-title: A hybrid particle swarm—gradient algorithm for global structural optimization publication-title: Comput.-Aided Civ. Infrastruct. Eng. – volume: 98 year: 2021 ident: 10.1016/j.cma.2022.114570_b49 article-title: Cooperation search algorithm: a novel metaheuristic evolutionary intelligence algorithm for numerical optimization and engineering optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106734 – year: 2015 ident: 10.1016/j.cma.2022.114570_b16 article-title: Elephant herding optimization – volume: 17 start-page: 121 year: 1987 ident: 10.1016/j.cma.2022.114570_b58 article-title: The dwarf mongoose: a study of behavior and social structure in relation to ecology in a small, social carnivore publication-title: Adv. Study Behav. doi: 10.1016/S0065-3454(08)60178-3 – volume: 13 start-page: 398 issue: 2 year: 2009 ident: 10.1016/j.cma.2022.114570_b13 article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.927706 – volume: 19 start-page: 473 issue: 1 year: 2021 ident: 10.1016/j.cma.2022.114570_b7 article-title: An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems publication-title: Math. Biosci. Eng. doi: 10.3934/mbe.2022023 – volume: 54 start-page: 1841 issue: 3 year: 2021 ident: 10.1016/j.cma.2022.114570_b19 article-title: Nature inspired optimization algorithms or simply variations of metaheuristics? publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09893-8 – volume: 112 start-page: 223 issue: 2 year: 1990 ident: 10.1016/j.cma.2022.114570_b69 article-title: NIDP in mechanical design optimization publication-title: J. Mech. Des. doi: 10.1115/1.2912596 – start-page: 1 year: 2021 ident: 10.1016/j.cma.2022.114570_b10 article-title: Metaheuristics: a comprehensive overview and classification along with bibliometric analysis publication-title: Artif. Intell. Rev. – start-page: 1 year: 2021 ident: 10.1016/j.cma.2022.114570_b22 article-title: Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing publication-title: J. Supercomput. – year: 2018 ident: 10.1016/j.cma.2022.114570_b75 – volume: 6 start-page: 54459 year: 2018 ident: 10.1016/j.cma.2022.114570_b28 article-title: An improved firefly algorithm for the unrelated parallel machines scheduling problem with sequence-dependent setup times publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2872110 – year: 2020 ident: 10.1016/j.cma.2022.114570_b61 article-title: Influence of initialization on the performance of metaheuristic optimizers publication-title: Appl. Soft Comput. – start-page: 1 year: 2021 ident: 10.1016/j.cma.2022.114570_b31 article-title: Boosting symbiotic organism search algorithm with ecosystem service for dynamic blood allocation in blood banking system publication-title: J. Exp. Theor. Artif. Intell. – volume: 21 start-page: 1129 issue: 7 year: 2020 ident: 10.1016/j.cma.2022.114570_b46 article-title: Black Hole Mechanics Optimization: a novel meta-heuristic algorithm publication-title: Asian J. Civ. Eng. doi: 10.1007/s42107-020-00282-8 – ident: 10.1016/j.cma.2022.114570_b3 doi: 10.1109/ICNN.1995.488968 – volume: 12 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.cma.2022.114570_b18 article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems publication-title: Int. J. Bio-Inspired Comput. doi: 10.1504/IJBIC.2018.093328 – volume: 157 year: 2021 ident: 10.1016/j.cma.2022.114570_b50 article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107250 – volume: 54 start-page: 189 issue: 4 year: 2021 ident: 10.1016/j.cma.2022.114570_b25 article-title: GWO-based optimal tuning of type-1 and type-2 fuzzy controllers for electromagnetic actuated clutch systems publication-title: IFAC-PapersOnLine doi: 10.1016/j.ifacol.2021.10.032 – volume: 33 start-page: 735 issue: 6 year: 2001 ident: 10.1016/j.cma.2022.114570_b71 article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals publication-title: Eng. Optim. doi: 10.1080/03052150108940941 – volume: 18 start-page: 89 issue: 1 year: 2013 ident: 10.1016/j.cma.2022.114570_b32 article-title: Firefly algorithm with chaos publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2012.06.009 – year: 2021 ident: 10.1016/j.cma.2022.114570_b30 article-title: A performance study of meta-heuristic approaches for quadratic assignment problem publication-title: Concurr. Comput.: Pract. Exper. doi: 10.1002/cpe.6321 – volume: 93 start-page: 657 year: 2021 ident: 10.1016/j.cma.2022.114570_b39 article-title: Atomic orbital search: A novel metaheuristic algorithm publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2020.12.021 – year: 2006 ident: 10.1016/j.cma.2022.114570_b76 |
| SSID | ssj0000812 |
| Score | 2.7424796 |
| Snippet | This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114570 |
| SubjectTerms | Algorithms Continuity (mathematics) Dwarf Mongoose Optimization Algorithm Engineering design problems Forage Foraging behavior Global optimization Heuristic methods Metaheuristic Nature-inspired algorithms Nutrition Optimization Optimization algorithms Performance measurement Provisioning |
| Title | Dwarf Mongoose Optimization Algorithm |
| URI | https://dx.doi.org/10.1016/j.cma.2022.114570 https://www.proquest.com/docview/2639678901 |
| Volume | 391 |
| WOSCitedRecordID | wos000777768100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000812 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg4wAHBgPEYEM5wIUqVeLY-XGsoNNAaOMwUG-W7ThpR5tOTcom_nqeYzsNRZvYgUsU5Ydl5b1873Py3vsQehsoQlRBIh9jFfgk5pmf4iT3eRpLQmhOcZtt8f1LcnqaTibZV1uuWLdyAklVpdfX2eV_NTUcA2Pr0tk7mLsbFA7APhgdtmB22P6T4T9e8VWh39VyqXPRzwATFrbYcjCal8vVrJku-pzUCTtYNek2QZZbcrpQujLYdXJWm-aFnaOU63rKf_BeVdjgbNjx9F_r8mrd4o-o-Xy5GIy7c1r6eT4r-dSUZ8-aaf8LBCxeuxQsh6qE-sA0aB9VIyPCZXERVl3UCIT8Bdnm68HFULZtoDAebq79sz32VtjqkgldntoFgyGYHoKZIe6jXZzQDLBud_RpPPm8idBpaLrI23m7v91t3t_WPG7iK1uRu6Uj50_QY7uO8EbG_k_RPVXtoz27pvAsYtf76FGv4eQz9K51Ds85h9d3Dq9zjufo2_H4_MOJb4UyfBlh2vikkFhigTkVaSizSORauCcJCiLjRMDZIOIBzeOYFwkE2jAWApMo1T8E8hxDhHmBdqplpV4iL8JRTEkhcBERkpMsDQqpMT9XXIR5GhygwD0OJm0XeS1mMmc3muEAve9uuTQtVG67mLhnzCwHNNyOgb_cdtuhswez72LNMLDvWBd6h6_uMoXX6OHGyw_RTrNaqyP0QP5sZvXqjfWl30h_goY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dwarf+Mongoose+Optimization+Algorithm&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Agushaka%2C+Jeffrey+O.&rft.au=Ezugwu%2C+Absalom+E.&rft.au=Abualigah%2C+Laith&rft.date=2022-03-01&rft.issn=0045-7825&rft.volume=391&rft.spage=114570&rft_id=info:doi/10.1016%2Fj.cma.2022.114570&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2022_114570 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |