Large stroke quasi-zero stiffness vibration isolator using three-link mechanism
Quasi-zero stiffness (QZS) is beneficial for low-frequency vibration isolation. However, most isolators based on QZS have a small working stroke and a limited load capacity, which hinders applications in many environments. Here, a large stroke QZS vibration isolator using three-link mechanisms (TLMs...
Saved in:
| Published in: | Journal of sound and vibration Vol. 478; p. 115344 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier Ltd
21.07.2020
Elsevier Science Ltd |
| Subjects: | |
| ISSN: | 0022-460X, 1095-8568 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Quasi-zero stiffness (QZS) is beneficial for low-frequency vibration isolation. However, most isolators based on QZS have a small working stroke and a limited load capacity, which hinders applications in many environments. Here, a large stroke QZS vibration isolator using three-link mechanisms (TLMs) is proposed. We design a symmetric polygon structure consisting of two three-link structures which exhibits a linear negative stiffness with large displacement. Then, the quasi-zero stiffness with large stroke could be realized by parallel connection of the symmetric polygon structure and linear springs. In addition, the load capacity of the proposed QZS system is extended by 1.5–2 times compared with a single polygon structure and can be flexibly adjusted. The design philosophy and operation principle of QZS isolator using TLMs are described in detail. The dynamic model is established based on the Lagrange equation. Numerical and experimental results demonstrate that the large stroke QZS vibration isolator has a lower resonant frequency and outperforms the linear counterpart especially at low frequencies. Moreover, the proposed isolator is less sensitive to vibration amplitude than the traditional QZS isolator. This novel design may provide a feasible method for large amplitude low frequency vibration control and isolation. |
|---|---|
| AbstractList | Quasi-zero stiffness (QZS) is beneficial for low-frequency vibration isolation. However, most isolators based on QZS have a small working stroke and a limited load capacity, which hinders applications in many environments. Here, a large stroke QZS vibration isolator using three-link mechanisms (TLMs) is proposed. We design a symmetric polygon structure consisting of two three-link structures which exhibits a linear negative stiffness with large displacement. Then, the quasi-zero stiffness with large stroke could be realized by parallel connection of the symmetric polygon structure and linear springs. In addition, the load capacity of the proposed QZS system is extended by 1.5–2 times compared with a single polygon structure and can be flexibly adjusted. The design philosophy and operation principle of QZS isolator using TLMs are described in detail. The dynamic model is established based on the Lagrange equation. Numerical and experimental results demonstrate that the large stroke QZS vibration isolator has a lower resonant frequency and outperforms the linear counterpart especially at low frequencies. Moreover, the proposed isolator is less sensitive to vibration amplitude than the traditional QZS isolator. This novel design may provide a feasible method for large amplitude low frequency vibration control and isolation. |
| ArticleNumber | 115344 |
| Author | Tan, Ting Gao, Qiu-Hua Wang, Sen Zou, Hong-Xiang Zhao, Lin-Chuan Zhang, Wen-Ming Yan, Ge |
| Author_xml | – sequence: 1 givenname: Ge surname: Yan fullname: Yan, Ge organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China – sequence: 2 givenname: Hong-Xiang surname: Zou fullname: Zou, Hong-Xiang organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China – sequence: 3 givenname: Sen surname: Wang fullname: Wang, Sen organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China – sequence: 4 givenname: Lin-Chuan surname: Zhao fullname: Zhao, Lin-Chuan organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China – sequence: 5 givenname: Qiu-Hua surname: Gao fullname: Gao, Qiu-Hua organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China – sequence: 6 givenname: Ting surname: Tan fullname: Tan, Ting organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China – sequence: 7 givenname: Wen-Ming surname: Zhang fullname: Zhang, Wen-Ming email: wenmingz@sjtu.edu.cn organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China |
| BookMark | eNp9kE1LAzEQhoNUsK3-AG8LnrfObrJfeJLiFxR6UfAWstnZNttt0iZpQX-9qevJQ0_DzLzPDO87ISNtNBJym8AsgSS_72adO85SSEOfZJSxCzJOoMriMsvLERkDpGnMcvi8IhPnOgCoGGVjslwIu8LIeWs2GO0Pwqn4G60JE9W2Gp2Ljqq2wiujI-VML7yx0cEpvYr82iLGvdKbaItyLbRy22ty2Yre4c1fnZKP56f3-Wu8WL68zR8XsaRp5mOG2GKJaVPVBbCmpRUUAsumKTHs64qxWkooixwFq5HWZU1lJSkyAEabltEpuRvu7qzZH9B53pmD1eElTxkDFu4lEFTFoJLWOGex5VL5Xy_eCtXzBPgpPd7xkB4_pceH9AKZ_CN3Vm2F_TrLPAwMBuNHhZY7qVBLbJRF6Xlj1Bn6BxGVi2M |
| CitedBy_id | crossref_primary_10_1007_s00158_021_02891_6 crossref_primary_10_1177_10775463251332677 crossref_primary_10_1016_j_ijmecsci_2025_110225 crossref_primary_10_1016_j_ast_2024_109519 crossref_primary_10_1016_j_cnsns_2022_106465 crossref_primary_10_1007_s42417_022_00552_6 crossref_primary_10_1016_j_cnsns_2020_105654 crossref_primary_10_1016_j_ymssp_2021_108010 crossref_primary_10_1080_15376494_2025_2471957 crossref_primary_10_1016_j_jsv_2024_118702 crossref_primary_10_1007_s11071_024_09561_4 crossref_primary_10_1016_j_ijmecsci_2023_108891 crossref_primary_10_1007_s10483_024_3070_7 crossref_primary_10_1007_s00170_021_07769_x crossref_primary_10_1007_s11071_023_08943_4 crossref_primary_10_1007_s11071_024_09559_y crossref_primary_10_1007_s00707_022_03387_0 crossref_primary_10_1016_j_ijmecsci_2025_109989 crossref_primary_10_1016_j_mechatronics_2024_103159 crossref_primary_10_1007_s40435_024_01472_x crossref_primary_10_1016_j_apm_2024_115828 crossref_primary_10_1016_j_ymssp_2023_110852 crossref_primary_10_1016_j_euromechsol_2024_105515 crossref_primary_10_1016_j_ymssp_2023_110616 crossref_primary_10_1016_j_ymssp_2021_108383 crossref_primary_10_1016_j_ymssp_2022_109208 crossref_primary_10_1007_s11071_020_06063_x crossref_primary_10_3390_en15197066 crossref_primary_10_1016_j_ymssp_2025_113326 crossref_primary_10_1016_j_ast_2024_109352 crossref_primary_10_1007_s00707_022_03182_x crossref_primary_10_1007_s00419_024_02631_4 crossref_primary_10_1016_j_jsv_2022_117351 crossref_primary_10_3390_app112210559 crossref_primary_10_1016_j_jsv_2024_118240 crossref_primary_10_1007_s40430_025_05767_8 crossref_primary_10_1016_j_apm_2021_03_035 crossref_primary_10_1177_10775463221095325 crossref_primary_10_3390_machines13020092 crossref_primary_10_1007_s11071_022_07300_1 crossref_primary_10_1016_j_jsv_2022_116819 crossref_primary_10_1007_s40815_022_01357_1 crossref_primary_10_3390_app15095099 crossref_primary_10_1007_s42417_023_01166_2 crossref_primary_10_1016_j_ijmecsci_2025_110283 crossref_primary_10_1016_j_mechmachtheory_2025_105997 crossref_primary_10_1016_j_ymssp_2024_111956 crossref_primary_10_1016_j_ifacol_2023_10_1487 crossref_primary_10_1016_j_jsv_2023_117756 crossref_primary_10_1109_TRO_2024_3408005 crossref_primary_10_1007_s10483_022_2868_5 crossref_primary_10_1016_j_ijnonlinmec_2022_103964 crossref_primary_10_1016_j_ymssp_2024_111797 crossref_primary_10_1016_j_jsv_2021_116743 crossref_primary_10_1177_10775463221128657 crossref_primary_10_1016_j_ymssp_2023_110387 crossref_primary_10_1016_j_ymssp_2024_111154 crossref_primary_10_1016_j_engstruct_2025_121048 crossref_primary_10_1016_j_jsv_2024_118750 crossref_primary_10_1016_j_apenergy_2022_120423 crossref_primary_10_1007_s10483_024_3157_6 crossref_primary_10_1016_j_cnsns_2023_107246 crossref_primary_10_1177_10775463221139006 crossref_primary_10_1007_s10409_022_09039_x crossref_primary_10_1016_j_ijmecsci_2025_110670 crossref_primary_10_1016_j_mechmachtheory_2025_106152 crossref_primary_10_3390_app14104250 crossref_primary_10_1007_s11431_020_1804_7 crossref_primary_10_1016_j_ymssp_2022_110017 crossref_primary_10_1007_s42417_023_00877_w crossref_primary_10_1016_j_ijmecsci_2022_107733 crossref_primary_10_1016_j_ijnonlinmec_2020_103632 crossref_primary_10_1088_1361_665X_adfb37 crossref_primary_10_1016_j_ijmecsci_2024_109390 crossref_primary_10_1016_j_ijmecsci_2023_108447 crossref_primary_10_1016_j_jsv_2021_116474 crossref_primary_10_1016_j_jsv_2021_116231 crossref_primary_10_1016_j_jsv_2023_118059 crossref_primary_10_1007_s11071_022_07610_4 crossref_primary_10_1016_j_ijmecsci_2024_109277 crossref_primary_10_1016_j_ijmecsci_2024_109795 crossref_primary_10_1016_j_ymssp_2025_113082 crossref_primary_10_1016_j_ijnonlinmec_2023_104554 crossref_primary_10_1007_s10409_023_22415_x crossref_primary_10_1016_j_ymssp_2022_109379 crossref_primary_10_1177_1077546321990524 crossref_primary_10_1016_j_ijsolstr_2025_113518 crossref_primary_10_1016_j_jsv_2024_118906 crossref_primary_10_1016_j_coco_2025_102464 crossref_primary_10_1016_j_jsv_2022_117538 crossref_primary_10_1016_j_ast_2024_109163 crossref_primary_10_1016_j_ymssp_2023_110362 crossref_primary_10_1007_s40997_023_00622_4 crossref_primary_10_1155_2021_5556088 crossref_primary_10_1016_j_jsv_2023_117897 crossref_primary_10_1016_j_ymssp_2024_111452 crossref_primary_10_1016_j_engstruct_2023_117282 crossref_primary_10_1016_j_engstruct_2025_121389 crossref_primary_10_1016_j_engstruct_2023_117284 crossref_primary_10_1016_j_ymssp_2022_109492 crossref_primary_10_1007_s11431_022_2268_2 crossref_primary_10_1016_j_ymssp_2022_108955 crossref_primary_10_1007_s11071_025_10962_2 crossref_primary_10_1016_j_ymssp_2024_111609 crossref_primary_10_3390_machines10090813 crossref_primary_10_1007_s42417_021_00390_y crossref_primary_10_1016_j_ymssp_2022_109489 crossref_primary_10_1007_s10483_022_2871_6 crossref_primary_10_1007_s11071_024_09435_9 crossref_primary_10_1016_j_precisioneng_2024_10_013 crossref_primary_10_1115_1_4068692 crossref_primary_10_1016_j_ijmecsci_2023_108622 crossref_primary_10_3390_app112110032 crossref_primary_10_1007_s10409_024_24210_x crossref_primary_10_1016_j_ijmecsci_2025_110418 crossref_primary_10_1007_s10483_022_2852_5 crossref_primary_10_1016_j_jsv_2022_116799 crossref_primary_10_1016_j_ymssp_2024_111285 crossref_primary_10_1016_j_ijmecsci_2022_107351 crossref_primary_10_1016_j_precisioneng_2024_07_004 crossref_primary_10_1007_s10409_021_01070_6 crossref_primary_10_1140_epjp_s13360_021_01240_2 crossref_primary_10_1007_s11071_024_09440_y crossref_primary_10_1016_j_ast_2024_109735 crossref_primary_10_1177_10775463231188160 crossref_primary_10_1007_s11071_023_09166_3 crossref_primary_10_1038_s44455_025_00002_9 crossref_primary_10_1016_j_cnsns_2024_108140 crossref_primary_10_1016_j_ymssp_2024_112289 crossref_primary_10_3390_machines11050512 crossref_primary_10_1016_j_ijmecsci_2023_108598 crossref_primary_10_1016_j_apm_2023_01_039 crossref_primary_10_3389_fmats_2023_1256098 crossref_primary_10_1016_j_ijmecsci_2024_109227 crossref_primary_10_1016_j_tws_2024_112609 crossref_primary_10_1007_s10409_024_23501_x crossref_primary_10_1007_s11071_020_05878_y crossref_primary_10_1098_rspa_2025_0212 crossref_primary_10_1016_j_ymssp_2022_109348 crossref_primary_10_1007_s11071_024_10206_9 crossref_primary_10_1016_j_tws_2025_113964 crossref_primary_10_1007_s42235_023_00352_y crossref_primary_10_1155_2021_9920674 crossref_primary_10_1155_vib_5559809 crossref_primary_10_1016_j_mechmachtheory_2022_104878 crossref_primary_10_3390_vibration7010013 crossref_primary_10_1016_j_engstruct_2025_120028 crossref_primary_10_1016_j_ijmecsci_2023_108760 crossref_primary_10_1016_j_jsv_2022_117543 crossref_primary_10_1186_s10033_022_00758_5 |
| Cites_doi | 10.1016/j.ymssp.2017.07.029 10.1016/j.jsv.2005.12.025 10.1016/j.jsv.2013.10.026 10.1016/j.jsv.2012.05.019 10.1016/j.jsv.2017.01.021 10.1016/j.cma.2015.07.017 10.1016/j.jfluidstructs.2006.09.005 10.1016/j.jsv.2006.10.011 10.1007/s11071-016-3065-x 10.1007/s11071-018-4575-5 10.1115/1.4038285 10.1016/j.jsv.2014.10.027 10.1007/s11071-017-3862-x 10.1016/j.jsv.2012.10.037 10.1016/j.jsv.2008.04.017 10.1016/j.jsv.2008.01.046 10.1016/j.jsv.2007.12.025 10.1016/j.jsv.2008.01.014 10.1115/1.4034989 10.1016/j.ymssp.2018.02.048 10.1016/j.jsv.2016.06.004 10.1016/j.ymssp.2018.02.014 10.1115/1.4037883 10.1007/s11071-016-3188-0 10.1115/1.4042932 10.1016/j.apacoust.2019.02.013 10.1016/j.jsv.2015.02.005 10.1016/j.ymssp.2017.12.015 10.1016/j.jsv.2007.12.019 10.1016/j.ymssp.2018.08.040 10.1088/1361-665X/ab1ec8 10.1016/j.ymssp.2018.09.004 10.1016/j.jsv.2008.04.014 10.1016/j.jsv.2013.01.034 10.1016/j.jsv.2008.11.034 10.1007/s11071-017-3535-9 10.1088/1748-3190/10/5/056015 10.1016/j.ijnonlinmec.2018.09.004 10.1016/j.jsv.2014.02.009 10.1016/j.cnsns.2019.105143 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd Copyright Elsevier Science Ltd. Jul 21, 2020 |
| Copyright_xml | – notice: 2020 Elsevier Ltd – notice: Copyright Elsevier Science Ltd. Jul 21, 2020 |
| DBID | AAYXX CITATION 7TB 8FD FR3 KR7 |
| DOI | 10.1016/j.jsv.2020.115344 |
| DatabaseName | CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Physics |
| EISSN | 1095-8568 |
| ExternalDocumentID | 10_1016_j_jsv_2020_115344 S0022460X20301759 |
| GroupedDBID | --K --M --Z -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFSI ABJNI ABMAC ABNEU ABYKQ ACDAQ ACFVG ACGFS ACIWK ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 DM4 E.L EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA J1W JJJVA KOM LG5 M24 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSQ SST SSZ T5K TN5 XPP ZMT ~G- 29L 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AHPGS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF EFKBS EJD FEDTE FGOYB G-2 HMV HVGLF HZ~ H~9 IHE NDZJH R2- SEW SMS SPG T9H VOH WUQ ZY4 ~HD 7TB 8FD FR3 KR7 |
| ID | FETCH-LOGICAL-c325t-4eefe8e2d9b704df3907ae8dd8e325b944bcc0876ea4be3b8b3c9c3e40043df43 |
| ISICitedReferencesCount | 169 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000534051200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-460X |
| IngestDate | Sun Nov 09 07:46:02 EST 2025 Sat Nov 29 07:26:09 EST 2025 Tue Nov 18 19:50:34 EST 2025 Fri Feb 23 02:46:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Adjustable load capacity Quasi-zero stiffness Passive vibration isolator Large stoke |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-4eefe8e2d9b704df3907ae8dd8e325b944bcc0876ea4be3b8b3c9c3e40043df43 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2440490710 |
| PQPubID | 2047461 |
| ParticipantIDs | proquest_journals_2440490710 crossref_citationtrail_10_1016_j_jsv_2020_115344 crossref_primary_10_1016_j_jsv_2020_115344 elsevier_sciencedirect_doi_10_1016_j_jsv_2020_115344 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-07-21 |
| PublicationDateYYYYMMDD | 2020-07-21 |
| PublicationDate_xml | – month: 07 year: 2020 text: 2020-07-21 day: 21 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Journal of sound and vibration |
| PublicationYear | 2020 |
| Publisher | Elsevier Ltd Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier Science Ltd |
| References | Zhou, Xu, Bishop (bib20) 2015; 338 Gatti (bib27) 2019; 28 Wang, Jing, Guo (bib35) 2019; 95 Mao, Ding, Chen (bib3) 2018; 86 Xiuting, Zhang, Xu, Wang (bib9) 2017; 85 Gatti (bib29) 2020; 83 Ribeiro, Amabili (bib13) 2008; 315 Bian, Jing (bib32) 2019; 125 Wu, Jing, Sun, Li (bib37) 2016; 380 Carrella, Brennan, Waters (bib7) 2007; 301 Liu, Huang, Hua (bib43) 2013; 332 Detroux, Renson, Masset, Kerschen (bib40) 2015; 296 Xu, Yu, Zhou, Bishop (bib22) 2013; 332 Liu, Xu, Ji (bib11) 2012; 331 Dai, Jing, Wang, Yue, Yuan (bib30) 2018; 105 Carrella, Brennan, Waters, Shin (bib14) 2008; 315 Carrella, Brennan, Kovacic, Waters (bib17) 2009; 322 Dai, Jing, Sun, Wang, Yue (bib36) 2018; 109 Ibrahim (bib4) 2008; 314 Kovacic, Brennan, Waters (bib8) 2008; 315 Lu, Yang, Brennan, Liu, Chen (bib12) 2016; 84 Liu, Huang, Hua (bib24) 2013; 332 Mao, Ding, Chen (bib5) 2019; 141 Wang, Zhou, Xu, Ouyang, Duan (bib21) 2016; 87 Hu, Tang (bib41) 2006; 294 Zhou, Xiao, Xu, Ouyang, Li (bib19) 2017; 394 Zhu, Yang, Zhang, Feng, Ma (bib26) 2017; 89 Hu, Jing (bib31) 2017; 91 Mojahed, Moore, Bergman, Vakakis (bib28) 2018; 107 Mao, Ding, Chen (bib1) 2017; 84 Wu, Chen, Shan (bib10) 2014; 333 Liu, Dowell, Thomas (bib42) 2007; 23 Zhou, Wang, Xu, Bishop (bib6) 2015; 346 Virgin, Santillan, Plaut (bib15) 2008; 315 Li, Tan, Kong, Wang, Yang (bib2) 2018; 100 Huang, Liu, Sun, Zhang, Hua (bib25) 2014; 333 Thomas, Bilbao (bib16) 2008; 315 Feng, Jing (bib33) 2019; 117 Wu, Jing, Bian, Li, Allen (bib34) 2015; 10 Kim, Kang (bib39) 2019; 150 Cheng, Li, Wang, Jiang (bib18) 2016; 87 Zhou, Xiao, Xu, Ouyang, Li (bib23) 2017; 394 Xingjian, Linli, Xiao, Bo, Quankun (bib38) 2019; 118 Bian (10.1016/j.jsv.2020.115344_bib32) 2019; 125 Mojahed (10.1016/j.jsv.2020.115344_bib28) 2018; 107 Wu (10.1016/j.jsv.2020.115344_bib10) 2014; 333 Xiuting (10.1016/j.jsv.2020.115344_bib9) 2017; 85 Carrella (10.1016/j.jsv.2020.115344_bib17) 2009; 322 Hu (10.1016/j.jsv.2020.115344_bib41) 2006; 294 Mao (10.1016/j.jsv.2020.115344_bib3) 2018; 86 Lu (10.1016/j.jsv.2020.115344_bib12) 2016; 84 Hu (10.1016/j.jsv.2020.115344_bib31) 2017; 91 Mao (10.1016/j.jsv.2020.115344_bib5) 2019; 141 Zhou (10.1016/j.jsv.2020.115344_bib20) 2015; 338 Zhu (10.1016/j.jsv.2020.115344_bib26) 2017; 89 Wang (10.1016/j.jsv.2020.115344_bib35) 2019; 95 Liu (10.1016/j.jsv.2020.115344_bib42) 2007; 23 Carrella (10.1016/j.jsv.2020.115344_bib14) 2008; 315 Virgin (10.1016/j.jsv.2020.115344_bib15) 2008; 315 Wang (10.1016/j.jsv.2020.115344_bib21) 2016; 87 Xingjian (10.1016/j.jsv.2020.115344_bib38) 2019; 118 Ibrahim (10.1016/j.jsv.2020.115344_bib4) 2008; 314 Li (10.1016/j.jsv.2020.115344_bib2) 2018; 100 Zhou (10.1016/j.jsv.2020.115344_bib23) 2017; 394 Gatti (10.1016/j.jsv.2020.115344_bib27) 2019; 28 Wu (10.1016/j.jsv.2020.115344_bib34) 2015; 10 Huang (10.1016/j.jsv.2020.115344_bib25) 2014; 333 Liu (10.1016/j.jsv.2020.115344_bib11) 2012; 331 Wu (10.1016/j.jsv.2020.115344_bib37) 2016; 380 Kovacic (10.1016/j.jsv.2020.115344_bib8) 2008; 315 Zhou (10.1016/j.jsv.2020.115344_bib6) 2015; 346 Carrella (10.1016/j.jsv.2020.115344_bib7) 2007; 301 Dai (10.1016/j.jsv.2020.115344_bib30) 2018; 105 Liu (10.1016/j.jsv.2020.115344_bib43) 2013; 332 Mao (10.1016/j.jsv.2020.115344_bib1) 2017; 84 Feng (10.1016/j.jsv.2020.115344_bib33) 2019; 117 Detroux (10.1016/j.jsv.2020.115344_bib40) 2015; 296 Gatti (10.1016/j.jsv.2020.115344_bib29) 2020; 83 Xu (10.1016/j.jsv.2020.115344_bib22) 2013; 332 Ribeiro (10.1016/j.jsv.2020.115344_bib13) 2008; 315 Dai (10.1016/j.jsv.2020.115344_bib36) 2018; 109 Zhou (10.1016/j.jsv.2020.115344_bib19) 2017; 394 Thomas (10.1016/j.jsv.2020.115344_bib16) 2008; 315 Cheng (10.1016/j.jsv.2020.115344_bib18) 2016; 87 Kim (10.1016/j.jsv.2020.115344_bib39) 2019; 150 Liu (10.1016/j.jsv.2020.115344_bib24) 2013; 332 |
| References_xml | – volume: 91 start-page: 157 year: 2017 end-page: 185 ident: bib31 article-title: A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs publication-title: Nonlinear Dynam. – volume: 89 start-page: 1545 year: 2017 end-page: 1568 ident: bib26 article-title: Nonlinear dynamic model of air spring with a damper for vehicle ride comfort publication-title: Nonlinear Dynam. – volume: 331 start-page: 4691 year: 2012 end-page: 4703 ident: bib11 article-title: Theoretical design and experimental verification of a tunable floating vibration isolation system publication-title: J. Sound Vib. – volume: 346 start-page: 53 year: 2015 end-page: 69 ident: bib6 article-title: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms publication-title: J. Sound Vib. – volume: 332 start-page: 3359 year: 2013 end-page: 3376 ident: bib24 article-title: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector publication-title: J. Sound Vib. – volume: 95 start-page: 445 year: 2019 end-page: 464 ident: bib35 article-title: Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints publication-title: Nonlinear Dynam. – volume: 28 year: 2019 ident: bib27 article-title: A K-shaped spring configuration to boost elastic potential energy publication-title: Smart Mater. Struct. – volume: 296 start-page: 18 year: 2015 end-page: 38 ident: bib40 article-title: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems publication-title: Comput. Methods Appl. Mech. Eng. – volume: 23 start-page: 351 year: 2007 end-page: 363 ident: bib42 article-title: A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces publication-title: J. Fluid Struct. – volume: 118 start-page: 317 year: 2019 end-page: 339 ident: bib38 article-title: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers publication-title: Mech. Syst. Signal Process. – volume: 294 start-page: 637 year: 2006 end-page: 639 ident: bib41 article-title: Solution of a Duffing-harmonic oscillator by the method of harmonic balance publication-title: J. Sound Vib. – volume: 83 start-page: 105143 year: 2020 ident: bib29 article-title: Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behavior for large deflections publication-title: Commun. Nonlinear Sci. Numer. Simulat. – volume: 100 start-page: 360 year: 2018 end-page: 370 ident: bib2 article-title: The influence of flywheel micro vibration on space camera and vibration suppression publication-title: Mech. Syst. Signal Process. – volume: 125 start-page: 21 year: 2019 end-page: 51 ident: bib32 article-title: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure publication-title: Mech. Syst. Signal Process. – volume: 84 start-page: 111006 year: 2017 end-page: 111011 ident: bib1 article-title: Vibration of flexible structures under nonlinear boundary conditions publication-title: J. Appl. Mech. – volume: 85 start-page: 11002 year: 2017 end-page: 11013 ident: bib9 article-title: Dynamical analysis and realization of an adaptive isolator publication-title: J. Appl. Mech. – volume: 150 start-page: 162 year: 2019 end-page: 168 ident: bib39 article-title: The V-shaped band-stop vibration isolator inspired by middle ear publication-title: Appl. Acoust. – volume: 394 start-page: 59 year: 2017 end-page: 74 ident: bib19 article-title: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform publication-title: J. Sound Vib. – volume: 315 start-page: 721 year: 2008 end-page: 731 ident: bib15 article-title: Vibration isolation using extreme geometric nonlinearity publication-title: J. Sound Vib. – volume: 322 start-page: 707 year: 2009 end-page: 717 ident: bib17 article-title: On the force transmissibility of a vibration isolator with quasi-zero-stiffness publication-title: J. Sound Vib. – volume: 332 start-page: 3359 year: 2013 end-page: 3376 ident: bib43 article-title: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector publication-title: J. Sound Vib. – volume: 141 year: 2019 ident: bib5 article-title: Passive isolation by nonlinear boundaries for flexible structures publication-title: J. Vib. Acoust. – volume: 394 start-page: 59 year: 2017 end-page: 74 ident: bib23 article-title: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform publication-title: J. Sound Vib. – volume: 105 start-page: 214 year: 2018 end-page: 240 ident: bib30 article-title: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system publication-title: Mech. Syst. Signal Process. – volume: 84 start-page: 21001 year: 2016 end-page: 21009 ident: bib12 article-title: Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness publication-title: J. Appl. Mech. – volume: 332 start-page: 3377 year: 2013 end-page: 3389 ident: bib22 article-title: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic publication-title: J. Sound Vib. – volume: 109 start-page: 111 year: 2018 end-page: 133 ident: bib36 article-title: Accurate modeling and analysis of a bio-inspired isolation system: with application to on-orbit capture publication-title: Mech. Syst. Signal Process. – volume: 314 start-page: 371 year: 2008 end-page: 452 ident: bib4 article-title: Recent advances in nonlinear passive vibration isolators publication-title: J. Sound Vib. – volume: 86 year: 2018 ident: bib3 article-title: Nonlinear torsional vibration absorber for flexible structures publication-title: J. Appl. Mech. – volume: 301 start-page: 678 year: 2007 end-page: 689 ident: bib7 article-title: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic publication-title: J. Sound Vib. – volume: 87 start-page: 633 year: 2016 end-page: 646 ident: bib21 article-title: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness publication-title: Nonlinear Dynam. – volume: 87 start-page: 2267 year: 2016 end-page: 2279 ident: bib18 article-title: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping publication-title: Nonlinear Dynam. – volume: 333 start-page: 2958 year: 2014 end-page: 2970 ident: bib10 article-title: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness publication-title: J. Sound Vib. – volume: 380 start-page: 90 year: 2016 end-page: 111 ident: bib37 article-title: A 6DOF passive vibration isolator using X-shape supporting structures publication-title: J. Sound Vib. – volume: 338 start-page: 121 year: 2015 end-page: 133 ident: bib20 article-title: A torsion quasi-zero stiffness vibration isolator publication-title: J. Sound Vib. – volume: 315 start-page: 371 year: 2008 end-page: 374 ident: bib13 article-title: Special issue on Geometrically non-linear vibrations of structures—euromech 483 publication-title: J. Sound Vib. – volume: 333 start-page: 1132 year: 2014 end-page: 1148 ident: bib25 article-title: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study publication-title: J. Sound Vib. – volume: 117 start-page: 786 year: 2019 end-page: 812 ident: bib33 article-title: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia publication-title: Mech. Syst. Signal Process. – volume: 315 start-page: 569 year: 2008 end-page: 590 ident: bib16 article-title: Geometrically nonlinear flexural vibrations of plates: in-plane boundary conditions and some symmetry properties publication-title: J. Sound Vib. – volume: 107 start-page: 94 year: 2018 end-page: 111 ident: bib28 article-title: Strong geometric softening–hardening nonlinearities in an oscillator composed of linear stiffness and damping elements publication-title: Int. J. Non Lin. Mech. – volume: 315 start-page: 700 year: 2008 end-page: 711 ident: bib8 article-title: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic publication-title: J. Sound Vib. – volume: 10 year: 2015 ident: bib34 article-title: Vibration isolation by exploring bio-inspired structural nonlinearity publication-title: Bioinspiration Biomimetics – volume: 315 start-page: 712 year: 2008 end-page: 720 ident: bib14 article-title: On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets publication-title: J. Sound Vib. – volume: 100 start-page: 360 year: 2018 ident: 10.1016/j.jsv.2020.115344_bib2 article-title: The influence of flywheel micro vibration on space camera and vibration suppression publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.07.029 – volume: 294 start-page: 637 year: 2006 ident: 10.1016/j.jsv.2020.115344_bib41 article-title: Solution of a Duffing-harmonic oscillator by the method of harmonic balance publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2005.12.025 – volume: 333 start-page: 1132 year: 2014 ident: 10.1016/j.jsv.2020.115344_bib25 article-title: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2013.10.026 – volume: 331 start-page: 4691 year: 2012 ident: 10.1016/j.jsv.2020.115344_bib11 article-title: Theoretical design and experimental verification of a tunable floating vibration isolation system publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2012.05.019 – volume: 394 start-page: 59 year: 2017 ident: 10.1016/j.jsv.2020.115344_bib19 article-title: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.01.021 – volume: 296 start-page: 18 year: 2015 ident: 10.1016/j.jsv.2020.115344_bib40 article-title: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2015.07.017 – volume: 23 start-page: 351 year: 2007 ident: 10.1016/j.jsv.2020.115344_bib42 article-title: A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces publication-title: J. Fluid Struct. doi: 10.1016/j.jfluidstructs.2006.09.005 – volume: 301 start-page: 678 year: 2007 ident: 10.1016/j.jsv.2020.115344_bib7 article-title: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2006.10.011 – volume: 87 start-page: 633 year: 2016 ident: 10.1016/j.jsv.2020.115344_bib21 article-title: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness publication-title: Nonlinear Dynam. doi: 10.1007/s11071-016-3065-x – volume: 95 start-page: 445 year: 2019 ident: 10.1016/j.jsv.2020.115344_bib35 article-title: Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints publication-title: Nonlinear Dynam. doi: 10.1007/s11071-018-4575-5 – volume: 86 year: 2018 ident: 10.1016/j.jsv.2020.115344_bib3 article-title: Nonlinear torsional vibration absorber for flexible structures publication-title: J. Appl. Mech. – volume: 85 start-page: 11002 year: 2017 ident: 10.1016/j.jsv.2020.115344_bib9 article-title: Dynamical analysis and realization of an adaptive isolator publication-title: J. Appl. Mech. doi: 10.1115/1.4038285 – volume: 338 start-page: 121 year: 2015 ident: 10.1016/j.jsv.2020.115344_bib20 article-title: A torsion quasi-zero stiffness vibration isolator publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.10.027 – volume: 91 start-page: 157 year: 2017 ident: 10.1016/j.jsv.2020.115344_bib31 article-title: A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs publication-title: Nonlinear Dynam. doi: 10.1007/s11071-017-3862-x – volume: 332 start-page: 3359 year: 2013 ident: 10.1016/j.jsv.2020.115344_bib43 article-title: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2012.10.037 – volume: 315 start-page: 371 year: 2008 ident: 10.1016/j.jsv.2020.115344_bib13 article-title: Special issue on Geometrically non-linear vibrations of structures—euromech 483 publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.04.017 – volume: 315 start-page: 712 year: 2008 ident: 10.1016/j.jsv.2020.115344_bib14 article-title: On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.01.046 – volume: 315 start-page: 721 year: 2008 ident: 10.1016/j.jsv.2020.115344_bib15 article-title: Vibration isolation using extreme geometric nonlinearity publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2007.12.025 – volume: 314 start-page: 371 year: 2008 ident: 10.1016/j.jsv.2020.115344_bib4 article-title: Recent advances in nonlinear passive vibration isolators publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.01.014 – volume: 84 start-page: 21001 year: 2016 ident: 10.1016/j.jsv.2020.115344_bib12 article-title: Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness publication-title: J. Appl. Mech. doi: 10.1115/1.4034989 – volume: 109 start-page: 111 year: 2018 ident: 10.1016/j.jsv.2020.115344_bib36 article-title: Accurate modeling and analysis of a bio-inspired isolation system: with application to on-orbit capture publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.02.048 – volume: 380 start-page: 90 year: 2016 ident: 10.1016/j.jsv.2020.115344_bib37 article-title: A 6DOF passive vibration isolator using X-shape supporting structures publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.06.004 – volume: 125 start-page: 21 year: 2019 ident: 10.1016/j.jsv.2020.115344_bib32 article-title: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.02.014 – volume: 84 start-page: 111006 year: 2017 ident: 10.1016/j.jsv.2020.115344_bib1 article-title: Vibration of flexible structures under nonlinear boundary conditions publication-title: J. Appl. Mech. doi: 10.1115/1.4037883 – volume: 87 start-page: 2267 year: 2016 ident: 10.1016/j.jsv.2020.115344_bib18 article-title: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping publication-title: Nonlinear Dynam. doi: 10.1007/s11071-016-3188-0 – volume: 141 year: 2019 ident: 10.1016/j.jsv.2020.115344_bib5 article-title: Passive isolation by nonlinear boundaries for flexible structures publication-title: J. Vib. Acoust. doi: 10.1115/1.4042932 – volume: 150 start-page: 162 year: 2019 ident: 10.1016/j.jsv.2020.115344_bib39 article-title: The V-shaped band-stop vibration isolator inspired by middle ear publication-title: Appl. Acoust. doi: 10.1016/j.apacoust.2019.02.013 – volume: 346 start-page: 53 year: 2015 ident: 10.1016/j.jsv.2020.115344_bib6 article-title: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2015.02.005 – volume: 105 start-page: 214 year: 2018 ident: 10.1016/j.jsv.2020.115344_bib30 article-title: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2017.12.015 – volume: 315 start-page: 700 year: 2008 ident: 10.1016/j.jsv.2020.115344_bib8 article-title: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2007.12.019 – volume: 117 start-page: 786 year: 2019 ident: 10.1016/j.jsv.2020.115344_bib33 article-title: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.08.040 – volume: 28 year: 2019 ident: 10.1016/j.jsv.2020.115344_bib27 article-title: A K-shaped spring configuration to boost elastic potential energy publication-title: Smart Mater. Struct. doi: 10.1088/1361-665X/ab1ec8 – volume: 118 start-page: 317 year: 2019 ident: 10.1016/j.jsv.2020.115344_bib38 article-title: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers publication-title: Mech. Syst. Signal Process. doi: 10.1016/j.ymssp.2018.09.004 – volume: 315 start-page: 569 year: 2008 ident: 10.1016/j.jsv.2020.115344_bib16 article-title: Geometrically nonlinear flexural vibrations of plates: in-plane boundary conditions and some symmetry properties publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.04.014 – volume: 332 start-page: 3377 year: 2013 ident: 10.1016/j.jsv.2020.115344_bib22 article-title: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2013.01.034 – volume: 332 start-page: 3359 year: 2013 ident: 10.1016/j.jsv.2020.115344_bib24 article-title: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2012.10.037 – volume: 322 start-page: 707 year: 2009 ident: 10.1016/j.jsv.2020.115344_bib17 article-title: On the force transmissibility of a vibration isolator with quasi-zero-stiffness publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2008.11.034 – volume: 89 start-page: 1545 year: 2017 ident: 10.1016/j.jsv.2020.115344_bib26 article-title: Nonlinear dynamic model of air spring with a damper for vehicle ride comfort publication-title: Nonlinear Dynam. doi: 10.1007/s11071-017-3535-9 – volume: 10 year: 2015 ident: 10.1016/j.jsv.2020.115344_bib34 article-title: Vibration isolation by exploring bio-inspired structural nonlinearity publication-title: Bioinspiration Biomimetics doi: 10.1088/1748-3190/10/5/056015 – volume: 107 start-page: 94 year: 2018 ident: 10.1016/j.jsv.2020.115344_bib28 article-title: Strong geometric softening–hardening nonlinearities in an oscillator composed of linear stiffness and damping elements publication-title: Int. J. Non Lin. Mech. doi: 10.1016/j.ijnonlinmec.2018.09.004 – volume: 394 start-page: 59 year: 2017 ident: 10.1016/j.jsv.2020.115344_bib23 article-title: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2017.01.021 – volume: 333 start-page: 2958 year: 2014 ident: 10.1016/j.jsv.2020.115344_bib10 article-title: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2014.02.009 – volume: 83 start-page: 105143 year: 2020 ident: 10.1016/j.jsv.2020.115344_bib29 article-title: Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behavior for large deflections publication-title: Commun. Nonlinear Sci. Numer. Simulat. doi: 10.1016/j.cnsns.2019.105143 |
| SSID | ssj0009434 |
| Score | 2.6444151 |
| Snippet | Quasi-zero stiffness (QZS) is beneficial for low-frequency vibration isolation. However, most isolators based on QZS have a small working stroke and a limited... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 115344 |
| SubjectTerms | Adjustable load capacity Amplitudes Dynamic models Euler-Lagrange equation Frequencies Large stoke Load Low frequencies Numerical analysis Passive vibration isolator Polygons Quasi-zero stiffness Resonant frequencies Springs (elastic) Stiffness Vibration analysis Vibration control Vibration isolators |
| Title | Large stroke quasi-zero stiffness vibration isolator using three-link mechanism |
| URI | https://dx.doi.org/10.1016/j.jsv.2020.115344 https://www.proquest.com/docview/2440490710 |
| Volume | 478 |
| WOSCitedRecordID | wos000534051200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect (Freedom Collection) customDbUrl: eissn: 1095-8568 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009434 issn: 0022-460X databaseCode: AIEXJ dateStart: 19950107 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kIvpU-aNi069NSgxWtp19IxhPRFSS8pmFyEJcvJblo7rHeX0F_fGUm20w0JzaEXs8j2IPx9OxqN5kHI-2IKTEhMwsbCJQwrejHJLWeJKUtY0aUpqsI3m8iOjmSeq-5Et_XtBLK6lpeX6uK_Qg1jADamzt4B7l4oDMBvAB2uADtc_wn4bxjbjTkgzbnDnMl2xn67RQMjs6ryim2NW-QQ5AhTwV333qoNaVML5xie6e79cpgS3NUXvG69ttiOyZ889NJ6BRJ8qp96ypw0K7_CNfUpy4GOp4MXPzqrh3y0k7Oiib4CdnC2ityNbgnYgyYZC7nOV9IExDTJr6paEdr1RGUJxigPxR-v6fHgUpiP5u16hNJHw7N_18zeWMv6CMMueG2uQYRGETqIuE-202yiQAFu7385zL8OFZoFF11peZx3dwTugwE35nGTEbOxnHsb5fgJeRzhofuBFE_JPVc_Iw99kK9tn5Pvnho0UIMO1KA9NWgPJu2oQT016EAN2lPjBfnx8fD44DOLDTWY5elkyYRzlZMuLZXJElFWXCVZ4WRZSgf3jRLCWIs1Cl0hjONGGm6V5Q71PC8rwV-Srbqp3StCeTFJizIzU1VaocCszKQF1V7hKXE1rsY7JOm-kLax2jw2Pfmpb0Rmh3zoX7kIpVZue1h0n11HWzHYgBoodNtrux1EOv5nW51ijUyFtvbru0zhDXk0EH-XbC0XK_eWPLDr5axdvIv0-gPaOJS- |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+stroke+quasi-zero+stiffness+vibration+isolator+using+three-link+mechanism&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Yan%2C+Ge&rft.au=Zou%2C+Hong-Xiang&rft.au=Wang%2C+Sen&rft.au=Zhao%2C+Lin-Chuan&rft.date=2020-07-21&rft.issn=0022-460X&rft.volume=478&rft.spage=115344&rft_id=info:doi/10.1016%2Fj.jsv.2020.115344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsv_2020_115344 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon |