Dwarf Mongoose Optimization Algorithm

This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computer methods in applied mechanics and engineering Jg. 391; S. 114570
Hauptverfasser: Agushaka, Jeffrey O., Ezugwu, Absalom E., Abualigah, Laith
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Amsterdam Elsevier B.V 01.03.2022
Elsevier BV
Schlagworte:
ISSN:0045-7825
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses’ social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms. Matlab codes of DMO are available at https://www.mathworks.com/matlabcentral/fileexchange/105125-dwarf-mongoose-optimization-algorithm.
AbstractList This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions and 12 continuous/discrete engineering optimization problems. The DMO mimics the foraging behavior of the dwarf mongoose. The restrictive mode of prey capture (feeding) has dramatically affected the mongooses’ social behavior and ecological adaptations to compensate for efficient family nutrition. The compensatory behavioral adaptations of the mongoose are prey size, space utilization, group size, and food provisioning. Three social groups of the dwarf mongoose are used in the proposed algorithm, the alpha group, babysitters, and the scout group. The family forage as a unit, and the alpha female initiates foraging, determines the foraging path, the distance covered, and the sleeping mounds. A certain number of the mongoose population (usually a mixture of males and females) serve as the babysitters. They remain with the young until the group returns at midday or evening. The babysitters are exchanged for the first to forage with the group (exploitation phase). The dwarf mongooses do not build a nest for their young; they move them from one sleeping mound to another and do not return to the previously foraged site. The dwarf mongoose has adopted a seminomadic way of life in a territory large enough to support the entire group (exploration phase). The nomadic behavior prevents overexploitation of a particular area. It also ensures exploration of the whole territory because no previously visited sleeping mound is returned. The performance of the proposed DMO algorithm is compared with seven other algorithms to show its effectiveness in terms of different performance metrics and statistics. In most cases, the near-optimal solutions achieved by the DMO are better than the best solutions obtained by the current state-of-the-art algorithms. Matlab codes of DMO are available at https://www.mathworks.com/matlabcentral/fileexchange/105125-dwarf-mongoose-optimization-algorithm.
ArticleNumber 114570
Author Abualigah, Laith
Ezugwu, Absalom E.
Agushaka, Jeffrey O.
Author_xml – sequence: 1
  givenname: Jeffrey O.
  surname: Agushaka
  fullname: Agushaka, Jeffrey O.
  email: 208088307@stu.ukzn.ac.za
  organization: School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Road, Pietermaritzburg, KwaZulu-Natal 3201, South Africa
– sequence: 2
  givenname: Absalom E.
  orcidid: 0000-0002-3721-3400
  surname: Ezugwu
  fullname: Ezugwu, Absalom E.
  email: Ezugwua@ukzn.ac.za
  organization: School of Mathematics, Statistics, and Computer Science, University of KwaZulu-Natal, King Edward Road, Pietermaritzburg, KwaZulu-Natal 3201, South Africa
– sequence: 3
  givenname: Laith
  orcidid: 0000-0002-2203-4549
  surname: Abualigah
  fullname: Abualigah, Laith
  email: aligah.2020@gmail.com
  organization: Faculty of Computer Sciences and Informatics, Amman Arab University, Amman 11953, Jordan
BookMark eNp9kD9PwzAQxT0UibbwAdgqIcYE-xzbqZiq8lcq6gKz5ThOcdTExXZB8OlxCRNDb7nh3u_e3ZugUe96g9AFwTnBhF-3ue5UDhggJ6RgAo_QGOOCZaIEdoomIbQ4VUlgjK5uP5VvZs-u3zgXzGy9i7az3ypa188W243zNr51Z-ikUdtgzv_6FL3e370sH7PV-uFpuVhlmgKLWdFo0FCBYlVJ9JxWNSMs-TeF5qJKU0wVZjXnqhFGacKrCgpaMqC4rkFwOkWXw96dd-97E6Js3d73yVICp3MuyjkmSSUGlfYuBG8aqW38vTh6ZbeSYHnIQbYy5SAPOcghh0SSf-TO2075r6PMzcCY9PiHNV4GbU2vTW290VHWzh6hfwB6ZXe_
CitedBy_id crossref_primary_10_1016_j_cma_2025_118318
crossref_primary_10_1038_s41598_022_27144_4
crossref_primary_10_1038_s41598_024_67197_1
crossref_primary_10_1080_02664763_2024_2307535
crossref_primary_10_1016_j_compbiomed_2024_108780
crossref_primary_10_3390_biomimetics9090509
crossref_primary_10_1007_s10586_024_04689_9
crossref_primary_10_1007_s12652_023_04707_5
crossref_primary_10_1016_j_heliyon_2024_e35771
crossref_primary_10_1007_s10462_022_10340_z
crossref_primary_10_1016_j_swevo_2023_101360
crossref_primary_10_1063_5_0137562
crossref_primary_10_1007_s11831_023_09912_1
crossref_primary_10_1016_j_asoc_2025_112854
crossref_primary_10_1016_j_chaos_2024_115111
crossref_primary_10_1155_2024_8913560
crossref_primary_10_1007_s10586_024_04982_7
crossref_primary_10_1007_s41939_024_00446_y
crossref_primary_10_1016_j_swevo_2023_101353
crossref_primary_10_1142_S0219467825500536
crossref_primary_10_1016_j_heliyon_2024_e34326
crossref_primary_10_1109_ACCESS_2023_3304889
crossref_primary_10_3390_math11183886
crossref_primary_10_1016_j_apm_2023_10_013
crossref_primary_10_3390_math10234565
crossref_primary_10_3390_en15207603
crossref_primary_10_1016_j_enconman_2024_118264
crossref_primary_10_3390_math10203821
crossref_primary_10_3390_biomimetics10050260
crossref_primary_10_1016_j_engappai_2023_106014
crossref_primary_10_1038_s41598_023_50959_8
crossref_primary_10_1371_journal_pone_0272861
crossref_primary_10_1007_s00521_024_10541_3
crossref_primary_10_1016_j_ins_2023_02_059
crossref_primary_10_1038_s41598_025_91635_3
crossref_primary_10_1109_TITS_2023_3327157
crossref_primary_10_1016_j_eswa_2023_120639
crossref_primary_10_32604_cmc_2024_047989
crossref_primary_10_1016_j_swevo_2024_101746
crossref_primary_10_1016_j_heliyon_2023_e23394
crossref_primary_10_1016_j_swevo_2023_101244
crossref_primary_10_1016_j_injury_2024_111658
crossref_primary_10_1016_j_ins_2023_01_103
crossref_primary_10_1016_j_mtcomm_2024_109394
crossref_primary_10_1016_j_bspc_2025_108136
crossref_primary_10_3390_math11051077
crossref_primary_10_1016_j_ins_2023_119986
crossref_primary_10_1016_j_knosys_2022_109529
crossref_primary_10_1007_s11042_024_18110_5
crossref_primary_10_1016_j_ins_2023_119743
crossref_primary_10_1016_j_eswa_2025_127714
crossref_primary_10_1109_ACCESS_2025_3562367
crossref_primary_10_1177_18758967251360039
crossref_primary_10_1016_j_ins_2023_119749
crossref_primary_10_1016_j_knosys_2022_109762
crossref_primary_10_1007_s00500_024_10315_y
crossref_primary_10_1007_s10586_024_04328_3
crossref_primary_10_1371_journal_pone_0316326
crossref_primary_10_3390_biomimetics10040232
crossref_primary_10_1007_s10586_024_04271_3
crossref_primary_10_1007_s10723_024_09779_x
crossref_primary_10_1016_j_iot_2024_101085
crossref_primary_10_3390_sym14030458
crossref_primary_10_1007_s13755_025_00340_y
crossref_primary_10_1109_TSMC_2025_3541002
crossref_primary_10_1016_j_applthermaleng_2023_122037
crossref_primary_10_1038_s41598_024_68239_4
crossref_primary_10_1007_s10586_025_05266_4
crossref_primary_10_1016_j_jii_2024_100677
crossref_primary_10_1038_s41598_024_57518_9
crossref_primary_10_1038_s41598_025_12307_w
crossref_primary_10_1007_s00034_025_03000_4
crossref_primary_10_1007_s00371_023_03219_9
crossref_primary_10_1016_j_knosys_2022_110206
crossref_primary_10_1007_s11227_024_05905_4
crossref_primary_10_1088_1402_4896_ad86f7
crossref_primary_10_1007_s00521_022_07369_0
crossref_primary_10_1007_s12530_023_09539_4
crossref_primary_10_1016_j_engappai_2024_107865
crossref_primary_10_1109_ACCESS_2023_3332902
crossref_primary_10_1016_j_knosys_2025_113420
crossref_primary_10_1007_s12293_022_00386_5
crossref_primary_10_1007_s00521_024_09552_x
crossref_primary_10_1016_j_asoc_2025_112968
crossref_primary_10_1016_j_iot_2024_101096
crossref_primary_10_1016_j_compeleceng_2023_108697
crossref_primary_10_1016_j_knosys_2025_113306
crossref_primary_10_1016_j_iot_2023_100942
crossref_primary_10_3390_biomimetics8020191
crossref_primary_10_3390_w16172458
crossref_primary_10_3390_biomimetics9080500
crossref_primary_10_1007_s11831_023_10060_9
crossref_primary_10_3390_app15189955
crossref_primary_10_1016_j_bspc_2025_108151
crossref_primary_10_1109_LSENS_2025_3539186
crossref_primary_10_3390_biomimetics9040205
crossref_primary_10_1007_s42235_022_00323_9
crossref_primary_10_1007_s00500_023_09297_0
crossref_primary_10_3390_drones7070452
crossref_primary_10_1038_s41598_022_22170_8
crossref_primary_10_3390_sym14051021
crossref_primary_10_1007_s12065_024_00937_4
crossref_primary_10_3390_math10132329
crossref_primary_10_1016_j_cma_2023_115878
crossref_primary_10_1007_s00500_023_08014_1
crossref_primary_10_1038_s41598_024_70881_x
crossref_primary_10_3390_su152014821
crossref_primary_10_32604_cmc_2024_049717
crossref_primary_10_1007_s13369_022_06746_0
crossref_primary_10_1038_s41598_022_23121_z
crossref_primary_10_1007_s44196_025_00824_5
crossref_primary_10_1007_s00521_022_07530_9
crossref_primary_10_1016_j_engappai_2022_105069
crossref_primary_10_1016_j_cma_2024_117251
crossref_primary_10_1007_s42235_024_00634_z
crossref_primary_10_3390_app12199513
crossref_primary_10_1016_j_istruc_2024_106239
crossref_primary_10_3390_en16176122
crossref_primary_10_1016_j_engappai_2022_105075
crossref_primary_10_1080_2573234X_2023_2202691
crossref_primary_10_1007_s00500_022_07318_y
crossref_primary_10_1016_j_engappai_2022_105190
crossref_primary_10_1007_s13198_024_02605_3
crossref_primary_10_1016_j_patcog_2022_109240
crossref_primary_10_1016_j_eswa_2025_126425
crossref_primary_10_1016_j_heliyon_2024_e33490
crossref_primary_10_1016_j_bspc_2025_108057
crossref_primary_10_1016_j_dajour_2023_100266
crossref_primary_10_1016_j_engappai_2023_106544
crossref_primary_10_3233_JIFS_223224
crossref_primary_10_1007_s00034_025_03166_x
crossref_primary_10_1007_s13369_022_06857_8
crossref_primary_10_1016_j_iot_2024_101161
crossref_primary_10_1007_s12530_023_09526_9
crossref_primary_10_1007_s13198_023_01902_7
crossref_primary_10_1038_s41598_024_63746_w
crossref_primary_10_1007_s11042_023_17886_2
crossref_primary_10_1016_j_ecmx_2025_101209
crossref_primary_10_3233_JIFS_233029
crossref_primary_10_1016_j_eswa_2023_121975
crossref_primary_10_1016_j_ijepes_2024_110266
crossref_primary_10_3390_rs15194747
crossref_primary_10_1007_s10115_023_01931_5
crossref_primary_10_1016_j_future_2024_06_051
crossref_primary_10_1109_ACCESS_2024_3455550
crossref_primary_10_1007_s41939_024_00577_2
crossref_primary_10_1038_s41598_024_65292_x
crossref_primary_10_1007_s10586_024_04674_2
crossref_primary_10_1016_j_cie_2023_109777
crossref_primary_10_1016_j_envres_2025_121634
crossref_primary_10_7717_peerj_cs_2805
crossref_primary_10_1007_s00371_023_03119_y
crossref_primary_10_1007_s11277_023_10434_z
crossref_primary_10_1016_j_jksuci_2023_101779
crossref_primary_10_1016_j_neunet_2022_11_018
crossref_primary_10_1007_s00521_023_08449_5
crossref_primary_10_1007_s00521_024_10346_4
crossref_primary_10_3390_biomimetics8060490
crossref_primary_10_1016_j_jestch_2024_101686
crossref_primary_10_1007_s10462_025_11351_2
crossref_primary_10_1016_j_cma_2023_116097
crossref_primary_10_1016_j_bspc_2025_108513
crossref_primary_10_1007_s00521_025_11228_z
crossref_primary_10_1038_s41598_025_93073_7
crossref_primary_10_1109_ACCESS_2022_3172789
crossref_primary_10_4271_13_06_01_0004
crossref_primary_10_1016_j_knosys_2025_113252
crossref_primary_10_1080_01969722_2024_2343994
crossref_primary_10_1007_s40747_023_01069_5
crossref_primary_10_1007_s40745_025_00642_8
crossref_primary_10_1109_ACCESS_2024_3397402
crossref_primary_10_1002_oca_3284
crossref_primary_10_1007_s00521_022_07405_z
crossref_primary_10_1007_s13198_024_02367_y
crossref_primary_10_1007_s12065_024_00911_0
crossref_primary_10_3390_s24030865
crossref_primary_10_1016_j_patcog_2022_109034
crossref_primary_10_1007_s11042_022_13404_y
crossref_primary_10_1016_j_jestch_2025_102053
crossref_primary_10_1111_exsy_13380
crossref_primary_10_3389_fenrg_2022_1011887
crossref_primary_10_1016_j_eswa_2023_122413
crossref_primary_10_1016_j_eswa_2025_127660
crossref_primary_10_1016_j_swevo_2022_101222
crossref_primary_10_1007_s10586_022_03650_y
crossref_primary_10_1007_s40430_024_05114_3
crossref_primary_10_1007_s00500_025_10419_z
crossref_primary_10_1002_suco_202300525
crossref_primary_10_1515_mt_2022_0055
crossref_primary_10_1007_s11831_024_10109_3
crossref_primary_10_1016_j_measurement_2023_113032
crossref_primary_10_32604_cmes_2025_059738
crossref_primary_10_1007_s00500_023_07982_8
crossref_primary_10_1007_s12530_023_09547_4
crossref_primary_10_1007_s42235_023_00433_y
crossref_primary_10_32604_cmes_2023_029404
crossref_primary_10_1016_j_enconman_2023_117621
crossref_primary_10_1016_j_energy_2024_131405
crossref_primary_10_1016_j_knosys_2022_109484
crossref_primary_10_1038_s41598_025_16528_x
crossref_primary_10_3233_JIFS_233508
crossref_primary_10_1007_s13198_024_02331_w
crossref_primary_10_1016_j_engappai_2023_107713
crossref_primary_10_1016_j_phycom_2023_102068
crossref_primary_10_1016_j_swevo_2023_101417
crossref_primary_10_1016_j_asr_2025_06_028
crossref_primary_10_1007_s10462_023_10470_y
crossref_primary_10_1016_j_knosys_2022_109360
crossref_primary_10_1007_s12065_022_00750_x
crossref_primary_10_3390_bdcc6010029
crossref_primary_10_3390_buildings14092842
crossref_primary_10_1038_s41598_022_24840_z
crossref_primary_10_1007_s11831_022_09817_5
crossref_primary_10_1016_j_cma_2022_115734
crossref_primary_10_1177_18724981251333610
crossref_primary_10_1002_suco_202400163
crossref_primary_10_1007_s10668_023_04457_6
crossref_primary_10_1007_s12065_023_00822_6
crossref_primary_10_1016_j_eswa_2025_127206
crossref_primary_10_1016_j_knosys_2022_110048
crossref_primary_10_1016_j_knosys_2022_110169
crossref_primary_10_1007_s12652_022_03898_7
crossref_primary_10_1007_s00500_024_09884_9
crossref_primary_10_1016_j_jclepro_2023_140239
crossref_primary_10_1515_mt_2022_0049
crossref_primary_10_1016_j_jksuci_2022_08_004
crossref_primary_10_1016_j_jnca_2023_103617
crossref_primary_10_1016_j_jocs_2022_101873
crossref_primary_10_7717_peerj_cs_1526
crossref_primary_10_1007_s12065_024_00945_4
crossref_primary_10_1080_00051144_2022_2140392
crossref_primary_10_1007_s10586_024_04491_7
crossref_primary_10_1016_j_suscom_2024_100956
crossref_primary_10_1007_s00500_022_07668_7
crossref_primary_10_11648_j_ijiis_20251402_12
crossref_primary_10_1038_s41598_025_91203_9
crossref_primary_10_1007_s12065_022_00761_8
crossref_primary_10_1007_s12065_022_00784_1
crossref_primary_10_1007_s00500_024_10322_z
crossref_primary_10_3233_JIFS_223933
crossref_primary_10_1002_dac_5473
crossref_primary_10_1007_s11831_022_09780_1
crossref_primary_10_1007_s00500_022_07777_3
crossref_primary_10_1002_dac_5896
crossref_primary_10_1007_s43995_024_00071_3
crossref_primary_10_1002_oca_3131
crossref_primary_10_1016_j_asoc_2025_113071
crossref_primary_10_1007_s13246_024_01419_8
crossref_primary_10_1038_s41598_025_01835_0
crossref_primary_10_1002_cpe_7383
crossref_primary_10_1371_journal_pone_0270933
crossref_primary_10_1016_j_iot_2024_101301
crossref_primary_10_1109_ACCESS_2024_3401129
crossref_primary_10_1016_j_jksuci_2023_101904
crossref_primary_10_1016_j_swevo_2024_101557
crossref_primary_10_3390_biomimetics10060388
crossref_primary_10_3390_math12162570
crossref_primary_10_1016_j_eswa_2023_122200
crossref_primary_10_1016_j_swevo_2023_101314
crossref_primary_10_3233_JIFS_221348
crossref_primary_10_3390_app12094359
crossref_primary_10_1007_s10586_025_05241_z
crossref_primary_10_1007_s11276_024_03847_6
crossref_primary_10_1007_s13369_024_09702_2
crossref_primary_10_1007_s42235_023_00447_6
crossref_primary_10_30939_ijastech__1749077
crossref_primary_10_1007_s10462_025_11360_1
crossref_primary_10_1007_s10586_024_04501_8
crossref_primary_10_1002_oca_3007
crossref_primary_10_1016_j_engappai_2023_106979
crossref_primary_10_1038_s41598_024_63908_w
crossref_primary_10_1007_s40314_024_02744_0
crossref_primary_10_1007_s11042_022_12001_3
crossref_primary_10_1016_j_compbiomed_2022_105458
crossref_primary_10_1016_j_heliyon_2024_e28063
crossref_primary_10_1007_s13246_024_01397_x
crossref_primary_10_1016_j_asoc_2024_111838
crossref_primary_10_1016_j_knosys_2023_110454
crossref_primary_10_1007_s42979_025_03752_5
crossref_primary_10_1038_s41598_024_77120_3
crossref_primary_10_1016_j_egyr_2022_12_044
crossref_primary_10_1016_j_jclepro_2023_140267
crossref_primary_10_1016_j_engappai_2022_105579
crossref_primary_10_1007_s12530_024_09588_3
crossref_primary_10_1515_mt_2022_0259
crossref_primary_10_3233_AIS_230408
crossref_primary_10_32604_cmc_2024_045660
crossref_primary_10_1007_s10462_023_10403_9
crossref_primary_10_3233_JIFS_233428
crossref_primary_10_1007_s11227_022_04590_5
crossref_primary_10_1016_j_patcog_2024_110439
crossref_primary_10_1007_s10462_024_11023_7
crossref_primary_10_3390_pr10050858
crossref_primary_10_1038_s41598_024_77517_0
crossref_primary_10_1007_s12065_022_00794_z
crossref_primary_10_1016_j_eswa_2023_121218
crossref_primary_10_1007_s00500_023_08033_y
crossref_primary_10_3390_biomimetics8040377
crossref_primary_10_1016_j_eswa_2023_120367
crossref_primary_10_1016_j_engappai_2022_105581
crossref_primary_10_1016_j_knosys_2025_113076
crossref_primary_10_1371_journal_pone_0282812
crossref_primary_10_1007_s10586_023_04020_y
crossref_primary_10_1109_JSEN_2023_3244831
crossref_primary_10_1007_s13369_022_07124_6
crossref_primary_10_1016_j_engappai_2022_105202
crossref_primary_10_1038_s41598_025_91784_5
crossref_primary_10_1515_mt_2022_0123
crossref_primary_10_1007_s41939_025_00740_3
crossref_primary_10_3390_biomimetics9050280
crossref_primary_10_1016_j_advengsoft_2024_103671
crossref_primary_10_1007_s00202_024_02415_7
crossref_primary_10_1007_s13042_025_02609_w
crossref_primary_10_1007_s42235_022_00316_8
crossref_primary_10_1007_s00500_022_07302_6
crossref_primary_10_1016_j_engappai_2023_106839
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1007_s00500_022_07510_0
crossref_primary_10_1007_s00500_023_08934_y
crossref_primary_10_1007_s11831_023_10030_1
crossref_primary_10_1016_j_swevo_2023_101349
crossref_primary_10_1080_21681015_2023_2276108
crossref_primary_10_1007_s10462_024_10919_8
crossref_primary_10_1002_ett_5019
crossref_primary_10_1007_s00500_024_09761_5
crossref_primary_10_1007_s00521_024_10694_1
crossref_primary_10_1007_s13369_023_08183_z
crossref_primary_10_1016_j_conbuildmat_2025_143499
crossref_primary_10_1371_journal_pone_0275346
crossref_primary_10_1007_s11042_024_20113_1
crossref_primary_10_1007_s10586_025_05348_3
crossref_primary_10_1371_journal_pone_0275594
crossref_primary_10_1007_s10462_025_11269_9
crossref_primary_10_1016_j_rineng_2025_105984
crossref_primary_10_1007_s00477_022_02361_5
crossref_primary_10_1007_s00371_023_02993_w
crossref_primary_10_1016_j_eswa_2025_129554
crossref_primary_10_1016_j_knosys_2023_111351
crossref_primary_10_1007_s42235_025_00703_x
crossref_primary_10_1007_s42235_022_00253_6
crossref_primary_10_1016_j_cma_2022_114901
crossref_primary_10_1016_j_knosys_2023_111352
crossref_primary_10_3390_electronics11050831
crossref_primary_10_1109_ACCESS_2022_3223388
crossref_primary_10_1109_JSEN_2023_3335621
crossref_primary_10_1177_18758967251353036
crossref_primary_10_1016_j_neunet_2023_08_011
crossref_primary_10_32604_cmc_2024_052401
crossref_primary_10_3390_pr10122703
crossref_primary_10_1080_02664763_2024_2348634
crossref_primary_10_1016_j_ecoinf_2024_102663
crossref_primary_10_1016_j_cogsys_2024_101237
crossref_primary_10_1007_s00500_022_07572_0
crossref_primary_10_1007_s11227_024_06559_y
crossref_primary_10_1038_s41598_024_81144_0
crossref_primary_10_1016_j_compbiomed_2022_106221
crossref_primary_10_1016_j_heliyon_2024_e31629
crossref_primary_10_1016_j_knosys_2023_111102
crossref_primary_10_1007_s10462_024_10767_6
crossref_primary_10_1016_j_cma_2025_117908
crossref_primary_10_1109_ACCESS_2023_3287896
crossref_primary_10_1016_j_heliyon_2024_e25390
crossref_primary_10_1007_s40430_022_03911_2
crossref_primary_10_1016_j_knosys_2025_113089
crossref_primary_10_1016_j_jclepro_2022_133353
crossref_primary_10_1007_s12530_023_09566_1
crossref_primary_10_1002_cpe_7364
crossref_primary_10_1016_j_cosrev_2025_100740
crossref_primary_10_1016_j_jclepro_2023_139396
crossref_primary_10_1016_j_jclepro_2024_142848
crossref_primary_10_3389_fevo_2023_1122682
crossref_primary_10_1007_s42235_024_00608_1
crossref_primary_10_1016_j_energy_2025_137194
crossref_primary_10_1007_s12065_022_00753_8
crossref_primary_10_1016_j_aei_2023_102210
crossref_primary_10_1007_s00500_023_07842_5
crossref_primary_10_1016_j_ins_2024_121673
crossref_primary_10_1007_s13755_024_00297_4
crossref_primary_10_1007_s12065_022_00776_1
crossref_primary_10_1007_s10462_023_10398_3
crossref_primary_10_1016_j_knosys_2024_111850
crossref_primary_10_1016_j_knosys_2024_111970
crossref_primary_10_1016_j_neunet_2023_10_052
crossref_primary_10_1063_5_0108340
crossref_primary_10_1016_j_neucom_2023_03_059
crossref_primary_10_1186_s44147_025_00738_1
crossref_primary_10_1016_j_knosys_2024_111737
crossref_primary_10_3390_app15158462
crossref_primary_10_1016_j_jclepro_2024_142714
crossref_primary_10_1016_j_knosys_2023_111317
crossref_primary_10_1109_TITS_2022_3172241
crossref_primary_10_1007_s11518_024_5627_7
crossref_primary_10_1007_s11581_025_06200_9
crossref_primary_10_1016_j_bspc_2024_106324
crossref_primary_10_3390_math11040862
crossref_primary_10_1109_JSYST_2023_3321676
crossref_primary_10_1007_s12065_022_00765_4
crossref_primary_10_1007_s12065_023_00839_x
crossref_primary_10_1007_s10115_025_02479_2
crossref_primary_10_1016_j_engappai_2024_109370
crossref_primary_10_1016_j_ijhydene_2024_01_356
crossref_primary_10_1016_j_neunet_2023_10_040
crossref_primary_10_62050_fscp2024_481
crossref_primary_10_1007_s00371_024_03439_7
crossref_primary_10_1007_s41365_023_01267_3
crossref_primary_10_1016_j_eswa_2024_124622
crossref_primary_10_1016_j_cosrev_2025_100727
crossref_primary_10_1080_01969722_2022_2073703
crossref_primary_10_1088_1748_9326_ad7278
crossref_primary_10_1080_01969722_2022_2122002
crossref_primary_10_1016_j_engappai_2024_109202
crossref_primary_10_1007_s12065_022_00751_w
crossref_primary_10_1007_s42235_024_00510_w
crossref_primary_10_1093_jcde_qwad006
crossref_primary_10_1007_s11042_023_16890_w
crossref_primary_10_1109_ACCESS_2022_3201147
crossref_primary_10_1007_s00500_022_07080_1
crossref_primary_10_1016_j_energy_2023_126705
crossref_primary_10_1109_JAS_2022_105821
crossref_primary_10_1007_s11276_024_03782_6
crossref_primary_10_1016_j_cma_2024_116964
crossref_primary_10_1016_j_engappai_2022_105622
crossref_primary_10_1007_s12530_025_09680_2
crossref_primary_10_1038_s41598_022_22242_9
crossref_primary_10_3390_diagnostics13010162
crossref_primary_10_1016_j_neunet_2024_106460
crossref_primary_10_1038_s41598_025_13539_6
crossref_primary_10_1016_j_engstruct_2025_121261
crossref_primary_10_1007_s12065_024_00997_6
crossref_primary_10_1016_j_bspc_2024_106024
crossref_primary_10_1007_s13198_024_02349_0
crossref_primary_10_1016_j_cma_2023_116062
crossref_primary_10_1007_s12065_022_00786_z
crossref_primary_10_1007_s00500_024_09789_7
crossref_primary_10_1038_s41598_025_11492_y
crossref_primary_10_3390_pr11020498
crossref_primary_10_1007_s12065_022_00762_7
crossref_primary_10_1038_s41598_022_11938_7
crossref_primary_10_1007_s00521_022_07854_6
crossref_primary_10_1016_j_jclepro_2022_134363
crossref_primary_10_3390_biomimetics10060411
crossref_primary_10_1007_s42235_024_00545_z
crossref_primary_10_3233_JCM_226866
crossref_primary_10_1016_j_cma_2023_116199
crossref_primary_10_32604_cmes_2023_045170
crossref_primary_10_1016_j_patcog_2023_109566
crossref_primary_10_1007_s00521_024_09436_0
crossref_primary_10_1007_s11042_023_16411_9
crossref_primary_10_1016_j_asoc_2024_112084
crossref_primary_10_1016_j_measurement_2025_118725
crossref_primary_10_1038_s41598_022_18993_0
crossref_primary_10_1016_j_eswa_2022_117993
crossref_primary_10_1186_s44147_025_00638_4
crossref_primary_10_1007_s11277_024_11674_3
crossref_primary_10_1016_j_ins_2024_121590
crossref_primary_10_1007_s42235_024_00579_3
crossref_primary_10_1007_s11063_024_11467_6
crossref_primary_10_1016_j_ecoinf_2024_102718
crossref_primary_10_1007_s00500_023_09563_1
crossref_primary_10_1007_s11694_024_02897_w
crossref_primary_10_1016_j_knosys_2024_111412
crossref_primary_10_1016_j_swevo_2024_101493
crossref_primary_10_1007_s10614_024_10813_z
crossref_primary_10_1007_s10462_023_10581_6
crossref_primary_10_1007_s12530_023_09552_7
crossref_primary_10_1016_j_patcog_2023_109436
crossref_primary_10_1016_j_sciaf_2023_e01720
crossref_primary_10_1080_17455030_2022_2155319
crossref_primary_10_1007_s42452_025_07008_y
crossref_primary_10_1016_j_enbuild_2024_113942
crossref_primary_10_1007_s10586_024_04713_y
crossref_primary_10_1016_j_bspc_2024_106244
crossref_primary_10_1007_s12065_022_00787_y
crossref_primary_10_1016_j_compbiomed_2023_107558
crossref_primary_10_1038_s41598_025_06380_4
crossref_primary_10_1007_s10586_022_03694_0
crossref_primary_10_1007_s11276_024_03815_0
crossref_primary_10_1007_s11831_022_09801_z
crossref_primary_10_1007_s42235_022_00263_4
crossref_primary_10_3233_JIFS_222804
crossref_primary_10_1007_s00500_022_07149_x
crossref_primary_10_1007_s10586_024_04892_8
crossref_primary_10_1016_j_jer_2023_08_019
crossref_primary_10_1109_TFUZZ_2023_3267405
crossref_primary_10_2478_jaiscr_2023_0011
crossref_primary_10_1016_j_cma_2024_117588
crossref_primary_10_1007_s12530_023_09541_w
crossref_primary_10_1007_s00500_022_07526_6
crossref_primary_10_1007_s00500_024_09911_9
crossref_primary_10_3390_eng6080174
crossref_primary_10_1016_j_suscom_2024_101012
crossref_primary_10_1016_j_dajour_2022_100125
crossref_primary_10_1038_s41598_025_85142_8
crossref_primary_10_1007_s00500_024_09890_x
crossref_primary_10_1016_j_sysarc_2023_102871
crossref_primary_10_3390_info14020066
crossref_primary_10_1016_j_aei_2024_102354
crossref_primary_10_1007_s00500_022_07199_1
crossref_primary_10_1007_s10462_025_11118_9
crossref_primary_10_1016_j_matcom_2022_12_001
crossref_primary_10_1007_s00500_022_07251_0
crossref_primary_10_1080_17455030_2022_2164377
crossref_primary_10_1016_j_cie_2024_110568
crossref_primary_10_1007_s11227_025_07007_1
crossref_primary_10_1016_j_cma_2023_116664
crossref_primary_10_3390_math11153297
crossref_primary_10_1080_09540091_2023_2246703
crossref_primary_10_1007_s00500_022_07079_8
crossref_primary_10_1016_j_seta_2023_103025
crossref_primary_10_1016_j_engappai_2022_105701
crossref_primary_10_1016_j_eswa_2023_120904
crossref_primary_10_1371_journal_pone_0302880
crossref_primary_10_1016_j_ecoinf_2024_102704
crossref_primary_10_1016_j_compbiomed_2023_107217
crossref_primary_10_1007_s11227_025_07410_8
crossref_primary_10_1080_02664763_2024_2315451
crossref_primary_10_1016_j_rineng_2025_105599
crossref_primary_10_3390_math11183913
crossref_primary_10_1016_j_compbiomed_2023_107212
crossref_primary_10_1002_ett_4744
crossref_primary_10_1007_s10462_024_11104_7
crossref_primary_10_1038_s41598_024_76010_y
crossref_primary_10_1016_j_jclepro_2023_139798
crossref_primary_10_1007_s41939_024_00552_x
crossref_primary_10_1016_j_knosys_2022_108833
crossref_primary_10_3390_app13053273
crossref_primary_10_1007_s11760_024_03145_w
crossref_primary_10_1016_j_knosys_2024_111449
crossref_primary_10_1016_j_engappai_2023_106069
crossref_primary_10_1371_journal_pone_0285211
crossref_primary_10_3390_atmos13122051
crossref_primary_10_3390_math10132278
crossref_primary_10_1007_s11042_023_16764_1
crossref_primary_10_1016_j_heliyon_2024_e26799
crossref_primary_10_1002_widm_1548
crossref_primary_10_1186_s40645_023_00550_6
crossref_primary_10_1016_j_asoc_2025_113527
crossref_primary_10_1016_j_knosys_2023_111172
crossref_primary_10_1007_s11831_024_10135_1
crossref_primary_10_1007_s40430_023_04457_7
crossref_primary_10_1007_s10115_023_01859_w
crossref_primary_10_1016_j_ins_2024_120867
crossref_primary_10_1063_5_0251549
crossref_primary_10_1007_s10586_024_04881_x
crossref_primary_10_1016_j_jclepro_2023_136393
crossref_primary_10_1007_s12530_024_09571_y
crossref_primary_10_1007_s44196_025_00823_6
crossref_primary_10_1093_jcde_qwad094
crossref_primary_10_1109_ACCESS_2024_3466529
crossref_primary_10_1016_j_cie_2024_110103
crossref_primary_10_1007_s10586_025_05558_9
crossref_primary_10_3390_electronics12244990
crossref_primary_10_3390_en16020850
crossref_primary_10_1007_s42235_024_00524_4
crossref_primary_10_1016_j_eswa_2022_118515
crossref_primary_10_1016_j_apenergy_2023_120797
crossref_primary_10_1007_s10586_023_04221_5
crossref_primary_10_3390_en18082024
crossref_primary_10_1016_j_cma_2024_117429
crossref_primary_10_1142_S0218126625502226
crossref_primary_10_1007_s11227_022_04781_0
crossref_primary_10_3390_biomimetics9120727
crossref_primary_10_1007_s00521_024_09602_4
crossref_primary_10_1016_j_ins_2024_121409
crossref_primary_10_1007_s44196_025_00855_y
crossref_primary_10_1109_ACCESS_2023_3295242
crossref_primary_10_1109_ACCESS_2024_3428328
crossref_primary_10_1007_s12652_022_04412_9
crossref_primary_10_1007_s42044_025_00245_9
crossref_primary_10_1007_s00500_022_07484_z
crossref_primary_10_1007_s10614_024_10709_y
crossref_primary_10_1007_s12530_023_09487_z
crossref_primary_10_1016_j_jclepro_2023_138435
crossref_primary_10_1007_s10462_024_10716_3
crossref_primary_10_1007_s10462_024_10946_5
crossref_primary_10_1016_j_iot_2023_100973
crossref_primary_10_3390_pr10112254
crossref_primary_10_1016_j_eswa_2024_124333
crossref_primary_10_1109_ACCESS_2024_3351721
crossref_primary_10_1016_j_cma_2023_116582
crossref_primary_10_1016_j_heliyon_2024_e39301
crossref_primary_10_1007_s44163_025_00401_x
crossref_primary_10_1016_j_cie_2023_109359
crossref_primary_10_1007_s10115_023_01911_9
crossref_primary_10_1007_s00500_025_10412_6
crossref_primary_10_1007_s40747_023_01082_8
crossref_primary_10_1016_j_dsp_2024_104750
crossref_primary_10_1016_j_heliyon_2024_e29830
crossref_primary_10_1371_journal_pone_0274850
crossref_primary_10_1007_s00500_024_09858_x
crossref_primary_10_1108_COMPEL_05_2025_0217
crossref_primary_10_1002_dac_6065
crossref_primary_10_1007_s42484_023_00110_7
crossref_primary_10_1016_j_neunet_2023_11_024
crossref_primary_10_1016_j_cie_2024_110775
crossref_primary_10_3389_fnint_2022_1028986
crossref_primary_10_1007_s00521_024_10009_4
crossref_primary_10_1007_s10462_025_11291_x
crossref_primary_10_1016_j_ijhydene_2025_02_401
crossref_primary_10_1007_s12530_022_09475_9
crossref_primary_10_1038_s41598_024_66187_7
crossref_primary_10_1038_s41598_025_92983_w
crossref_primary_10_1007_s12530_023_09519_8
crossref_primary_10_3390_biomimetics10010014
crossref_primary_10_1016_j_econmod_2025_107288
crossref_primary_10_1007_s12351_024_00862_5
crossref_primary_10_1080_01969722_2022_2157609
crossref_primary_10_3390_sym14112282
crossref_primary_10_1007_s41939_025_00790_7
crossref_primary_10_1016_j_knosys_2022_108743
crossref_primary_10_1016_j_eswa_2024_124114
crossref_primary_10_1029_2023RS007744
crossref_primary_10_1038_s41598_025_11129_0
crossref_primary_10_1007_s12530_024_09591_8
crossref_primary_10_1016_j_engappai_2023_106156
crossref_primary_10_1016_j_engappai_2023_106277
crossref_primary_10_1016_j_eswa_2025_126955
crossref_primary_10_1007_s13369_022_07480_3
crossref_primary_10_1109_ACCESS_2023_3346533
crossref_primary_10_1007_s12008_024_01851_w
crossref_primary_10_1007_s41939_025_00800_8
crossref_primary_10_1007_s10115_024_02105_7
crossref_primary_10_1177_24056456251325289
crossref_primary_10_1007_s11235_023_01063_9
crossref_primary_10_1016_j_iot_2023_100981
crossref_primary_10_1007_s00521_022_07571_0
crossref_primary_10_1016_j_knosys_2023_111081
crossref_primary_10_1007_s12065_022_00767_2
crossref_primary_10_1007_s00607_024_01397_5
crossref_primary_10_1007_s10462_022_10324_z
crossref_primary_10_1007_s13198_023_01861_z
crossref_primary_10_1016_j_heliyon_2023_e21828
crossref_primary_10_1016_j_cma_2023_116238
crossref_primary_10_3390_biomimetics10090581
Cites_doi 10.1111/j.1439-0310.1977.tb00487.x
10.1007/s00500-019-03949-w
10.3390/e23121637
10.1016/j.engappai.2019.103249
10.1007/s00521-020-05145-6
10.1007/s10462-020-09867-w
10.1115/1.2912596
10.1109/CDC.1990.203904
10.1016/j.eswa.2020.113246
10.1371/journal.pone.0255703
10.1007/11579427_66
10.1016/j.asoc.2020.106503
10.1016/j.knosys.2015.12.022
10.1061/(ASCE)0733-9445(1989)115:3(626)
10.2307/1378840
10.1016/j.engappai.2019.01.001
10.1109/ACCESS.2020.3039602
10.1016/j.future.2019.02.028
10.1016/j.advengsoft.2013.12.007
10.1111/j.1439-0310.1979.tb00295.x
10.1007/s00521-019-04132-w
10.1109/ACCESS.2019.2942169
10.1007/BF00296927
10.1109/TE.2020.3008878
10.1016/j.future.2020.03.055
10.1016/j.eswa.2020.114353
10.1016/j.compstruc.2009.01.003
10.1007/s10462-019-09732-5
10.1016/S0166-3615(99)00046-9
10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
10.1007/s12293-016-0212-3
10.1007/s00521-015-1923-y
10.1016/j.cma.2020.113609
10.1016/j.asoc.2020.106734
10.1016/S0065-3454(08)60178-3
10.1109/TEVC.2008.927706
10.3934/mbe.2022023
10.1007/s10462-020-09893-8
10.1109/ACCESS.2018.2872110
10.1007/s42107-020-00282-8
10.1109/ICNN.1995.488968
10.1504/IJBIC.2018.093328
10.1016/j.cie.2021.107250
10.1016/j.ifacol.2021.10.032
10.1080/03052150108940941
10.1016/j.cnsns.2012.06.009
10.1002/cpe.6321
10.1016/j.apm.2020.12.021
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier BV Mar 1, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier BV Mar 1, 2022
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2022.114570
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
ExternalDocumentID 10_1016_j_cma_2022_114570
S0045782522000019
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-4fc2c2b2a5b81c93bd515570f4c67b4fc03a05d66af7eac16bb24385230dd2763
ISICitedReferencesCount 684
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000777768100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Fri Jul 25 06:49:47 EDT 2025
Sat Nov 29 07:27:14 EST 2025
Tue Nov 18 22:36:30 EST 2025
Sun Apr 06 06:53:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Dwarf Mongoose Optimization Algorithm
Metaheuristic
Global optimization
Engineering design problems
Nature-inspired algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-4fc2c2b2a5b81c93bd515570f4c67b4fc03a05d66af7eac16bb24385230dd2763
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2203-4549
0000-0002-3721-3400
PQID 2639678901
PQPubID 2045269
ParticipantIDs proquest_journals_2639678901
crossref_citationtrail_10_1016_j_cma_2022_114570
crossref_primary_10_1016_j_cma_2022_114570
elsevier_sciencedirect_doi_10_1016_j_cma_2022_114570
PublicationCentury 2000
PublicationDate 2022-03-01
2022-03-00
20220301
PublicationDateYYYYMMDD 2022-03-01
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Tzanetos, Dounias (b19) 2021; 54
Kaveh, Talatahari (b33) 2009; 87
Hayyolalam, Kazem (b36) 2020; 87
Qiao, Yang (b41) 2019; 7
Abualigah, Diabat, Elaziz (b21) 2021
Precup, Hedrea, Roman, Petriu, Szedlak-Stinean, Bojan-Dragos (b26) 2020; 64
Bojan-Dragos, Precup, Preitl, Roman, Hedrea, Szedlak-Stinean (b25) 2021; 54
Feng, Niu, Liu (b49) 2021; 98
Ezugwu, Adeleke, Akinyelu, Viriri (b1) 2020; 32
Z. Michalewicz, J. Krawczyk, M. Kazemi, C.Z. Janikow, Genetic algorithms and optimal control problems, in: Proc. 29th IEEE Conf. Decis. Control, Dec. 1990.
Chou, Truong (b40) 2021; 389
Braik, Sheta, Al-Hiary (b47) 2021; 33
Wang, Deb, Coelho (b16) 2015
Holland (b2) 1975
Talatahari, Azizi (b37) 2021; 54
M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) (Vol. 2), 1999.
Wang (b17) 2018; 10
Rasa (b56) 1979; 49
Mirjalili (b64) 2016; 96
Nematollahi, Rahiminejad, Vahidi (b44) 2020; 24
Precup, David, Roman, Szedlak-Stinean, Petriu (b27) 2021
Amir, Hasegawa (b77) 1989; 115
Coello (b67) 2000; 41
T. Johnson, P. Husbands, System identification using genetic algorithms, in: Proc. Int. Conf. Parallel Problem Solving Nature, Berlin, Germany, 1990.
Wang, Deb, Coelho (b18) 2018; 12
Liang, Qu, Suganthan (b12) 2013
Preitl, Precup, Tar, Takács (b23) 2006; 3
Agushaka, Ezugwu (b9) 2021; 31
Abualigah, Diabat, Mirjalili, Abd Elaziz, Gandomi (b42) 2021; 376
E. Mezura-Montes, C.A.C. Coello, Useful infeasible solutions in engineering optimization with evolutionary algorithms, in: Mexican International Conference on Artificial Intelligence, Berlin, Heidelberg, 2005.
Rashid (b48) 2020
Bayzidi, Talatahari, Saraee, Lamarche (b52) 2021
Rao (b74) 2009
Abualigah, Abd Elaziz, Sumari, Geem, Gandomi (b20) 2021; 191
Abed-alguni (b34) 2019; 17
Abualigah, Alkhrabsheh (b22) 2021
Chickermane, Gea (b73) 1996; 39
Zheng, Jia, Abualigah, Liu, Wang (b7) 2021; 19
Azizi (b39) 2021; 93
Agushaka, Ezugwu (b60) 2020; 8
Ezugwu, Akutsah (b28) 2018; 6
Nadimi-Shahraki, Fatahi, Zamani, Mirjalili, Abualigah (b8) 2021; 23
J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, 1995.
Qin, Huang, Suganthan (b13) 2009; 13
Wang, Deb, Cui (b15) 2019; 31
Rasa (b54) 1977; 43
Bogar, Beyhan (b38) 2020; 95
Mirjalili, Mirjalili, Lewis (b63) 2014; 69
Ray, Saini (b71) 2001; 33
Mirjalili, Gandomi, Mirjalili, Saremi, Faris, Mirjalili (b65) 2017
Kazemzadeh-Parsi (b68) 2014; 38
Gandomi, Yang, Talatahari, Alavi (b32) 2013; 18
Oyelade, Ezugwu (b29) 2021
Kaveh, Seddighian, Ghanadpour (b46) 2020; 21
Heidari, Mirjalili, Faris, Aljarah, Mafarja, Chen (b79) 2019; 97
Meier, Rasa, Scheich (b59) 1983; 12
Rasa (b53) 1972; 53
Li, Chen, Wang, Heidari, Mirjalili (b78) 2020; 111
Achary, Pillay, Pillai, Mqadi, Genders, Ezugwu (b30) 2021
Parkinson, Balling, Hedengren (b75) 2018
Li, Liu, Yang (b61) 2020
Oyelade, Ezugwu (b6) 2021
Zapata, Perozo, Angulo, Contreras (b11) 2020; 18
Rasa (b57) 1986; 8
Govender, Ezugwu (b31) 2021
Zhang, Jin (b35) 2020; 148
Agushaka, Ezugwu (b43) 2021; 16
Ezugwu, Shukla, Nath, Akinyelu, Agushaka, Chiroma, Muhuri (b10) 2021
Rasa (b55) 1977; 42
Rather, Bala (b62) 2019
Shadravan, Naji, Bardsiri (b51) 2019; 80
Sandgren (b72) 1990; 112
Rasa (b58) 1987; 17
Ravindran, Ragsdell, Reklaitis (b76) 2006
Plevris, Papadrakakis (b24) 2011; 26
Abualigah, Yousri, Abd Elaziz, Ewees, Al-qaness, Gandomi (b50) 2021; 157
Alsattar, Zaidan, Zaidan (b45) 2020; 53
Jerebic, Mernik, Liu, Ravber, Baketarić, Mernik, Črepinšek (b14) 2021; 167
Sandgren (b69) 1990; 112
Tzanetos (10.1016/j.cma.2022.114570_b19) 2021; 54
Ezugwu (10.1016/j.cma.2022.114570_b28) 2018; 6
Rasa (10.1016/j.cma.2022.114570_b56) 1979; 49
Precup (10.1016/j.cma.2022.114570_b26) 2020; 64
Ravindran (10.1016/j.cma.2022.114570_b76) 2006
Achary (10.1016/j.cma.2022.114570_b30) 2021
Oyelade (10.1016/j.cma.2022.114570_b29) 2021
Abualigah (10.1016/j.cma.2022.114570_b22) 2021
Wang (10.1016/j.cma.2022.114570_b16) 2015
Ezugwu (10.1016/j.cma.2022.114570_b1) 2020; 32
Zapata (10.1016/j.cma.2022.114570_b11) 2020; 18
Alsattar (10.1016/j.cma.2022.114570_b45) 2020; 53
Kaveh (10.1016/j.cma.2022.114570_b46) 2020; 21
Sandgren (10.1016/j.cma.2022.114570_b72) 1990; 112
Shadravan (10.1016/j.cma.2022.114570_b51) 2019; 80
Rasa (10.1016/j.cma.2022.114570_b57) 1986; 8
Holland (10.1016/j.cma.2022.114570_b2) 1975
Amir (10.1016/j.cma.2022.114570_b77) 1989; 115
Agushaka (10.1016/j.cma.2022.114570_b60) 2020; 8
Kaveh (10.1016/j.cma.2022.114570_b33) 2009; 87
Azizi (10.1016/j.cma.2022.114570_b39) 2021; 93
Rasa (10.1016/j.cma.2022.114570_b53) 1972; 53
Braik (10.1016/j.cma.2022.114570_b47) 2021; 33
Ray (10.1016/j.cma.2022.114570_b71) 2001; 33
Jerebic (10.1016/j.cma.2022.114570_b14) 2021; 167
Nadimi-Shahraki (10.1016/j.cma.2022.114570_b8) 2021; 23
Rather (10.1016/j.cma.2022.114570_b62) 2019
Agushaka (10.1016/j.cma.2022.114570_b43) 2021; 16
Meier (10.1016/j.cma.2022.114570_b59) 1983; 12
Abualigah (10.1016/j.cma.2022.114570_b21) 2021
Bojan-Dragos (10.1016/j.cma.2022.114570_b25) 2021; 54
Chou (10.1016/j.cma.2022.114570_b40) 2021; 389
Rao (10.1016/j.cma.2022.114570_b74) 2009
Precup (10.1016/j.cma.2022.114570_b27) 2021
Sandgren (10.1016/j.cma.2022.114570_b69) 1990; 112
Parkinson (10.1016/j.cma.2022.114570_b75) 2018
Mirjalili (10.1016/j.cma.2022.114570_b64) 2016; 96
Ezugwu (10.1016/j.cma.2022.114570_b10) 2021
Qiao (10.1016/j.cma.2022.114570_b41) 2019; 7
10.1016/j.cma.2022.114570_b66
Chickermane (10.1016/j.cma.2022.114570_b73) 1996; 39
Govender (10.1016/j.cma.2022.114570_b31) 2021
Plevris (10.1016/j.cma.2022.114570_b24) 2011; 26
10.1016/j.cma.2022.114570_b70
Gandomi (10.1016/j.cma.2022.114570_b32) 2013; 18
Coello (10.1016/j.cma.2022.114570_b67) 2000; 41
Bogar (10.1016/j.cma.2022.114570_b38) 2020; 95
Zhang (10.1016/j.cma.2022.114570_b35) 2020; 148
Bayzidi (10.1016/j.cma.2022.114570_b52) 2021
Wang (10.1016/j.cma.2022.114570_b18) 2018; 12
Agushaka (10.1016/j.cma.2022.114570_b9) 2021; 31
Rasa (10.1016/j.cma.2022.114570_b55) 1977; 42
Abualigah (10.1016/j.cma.2022.114570_b50) 2021; 157
Li (10.1016/j.cma.2022.114570_b61) 2020
Li (10.1016/j.cma.2022.114570_b78) 2020; 111
Mirjalili (10.1016/j.cma.2022.114570_b63) 2014; 69
Abed-alguni (10.1016/j.cma.2022.114570_b34) 2019; 17
Heidari (10.1016/j.cma.2022.114570_b79) 2019; 97
Rasa (10.1016/j.cma.2022.114570_b58) 1987; 17
Kazemzadeh-Parsi (10.1016/j.cma.2022.114570_b68) 2014; 38
Feng (10.1016/j.cma.2022.114570_b49) 2021; 98
10.1016/j.cma.2022.114570_b3
Nematollahi (10.1016/j.cma.2022.114570_b44) 2020; 24
10.1016/j.cma.2022.114570_b5
10.1016/j.cma.2022.114570_b4
Wang (10.1016/j.cma.2022.114570_b17) 2018; 10
Rasa (10.1016/j.cma.2022.114570_b54) 1977; 43
Qin (10.1016/j.cma.2022.114570_b13) 2009; 13
Hayyolalam (10.1016/j.cma.2022.114570_b36) 2020; 87
Zheng (10.1016/j.cma.2022.114570_b7) 2021; 19
Liang (10.1016/j.cma.2022.114570_b12) 2013
Wang (10.1016/j.cma.2022.114570_b15) 2019; 31
Abualigah (10.1016/j.cma.2022.114570_b20) 2021; 191
Preitl (10.1016/j.cma.2022.114570_b23) 2006; 3
Abualigah (10.1016/j.cma.2022.114570_b42) 2021; 376
Rashid (10.1016/j.cma.2022.114570_b48) 2020
Mirjalili (10.1016/j.cma.2022.114570_b65) 2017
Talatahari (10.1016/j.cma.2022.114570_b37) 2021; 54
Oyelade (10.1016/j.cma.2022.114570_b6) 2021
References_xml – volume: 112
  start-page: 223
  year: 1990
  end-page: 229
  ident: b72
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: J. Mech. Des.
– year: 2021
  ident: b30
  article-title: A performance study of meta-heuristic approaches for quadratic assignment problem
  publication-title: Concurr. Comput.: Pract. Exper.
– volume: 16
  year: 2021
  ident: b43
  article-title: Advanced Arithmetic Optimization Algorithm for solving mechanical engineering design problems
  publication-title: Plos One
– volume: 33
  start-page: 2515
  year: 2021
  end-page: 2547
  ident: b47
  article-title: A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm
  publication-title: Neural Comput. Appl.
– year: 2020
  ident: b48
  article-title: Tiki-taka algorithm: a novel metaheuristic inspired by football playing style
  publication-title: Eng. Comput.
– volume: 54
  start-page: 1841
  year: 2021
  end-page: 1862
  ident: b19
  article-title: Nature inspired optimization algorithms or simply variations of metaheuristics?
  publication-title: Artif. Intell. Rev.
– year: 2021
  ident: b29
  article-title: Characterization of abnormalities in breast cancer images using nature-inspired metaheuristic optimized convolutional neural networks model
  publication-title: Concurr. Comput.: Pract. Exper.
– volume: 6
  start-page: 54459
  year: 2018
  end-page: 54478
  ident: b28
  article-title: An improved firefly algorithm for the unrelated parallel machines scheduling problem with sequence-dependent setup times
  publication-title: IEEE Access
– volume: 157
  year: 2021
  ident: b50
  article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm
  publication-title: Comput. Ind. Eng.
– volume: 115
  start-page: 626
  year: 1989
  end-page: 646
  ident: b77
  article-title: Nonlinear mixed-discrete structural optimization
  publication-title: J. Struct. Eng.
– volume: 7
  start-page: 138972
  year: 2019
  end-page: 138989
  ident: b41
  article-title: Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm
  publication-title: IEEE Access
– volume: 18
  start-page: 89
  year: 2013
  end-page: 98
  ident: b32
  article-title: Firefly algorithm with chaos
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: b13
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 111
  start-page: 300
  year: 2020
  end-page: 323
  ident: b78
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
– volume: 18
  start-page: 1
  year: 2020
  end-page: 18
  ident: b11
  article-title: A hybrid swarm algorithm for collective construction of 3D structures
  publication-title: Int. J. Artif. Intell.
– volume: 191
  year: 2021
  ident: b20
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
– volume: 8
  start-page: 15
  year: 1986
  end-page: 21
  ident: b57
  article-title: Ecological factors and their relationship to group size, mortality and behaviour in the dwarf mongoose
  publication-title: Cimbebasiu
– volume: 32
  start-page: 6207
  year: 2020
  end-page: 6251
  ident: b1
  article-title: A conceptual comparison of several metaheuristic algorithms on continuous optimization problems
  publication-title: Neural Comput. Appl.
– volume: 167
  year: 2021
  ident: b14
  article-title: A novel direct measure of exploration and exploitation based on attraction basins
  publication-title: Expert Syst. Appl.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b63
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
– year: 2018
  ident: b75
  article-title: Optimization Methods for Engineering Design
– volume: 98
  year: 2021
  ident: b49
  article-title: Cooperation search algorithm: a novel metaheuristic evolutionary intelligence algorithm for numerical optimization and engineering optimization problems
  publication-title: Appl. Soft Comput.
– year: 2019
  ident: b62
  article-title: Hybridization of constriction coefficient based particle swarm optimization and gravitational search algorithm for function optimization
  publication-title: International Conference on Advances in Electronics, Electrical, and Computational Intelligence (ICAEEC- 2019)
– volume: 112
  start-page: 223
  year: 1990
  end-page: 229
  ident: b69
  article-title: NIDP in mechanical design optimization
  publication-title: J. Mech. Des.
– reference: Z. Michalewicz, J. Krawczyk, M. Kazemi, C.Z. Janikow, Genetic algorithms and optimal control problems, in: Proc. 29th IEEE Conf. Decis. Control, Dec. 1990.
– year: 2021
  ident: b6
  article-title: Ebola Optimization Search Algorithm (EOSA): A new metaheuristic algorithm based on the propagation model of Ebola virus disease
– volume: 19
  start-page: 473
  year: 2021
  end-page: 512
  ident: b7
  article-title: An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems
  publication-title: Math. Biosci. Eng.
– start-page: 1
  year: 2021
  end-page: 16
  ident: b27
  article-title: Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using Slime Mould Algorithm
  publication-title: Internat. J. Systems Sci.
– volume: 53
  start-page: 18I
  year: 1972
  end-page: 185
  ident: b53
  article-title: Aspectsof social organization in captive dwarf mongooses
  publication-title: J. Mammal.
– volume: 17
  start-page: 121
  year: 1987
  end-page: 163
  ident: b58
  article-title: The dwarf mongoose: a study of behavior and social structure in relation to ecology in a small, social carnivore
  publication-title: Adv. Study Behav.
– volume: 41
  start-page: 113
  year: 2000
  end-page: 127
  ident: b67
  article-title: Use of self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
– volume: 21
  start-page: 1129
  year: 2020
  end-page: 1149
  ident: b46
  article-title: Black Hole Mechanics Optimization: a novel meta-heuristic algorithm
  publication-title: Asian J. Civ. Eng.
– volume: 23
  start-page: 1637
  year: 2021
  ident: b8
  article-title: An improved moth–flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems
  publication-title: Entropy
– volume: 64
  start-page: 88
  year: 2020
  end-page: 94
  ident: b26
  article-title: Experiment-based approach to teach optimization techniques
  publication-title: IEEE Trans. Educ.
– volume: 39
  start-page: 829
  year: 1996
  end-page: 846
  ident: b73
  article-title: Structural optimization using a new local approximation method
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 12
  start-page: 1
  year: 2018
  end-page: 22
  ident: b18
  article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems
  publication-title: Int. J. Bio-Inspired Comput.
– volume: 148
  year: 2020
  ident: b35
  article-title: Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems
  publication-title: Expert Syst. Appl.
– volume: 80
  start-page: 20
  year: 2019
  end-page: 34
  ident: b51
  article-title: The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– volume: 17
  start-page: 57
  year: 2019
  end-page: 82
  ident: b34
  article-title: Island-based cuckoo search with highly disruptive polynomial mutation
  publication-title: Int. J. Artif. Intell.
– volume: 8
  start-page: 210886
  year: 2020
  end-page: 210909
  ident: b60
  article-title: Influence of initializing Krill Herd algorithm with low-discrepancy sequences
  publication-title: IEEE Access
– year: 2013
  ident: b12
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2014 Special Session and Competition on Single Objective Real-Parameter Numerical Optimization
– volume: 54
  start-page: 917
  year: 2021
  end-page: 1004
  ident: b37
  article-title: Chaos Game Optimization: a novel metaheuristic algorithm
  publication-title: Artif. Intell. Rev.
– volume: 389
  year: 2021
  ident: b40
  article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean
  publication-title: Appl. Math. Comput.
– year: 2009
  ident: b74
  article-title: Engineering Optimization
– volume: 87
  start-page: 267
  year: 2009
  end-page: 283
  ident: b33
  article-title: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures
  publication-title: Comput. Struct.
– volume: 97
  start-page: 849
  year: 2019
  end-page: 872
  ident: b79
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
– reference: J. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of ICNN’95-International Conference on Neural Networks, Vol. 4, 1995.
– volume: 10
  start-page: 151
  year: 2018
  end-page: 164
  ident: b17
  article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memet. Comput.
– volume: 87
  year: 2020
  ident: b36
  article-title: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1
  year: 2021
  end-page: 33
  ident: b31
  article-title: Boosting symbiotic organism search algorithm with ecosystem service for dynamic blood allocation in blood banking system
  publication-title: J. Exp. Theor. Artif. Intell.
– reference: T. Johnson, P. Husbands, System identification using genetic algorithms, in: Proc. Int. Conf. Parallel Problem Solving Nature, Berlin, Germany, 1990.
– volume: 53
  start-page: 2237
  year: 2020
  end-page: 2264
  ident: b45
  article-title: Novel meta-heuristic bald eagle search optimisation algorithm
  publication-title: Artif. Intell. Rev.
– volume: 42
  start-page: 108
  year: 1977
  end-page: 112
  ident: b55
  article-title: Differences in group member response to intruding conspecifics and potentially dangerous stimuli in dwarf mongooses (Helogule undulura rufulu)
  publication-title: Z. Suugerierkd.
– volume: 33
  start-page: 735
  year: 2001
  end-page: 748
  ident: b71
  article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals
  publication-title: Eng. Optim.
– start-page: 1
  year: 2021
  end-page: 40
  ident: b21
  article-title: Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems
  publication-title: J. Ambient Intell. Humaniz. Comput.
– start-page: 1
  year: 2021
  end-page: 80
  ident: b10
  article-title: Metaheuristics: a comprehensive overview and classification along with bibliometric analysis
  publication-title: Artif. Intell. Rev.
– volume: 95
  year: 2020
  ident: b38
  article-title: Adolescent Identity Search Algorithm (AISA): A novel metaheuristic approach for solving optimization problems
  publication-title: Appl. Soft Comput.
– volume: 43
  start-page: 337
  year: 1977
  end-page: 406
  ident: b54
  article-title: The ethology and sociology of the dwarf mongoose (Helogule unduluru rufulu)
  publication-title: Z. Tierpsychol.
– year: 2020
  ident: b61
  article-title: Influence of initialization on the performance of metaheuristic optimizers
  publication-title: Appl. Soft Comput.
– reference: E. Mezura-Montes, C.A.C. Coello, Useful infeasible solutions in engineering optimization with evolutionary algorithms, in: Mexican International Conference on Artificial Intelligence, Berlin, Heidelberg, 2005.
– start-page: 2021
  year: 2021
  ident: b52
  article-title: Social network search for solving engineering optimization problems
  publication-title: Comput. Intell. Neurosci.
– year: 2015
  ident: b16
  article-title: Elephant herding optimization
  publication-title: 2015 3rd International Symposium on Computational and Business Intelligence (ISCBI)
– volume: 54
  start-page: 189
  year: 2021
  end-page: 194
  ident: b25
  article-title: GWO-based optimal tuning of type-1 and type-2 fuzzy controllers for electromagnetic actuated clutch systems
  publication-title: IFAC-PapersOnLine
– volume: 93
  start-page: 657
  year: 2021
  end-page: 683
  ident: b39
  article-title: Atomic orbital search: A novel metaheuristic algorithm
  publication-title: Appl. Math. Model.
– volume: 26
  start-page: 48
  year: 2011
  end-page: 68
  ident: b24
  article-title: A hybrid particle swarm—gradient algorithm for global structural optimization
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– start-page: 1
  year: 2021
  end-page: 26
  ident: b22
  article-title: Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing
  publication-title: J. Supercomput.
– volume: 376
  year: 2021
  ident: b42
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 1975
  ident: b2
  article-title: Adaptation in Natural and Artificial Systems
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b64
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– volume: 3
  start-page: 29
  year: 2006
  end-page: 43
  ident: b23
  article-title: Use of multi-parametric quadratic programming in fuzzy control systems
  publication-title: Acta Polytech. Hung.
– volume: 31
  start-page: 70
  year: 2021
  end-page: 94
  ident: b9
  article-title: Evaluation of several initialization methods on arithmetic optimization algorithm performance
  publication-title: J. Intell. Syst.
– volume: 31
  start-page: 1995
  year: 2019
  end-page: 2014
  ident: b15
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
– volume: 49
  start-page: 317
  year: 1979
  end-page: 329
  ident: b56
  article-title: The effects of crowding on the social relationships and behaviour of the dwarf mongoose (Helogule unduluru rufulu)
  publication-title: Z. Tierpsychol.
– start-page: 1
  year: 2017
  end-page: 29
  ident: b65
  article-title: Salp swarm algorithm: a bioinspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– volume: 38
  start-page: 403
  year: 2014
  ident: b68
  article-title: A modified firefly algorithm for engineering design optimization problems
  publication-title: Iran. J. Sci. Technol. Trans. Mech. Eng.
– reference: M. Dorigo, G. Di Caro, Ant colony optimization: a new meta-heuristic, in: Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406) (Vol. 2), 1999.
– year: 2006
  ident: b76
  article-title: Engineering Optimization
– volume: 12
  start-page: 5
  year: 1983
  end-page: 9
  ident: b59
  article-title: Call-system similarity in a ground-living social bird and a mammal in the bush habitat
  publication-title: Eehav. Ecol. Sociobiol.
– volume: 24
  start-page: 1117
  year: 2020
  end-page: 1151
  ident: b44
  article-title: A novel meta-heuristic optimization method based on golden ratio in nature
  publication-title: Soft Comput.
– volume: 43
  start-page: 337
  year: 1977
  ident: 10.1016/j.cma.2022.114570_b54
  article-title: The ethology and sociology of the dwarf mongoose (Helogule unduluru rufulu)
  publication-title: Z. Tierpsychol.
  doi: 10.1111/j.1439-0310.1977.tb00487.x
– volume: 24
  start-page: 1117
  issue: 2
  year: 2020
  ident: 10.1016/j.cma.2022.114570_b44
  article-title: A novel meta-heuristic optimization method based on golden ratio in nature
  publication-title: Soft Comput.
  doi: 10.1007/s00500-019-03949-w
– volume: 23
  start-page: 1637
  issue: 12
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b8
  article-title: An improved moth–flame optimization algorithm with adaptation mechanism to solve numerical and mechanical engineering problems
  publication-title: Entropy
  doi: 10.3390/e23121637
– volume: 87
  year: 2020
  ident: 10.1016/j.cma.2022.114570_b36
  article-title: Black widow optimization algorithm: a novel meta-heuristic approach for solving engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.103249
– start-page: 2021
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b52
  article-title: Social network search for solving engineering optimization problems
  publication-title: Comput. Intell. Neurosci.
– volume: 191
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b20
  article-title: Reptile Search Algorithm (RSA): A nature-inspired meta-heuristic optimizer
  publication-title: Expert Syst. Appl.
– year: 2021
  ident: 10.1016/j.cma.2022.114570_b6
– volume: 3
  start-page: 29
  issue: 3
  year: 2006
  ident: 10.1016/j.cma.2022.114570_b23
  article-title: Use of multi-parametric quadratic programming in fuzzy control systems
  publication-title: Acta Polytech. Hung.
– volume: 33
  start-page: 2515
  issue: 7
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b47
  article-title: A novel meta-heuristic search algorithm for solving optimization problems: capuchin search algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05145-6
– volume: 54
  start-page: 917
  issue: 2
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b37
  article-title: Chaos Game Optimization: a novel metaheuristic algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09867-w
– volume: 389
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b40
  article-title: A novel metaheuristic optimizer inspired by behavior of jellyfish in ocean
  publication-title: Appl. Math. Comput.
– volume: 112
  start-page: 223
  issue: 2
  year: 1990
  ident: 10.1016/j.cma.2022.114570_b72
  article-title: Nonlinear integer and discrete programming in mechanical design optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2912596
– ident: 10.1016/j.cma.2022.114570_b5
  doi: 10.1109/CDC.1990.203904
– volume: 31
  start-page: 70
  issue: 1
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b9
  article-title: Evaluation of several initialization methods on arithmetic optimization algorithm performance
  publication-title: J. Intell. Syst.
– volume: 148
  year: 2020
  ident: 10.1016/j.cma.2022.114570_b35
  article-title: Group teaching optimization algorithm: A novel metaheuristic method for solving global optimization problems
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.113246
– start-page: 1
  year: 2017
  ident: 10.1016/j.cma.2022.114570_b65
  article-title: Salp swarm algorithm: a bioinspired optimizer for engineering design problems
  publication-title: Adv. Eng. Softw.
– year: 2009
  ident: 10.1016/j.cma.2022.114570_b74
– volume: 16
  issue: 8
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b43
  article-title: Advanced Arithmetic Optimization Algorithm for solving mechanical engineering design problems
  publication-title: Plos One
  doi: 10.1371/journal.pone.0255703
– start-page: 1
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b27
  article-title: Optimal tuning of interval type-2 fuzzy controllers for nonlinear servo systems using Slime Mould Algorithm
  publication-title: Internat. J. Systems Sci.
– ident: 10.1016/j.cma.2022.114570_b70
  doi: 10.1007/11579427_66
– start-page: 1
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b21
  article-title: Improved slime mould algorithm by opposition-based learning and Levy flight distribution for global optimization and advances in real-world engineering problems
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 95
  year: 2020
  ident: 10.1016/j.cma.2022.114570_b38
  article-title: Adolescent Identity Search Algorithm (AISA): A novel metaheuristic approach for solving optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106503
– year: 1975
  ident: 10.1016/j.cma.2022.114570_b2
– year: 2021
  ident: 10.1016/j.cma.2022.114570_b29
  article-title: Characterization of abnormalities in breast cancer images using nature-inspired metaheuristic optimized convolutional neural networks model
  publication-title: Concurr. Comput.: Pract. Exper.
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.cma.2022.114570_b64
  article-title: SCA: a sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 115
  start-page: 626
  issue: 3
  year: 1989
  ident: 10.1016/j.cma.2022.114570_b77
  article-title: Nonlinear mixed-discrete structural optimization
  publication-title: J. Struct. Eng.
  doi: 10.1061/(ASCE)0733-9445(1989)115:3(626)
– volume: 53
  start-page: 18I
  year: 1972
  ident: 10.1016/j.cma.2022.114570_b53
  article-title: Aspectsof social organization in captive dwarf mongooses
  publication-title: J. Mammal.
  doi: 10.2307/1378840
– volume: 80
  start-page: 20
  year: 2019
  ident: 10.1016/j.cma.2022.114570_b51
  article-title: The Sailfish Optimizer: A novel nature-inspired metaheuristic algorithm for solving constrained engineering optimization problems
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.01.001
– volume: 8
  start-page: 210886
  year: 2020
  ident: 10.1016/j.cma.2022.114570_b60
  article-title: Influence of initializing Krill Herd algorithm with low-discrepancy sequences
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3039602
– volume: 97
  start-page: 849
  year: 2019
  ident: 10.1016/j.cma.2022.114570_b79
  article-title: Harris hawks optimization: Algorithm and applications
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.02.028
– year: 2019
  ident: 10.1016/j.cma.2022.114570_b62
  article-title: Hybridization of constriction coefficient based particle swarm optimization and gravitational search algorithm for function optimization
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.cma.2022.114570_b63
  article-title: Grey wolf optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 18
  start-page: 1
  year: 2020
  ident: 10.1016/j.cma.2022.114570_b11
  article-title: A hybrid swarm algorithm for collective construction of 3D structures
  publication-title: Int. J. Artif. Intell.
– year: 2013
  ident: 10.1016/j.cma.2022.114570_b12
– volume: 49
  start-page: 317
  year: 1979
  ident: 10.1016/j.cma.2022.114570_b56
  article-title: The effects of crowding on the social relationships and behaviour of the dwarf mongoose (Helogule unduluru rufulu)
  publication-title: Z. Tierpsychol.
  doi: 10.1111/j.1439-0310.1979.tb00295.x
– volume: 32
  start-page: 6207
  issue: 10
  year: 2020
  ident: 10.1016/j.cma.2022.114570_b1
  article-title: A conceptual comparison of several metaheuristic algorithms on continuous optimization problems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04132-w
– volume: 7
  start-page: 138972
  year: 2019
  ident: 10.1016/j.cma.2022.114570_b41
  article-title: Solving large-scale function optimization problem by using a new metaheuristic algorithm based on quantum dolphin swarm algorithm
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2942169
– volume: 8
  start-page: 15
  year: 1986
  ident: 10.1016/j.cma.2022.114570_b57
  article-title: Ecological factors and their relationship to group size, mortality and behaviour in the dwarf mongoose
  publication-title: Cimbebasiu
– volume: 12
  start-page: 5
  year: 1983
  ident: 10.1016/j.cma.2022.114570_b59
  article-title: Call-system similarity in a ground-living social bird and a mammal in the bush habitat
  publication-title: Eehav. Ecol. Sociobiol.
  doi: 10.1007/BF00296927
– ident: 10.1016/j.cma.2022.114570_b66
– volume: 38
  start-page: 403
  issue: M2
  year: 2014
  ident: 10.1016/j.cma.2022.114570_b68
  article-title: A modified firefly algorithm for engineering design optimization problems
  publication-title: Iran. J. Sci. Technol. Trans. Mech. Eng.
– volume: 64
  start-page: 88
  issue: 2
  year: 2020
  ident: 10.1016/j.cma.2022.114570_b26
  article-title: Experiment-based approach to teach optimization techniques
  publication-title: IEEE Trans. Educ.
  doi: 10.1109/TE.2020.3008878
– year: 2020
  ident: 10.1016/j.cma.2022.114570_b48
  article-title: Tiki-taka algorithm: a novel metaheuristic inspired by football playing style
  publication-title: Eng. Comput.
– volume: 111
  start-page: 300
  year: 2020
  ident: 10.1016/j.cma.2022.114570_b78
  article-title: Slime mould algorithm: A new method for stochastic optimization
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2020.03.055
– volume: 167
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b14
  article-title: A novel direct measure of exploration and exploitation based on attraction basins
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114353
– ident: 10.1016/j.cma.2022.114570_b4
– volume: 87
  start-page: 267
  issue: 5–6
  year: 2009
  ident: 10.1016/j.cma.2022.114570_b33
  article-title: Particle swarm optimizer, ant colony strategy and harmony search scheme hybridized for optimization of truss structures
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2009.01.003
– volume: 17
  start-page: 57
  issue: 1
  year: 2019
  ident: 10.1016/j.cma.2022.114570_b34
  article-title: Island-based cuckoo search with highly disruptive polynomial mutation
  publication-title: Int. J. Artif. Intell.
– volume: 53
  start-page: 2237
  issue: 3
  year: 2020
  ident: 10.1016/j.cma.2022.114570_b45
  article-title: Novel meta-heuristic bald eagle search optimisation algorithm
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-019-09732-5
– volume: 41
  start-page: 113
  issue: 2
  year: 2000
  ident: 10.1016/j.cma.2022.114570_b67
  article-title: Use of self-adaptive penalty approach for engineering optimization problems
  publication-title: Comput. Ind.
  doi: 10.1016/S0166-3615(99)00046-9
– volume: 39
  start-page: 829
  issue: 5
  year: 1996
  ident: 10.1016/j.cma.2022.114570_b73
  article-title: Structural optimization using a new local approximation method
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19960315)39:5<829::AID-NME884>3.0.CO;2-U
– volume: 10
  start-page: 151
  issue: 2
  year: 2018
  ident: 10.1016/j.cma.2022.114570_b17
  article-title: Moth search algorithm: a bio-inspired metaheuristic algorithm for global optimization problems
  publication-title: Memet. Comput.
  doi: 10.1007/s12293-016-0212-3
– volume: 31
  start-page: 1995
  issue: 7
  year: 2019
  ident: 10.1016/j.cma.2022.114570_b15
  article-title: Monarch butterfly optimization
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-015-1923-y
– volume: 376
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b42
  article-title: The arithmetic optimization algorithm
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113609
– volume: 42
  start-page: 108
  year: 1977
  ident: 10.1016/j.cma.2022.114570_b55
  article-title: Differences in group member response to intruding conspecifics and potentially dangerous stimuli in dwarf mongooses (Helogule undulura rufulu)
  publication-title: Z. Suugerierkd.
– volume: 26
  start-page: 48
  issue: 1
  year: 2011
  ident: 10.1016/j.cma.2022.114570_b24
  article-title: A hybrid particle swarm—gradient algorithm for global structural optimization
  publication-title: Comput.-Aided Civ. Infrastruct. Eng.
– volume: 98
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b49
  article-title: Cooperation search algorithm: a novel metaheuristic evolutionary intelligence algorithm for numerical optimization and engineering optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106734
– year: 2015
  ident: 10.1016/j.cma.2022.114570_b16
  article-title: Elephant herding optimization
– volume: 17
  start-page: 121
  year: 1987
  ident: 10.1016/j.cma.2022.114570_b58
  article-title: The dwarf mongoose: a study of behavior and social structure in relation to ecology in a small, social carnivore
  publication-title: Adv. Study Behav.
  doi: 10.1016/S0065-3454(08)60178-3
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.cma.2022.114570_b13
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.927706
– volume: 19
  start-page: 473
  issue: 1
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b7
  article-title: An improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems
  publication-title: Math. Biosci. Eng.
  doi: 10.3934/mbe.2022023
– volume: 54
  start-page: 1841
  issue: 3
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b19
  article-title: Nature inspired optimization algorithms or simply variations of metaheuristics?
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09893-8
– volume: 112
  start-page: 223
  issue: 2
  year: 1990
  ident: 10.1016/j.cma.2022.114570_b69
  article-title: NIDP in mechanical design optimization
  publication-title: J. Mech. Des.
  doi: 10.1115/1.2912596
– start-page: 1
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b10
  article-title: Metaheuristics: a comprehensive overview and classification along with bibliometric analysis
  publication-title: Artif. Intell. Rev.
– start-page: 1
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b22
  article-title: Amended hybrid multi-verse optimizer with genetic algorithm for solving task scheduling problem in cloud computing
  publication-title: J. Supercomput.
– year: 2018
  ident: 10.1016/j.cma.2022.114570_b75
– volume: 6
  start-page: 54459
  year: 2018
  ident: 10.1016/j.cma.2022.114570_b28
  article-title: An improved firefly algorithm for the unrelated parallel machines scheduling problem with sequence-dependent setup times
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2872110
– year: 2020
  ident: 10.1016/j.cma.2022.114570_b61
  article-title: Influence of initialization on the performance of metaheuristic optimizers
  publication-title: Appl. Soft Comput.
– start-page: 1
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b31
  article-title: Boosting symbiotic organism search algorithm with ecosystem service for dynamic blood allocation in blood banking system
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 21
  start-page: 1129
  issue: 7
  year: 2020
  ident: 10.1016/j.cma.2022.114570_b46
  article-title: Black Hole Mechanics Optimization: a novel meta-heuristic algorithm
  publication-title: Asian J. Civ. Eng.
  doi: 10.1007/s42107-020-00282-8
– ident: 10.1016/j.cma.2022.114570_b3
  doi: 10.1109/ICNN.1995.488968
– volume: 12
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2022.114570_b18
  article-title: Earthworm optimisation algorithm: a bio-inspired metaheuristic algorithm for global optimisation problems
  publication-title: Int. J. Bio-Inspired Comput.
  doi: 10.1504/IJBIC.2018.093328
– volume: 157
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b50
  article-title: Aquila Optimizer: A novel meta-heuristic optimization Algorithm
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107250
– volume: 54
  start-page: 189
  issue: 4
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b25
  article-title: GWO-based optimal tuning of type-1 and type-2 fuzzy controllers for electromagnetic actuated clutch systems
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.10.032
– volume: 33
  start-page: 735
  issue: 6
  year: 2001
  ident: 10.1016/j.cma.2022.114570_b71
  article-title: Engineering design optimization using a swarm with an intelligent information sharing among individuals
  publication-title: Eng. Optim.
  doi: 10.1080/03052150108940941
– volume: 18
  start-page: 89
  issue: 1
  year: 2013
  ident: 10.1016/j.cma.2022.114570_b32
  article-title: Firefly algorithm with chaos
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2012.06.009
– year: 2021
  ident: 10.1016/j.cma.2022.114570_b30
  article-title: A performance study of meta-heuristic approaches for quadratic assignment problem
  publication-title: Concurr. Comput.: Pract. Exper.
  doi: 10.1002/cpe.6321
– volume: 93
  start-page: 657
  year: 2021
  ident: 10.1016/j.cma.2022.114570_b39
  article-title: Atomic orbital search: A novel metaheuristic algorithm
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2020.12.021
– year: 2006
  ident: 10.1016/j.cma.2022.114570_b76
SSID ssj0000812
Score 2.7424796
Snippet This paper proposes a new metaheuristic algorithm called dwarf mongoose optimization algorithm (DMO) to solve the classical and CEC 2020 benchmark functions...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114570
SubjectTerms Algorithms
Continuity (mathematics)
Dwarf Mongoose Optimization Algorithm
Engineering design problems
Forage
Foraging behavior
Global optimization
Heuristic methods
Metaheuristic
Nature-inspired algorithms
Nutrition
Optimization
Optimization algorithms
Performance measurement
Provisioning
Title Dwarf Mongoose Optimization Algorithm
URI https://dx.doi.org/10.1016/j.cma.2022.114570
https://www.proquest.com/docview/2639678901
Volume 391
WOSCitedRecordID wos000777768100003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000812
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZg4wAHBgPEYEM5wIUqVeLY-XGsoNNAaOMwUG-W7ThpR5tOTcom_nqeYzsNRZvYgUsU5Ydl5b1873Py3vsQehsoQlRBIh9jFfgk5pmf4iT3eRpLQmhOcZtt8f1LcnqaTibZV1uuWLdyAklVpdfX2eV_NTUcA2Pr0tk7mLsbFA7APhgdtmB22P6T4T9e8VWh39VyqXPRzwATFrbYcjCal8vVrJku-pzUCTtYNek2QZZbcrpQujLYdXJWm-aFnaOU63rKf_BeVdjgbNjx9F_r8mrd4o-o-Xy5GIy7c1r6eT4r-dSUZ8-aaf8LBCxeuxQsh6qE-sA0aB9VIyPCZXERVl3UCIT8Bdnm68HFULZtoDAebq79sz32VtjqkgldntoFgyGYHoKZIe6jXZzQDLBud_RpPPm8idBpaLrI23m7v91t3t_WPG7iK1uRu6Uj50_QY7uO8EbG_k_RPVXtoz27pvAsYtf76FGv4eQz9K51Ds85h9d3Dq9zjufo2_H4_MOJb4UyfBlh2vikkFhigTkVaSizSORauCcJCiLjRMDZIOIBzeOYFwkE2jAWApMo1T8E8hxDhHmBdqplpV4iL8JRTEkhcBERkpMsDQqpMT9XXIR5GhygwD0OJm0XeS1mMmc3muEAve9uuTQtVG67mLhnzCwHNNyOgb_cdtuhswez72LNMLDvWBd6h6_uMoXX6OHGyw_RTrNaqyP0QP5sZvXqjfWl30h_goY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dwarf+Mongoose+Optimization+Algorithm&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Agushaka%2C+Jeffrey+O.&rft.au=Ezugwu%2C+Absalom+E.&rft.au=Abualigah%2C+Laith&rft.date=2022-03-01&rft.issn=0045-7825&rft.volume=391&rft.spage=114570&rft_id=info:doi/10.1016%2Fj.cma.2022.114570&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cma_2022_114570
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon