Large stroke quasi-zero stiffness vibration isolator using three-link mechanism

Quasi-zero stiffness (QZS) is beneficial for low-frequency vibration isolation. However, most isolators based on QZS have a small working stroke and a limited load capacity, which hinders applications in many environments. Here, a large stroke QZS vibration isolator using three-link mechanisms (TLMs...

Full description

Saved in:
Bibliographic Details
Published in:Journal of sound and vibration Vol. 478; p. 115344
Main Authors: Yan, Ge, Zou, Hong-Xiang, Wang, Sen, Zhao, Lin-Chuan, Gao, Qiu-Hua, Tan, Ting, Zhang, Wen-Ming
Format: Journal Article
Language:English
Published: Amsterdam Elsevier Ltd 21.07.2020
Elsevier Science Ltd
Subjects:
ISSN:0022-460X, 1095-8568
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Quasi-zero stiffness (QZS) is beneficial for low-frequency vibration isolation. However, most isolators based on QZS have a small working stroke and a limited load capacity, which hinders applications in many environments. Here, a large stroke QZS vibration isolator using three-link mechanisms (TLMs) is proposed. We design a symmetric polygon structure consisting of two three-link structures which exhibits a linear negative stiffness with large displacement. Then, the quasi-zero stiffness with large stroke could be realized by parallel connection of the symmetric polygon structure and linear springs. In addition, the load capacity of the proposed QZS system is extended by 1.5–2 times compared with a single polygon structure and can be flexibly adjusted. The design philosophy and operation principle of QZS isolator using TLMs are described in detail. The dynamic model is established based on the Lagrange equation. Numerical and experimental results demonstrate that the large stroke QZS vibration isolator has a lower resonant frequency and outperforms the linear counterpart especially at low frequencies. Moreover, the proposed isolator is less sensitive to vibration amplitude than the traditional QZS isolator. This novel design may provide a feasible method for large amplitude low frequency vibration control and isolation.
AbstractList Quasi-zero stiffness (QZS) is beneficial for low-frequency vibration isolation. However, most isolators based on QZS have a small working stroke and a limited load capacity, which hinders applications in many environments. Here, a large stroke QZS vibration isolator using three-link mechanisms (TLMs) is proposed. We design a symmetric polygon structure consisting of two three-link structures which exhibits a linear negative stiffness with large displacement. Then, the quasi-zero stiffness with large stroke could be realized by parallel connection of the symmetric polygon structure and linear springs. In addition, the load capacity of the proposed QZS system is extended by 1.5–2 times compared with a single polygon structure and can be flexibly adjusted. The design philosophy and operation principle of QZS isolator using TLMs are described in detail. The dynamic model is established based on the Lagrange equation. Numerical and experimental results demonstrate that the large stroke QZS vibration isolator has a lower resonant frequency and outperforms the linear counterpart especially at low frequencies. Moreover, the proposed isolator is less sensitive to vibration amplitude than the traditional QZS isolator. This novel design may provide a feasible method for large amplitude low frequency vibration control and isolation.
ArticleNumber 115344
Author Tan, Ting
Gao, Qiu-Hua
Wang, Sen
Zou, Hong-Xiang
Zhao, Lin-Chuan
Zhang, Wen-Ming
Yan, Ge
Author_xml – sequence: 1
  givenname: Ge
  surname: Yan
  fullname: Yan, Ge
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
– sequence: 2
  givenname: Hong-Xiang
  surname: Zou
  fullname: Zou, Hong-Xiang
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
– sequence: 3
  givenname: Sen
  surname: Wang
  fullname: Wang, Sen
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
– sequence: 4
  givenname: Lin-Chuan
  surname: Zhao
  fullname: Zhao, Lin-Chuan
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
– sequence: 5
  givenname: Qiu-Hua
  surname: Gao
  fullname: Gao, Qiu-Hua
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
– sequence: 6
  givenname: Ting
  surname: Tan
  fullname: Tan, Ting
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
– sequence: 7
  givenname: Wen-Ming
  surname: Zhang
  fullname: Zhang, Wen-Ming
  email: wenmingz@sjtu.edu.cn
  organization: State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
BookMark eNp9kE1LAzEQhoNUsK3-AG8LnrfObrJfeJLiFxR6UfAWstnZNttt0iZpQX-9qevJQ0_DzLzPDO87ISNtNBJym8AsgSS_72adO85SSEOfZJSxCzJOoMriMsvLERkDpGnMcvi8IhPnOgCoGGVjslwIu8LIeWs2GO0Pwqn4G60JE9W2Gp2Ljqq2wiujI-VML7yx0cEpvYr82iLGvdKbaItyLbRy22ty2Yre4c1fnZKP56f3-Wu8WL68zR8XsaRp5mOG2GKJaVPVBbCmpRUUAsumKTHs64qxWkooixwFq5HWZU1lJSkyAEabltEpuRvu7qzZH9B53pmD1eElTxkDFu4lEFTFoJLWOGex5VL5Xy_eCtXzBPgpPd7xkB4_pceH9AKZ_CN3Vm2F_TrLPAwMBuNHhZY7qVBLbJRF6Xlj1Bn6BxGVi2M
CitedBy_id crossref_primary_10_1007_s00158_021_02891_6
crossref_primary_10_1177_10775463251332677
crossref_primary_10_1016_j_ijmecsci_2025_110225
crossref_primary_10_1016_j_ast_2024_109519
crossref_primary_10_1016_j_cnsns_2022_106465
crossref_primary_10_1007_s42417_022_00552_6
crossref_primary_10_1016_j_cnsns_2020_105654
crossref_primary_10_1016_j_ymssp_2021_108010
crossref_primary_10_1080_15376494_2025_2471957
crossref_primary_10_1016_j_jsv_2024_118702
crossref_primary_10_1007_s11071_024_09561_4
crossref_primary_10_1016_j_ijmecsci_2023_108891
crossref_primary_10_1007_s10483_024_3070_7
crossref_primary_10_1007_s00170_021_07769_x
crossref_primary_10_1007_s11071_023_08943_4
crossref_primary_10_1007_s11071_024_09559_y
crossref_primary_10_1007_s00707_022_03387_0
crossref_primary_10_1016_j_ijmecsci_2025_109989
crossref_primary_10_1016_j_mechatronics_2024_103159
crossref_primary_10_1007_s40435_024_01472_x
crossref_primary_10_1016_j_apm_2024_115828
crossref_primary_10_1016_j_ymssp_2023_110852
crossref_primary_10_1016_j_euromechsol_2024_105515
crossref_primary_10_1016_j_ymssp_2023_110616
crossref_primary_10_1016_j_ymssp_2021_108383
crossref_primary_10_1016_j_ymssp_2022_109208
crossref_primary_10_1007_s11071_020_06063_x
crossref_primary_10_3390_en15197066
crossref_primary_10_1016_j_ymssp_2025_113326
crossref_primary_10_1016_j_ast_2024_109352
crossref_primary_10_1007_s00707_022_03182_x
crossref_primary_10_1007_s00419_024_02631_4
crossref_primary_10_1016_j_jsv_2022_117351
crossref_primary_10_3390_app112210559
crossref_primary_10_1016_j_jsv_2024_118240
crossref_primary_10_1007_s40430_025_05767_8
crossref_primary_10_1016_j_apm_2021_03_035
crossref_primary_10_1177_10775463221095325
crossref_primary_10_3390_machines13020092
crossref_primary_10_1007_s11071_022_07300_1
crossref_primary_10_1016_j_jsv_2022_116819
crossref_primary_10_1007_s40815_022_01357_1
crossref_primary_10_3390_app15095099
crossref_primary_10_1007_s42417_023_01166_2
crossref_primary_10_1016_j_ijmecsci_2025_110283
crossref_primary_10_1016_j_mechmachtheory_2025_105997
crossref_primary_10_1016_j_ymssp_2024_111956
crossref_primary_10_1016_j_ifacol_2023_10_1487
crossref_primary_10_1016_j_jsv_2023_117756
crossref_primary_10_1109_TRO_2024_3408005
crossref_primary_10_1007_s10483_022_2868_5
crossref_primary_10_1016_j_ijnonlinmec_2022_103964
crossref_primary_10_1016_j_ymssp_2024_111797
crossref_primary_10_1016_j_jsv_2021_116743
crossref_primary_10_1177_10775463221128657
crossref_primary_10_1016_j_ymssp_2023_110387
crossref_primary_10_1016_j_ymssp_2024_111154
crossref_primary_10_1016_j_engstruct_2025_121048
crossref_primary_10_1016_j_jsv_2024_118750
crossref_primary_10_1016_j_apenergy_2022_120423
crossref_primary_10_1007_s10483_024_3157_6
crossref_primary_10_1016_j_cnsns_2023_107246
crossref_primary_10_1177_10775463221139006
crossref_primary_10_1007_s10409_022_09039_x
crossref_primary_10_1016_j_ijmecsci_2025_110670
crossref_primary_10_1016_j_mechmachtheory_2025_106152
crossref_primary_10_3390_app14104250
crossref_primary_10_1007_s11431_020_1804_7
crossref_primary_10_1016_j_ymssp_2022_110017
crossref_primary_10_1007_s42417_023_00877_w
crossref_primary_10_1016_j_ijmecsci_2022_107733
crossref_primary_10_1016_j_ijnonlinmec_2020_103632
crossref_primary_10_1088_1361_665X_adfb37
crossref_primary_10_1016_j_ijmecsci_2024_109390
crossref_primary_10_1016_j_ijmecsci_2023_108447
crossref_primary_10_1016_j_jsv_2021_116474
crossref_primary_10_1016_j_jsv_2021_116231
crossref_primary_10_1016_j_jsv_2023_118059
crossref_primary_10_1007_s11071_022_07610_4
crossref_primary_10_1016_j_ijmecsci_2024_109277
crossref_primary_10_1016_j_ijmecsci_2024_109795
crossref_primary_10_1016_j_ymssp_2025_113082
crossref_primary_10_1016_j_ijnonlinmec_2023_104554
crossref_primary_10_1007_s10409_023_22415_x
crossref_primary_10_1016_j_ymssp_2022_109379
crossref_primary_10_1177_1077546321990524
crossref_primary_10_1016_j_ijsolstr_2025_113518
crossref_primary_10_1016_j_jsv_2024_118906
crossref_primary_10_1016_j_coco_2025_102464
crossref_primary_10_1016_j_jsv_2022_117538
crossref_primary_10_1016_j_ast_2024_109163
crossref_primary_10_1016_j_ymssp_2023_110362
crossref_primary_10_1007_s40997_023_00622_4
crossref_primary_10_1155_2021_5556088
crossref_primary_10_1016_j_jsv_2023_117897
crossref_primary_10_1016_j_ymssp_2024_111452
crossref_primary_10_1016_j_engstruct_2023_117282
crossref_primary_10_1016_j_engstruct_2025_121389
crossref_primary_10_1016_j_engstruct_2023_117284
crossref_primary_10_1016_j_ymssp_2022_109492
crossref_primary_10_1007_s11431_022_2268_2
crossref_primary_10_1016_j_ymssp_2022_108955
crossref_primary_10_1007_s11071_025_10962_2
crossref_primary_10_1016_j_ymssp_2024_111609
crossref_primary_10_3390_machines10090813
crossref_primary_10_1007_s42417_021_00390_y
crossref_primary_10_1016_j_ymssp_2022_109489
crossref_primary_10_1007_s10483_022_2871_6
crossref_primary_10_1007_s11071_024_09435_9
crossref_primary_10_1016_j_precisioneng_2024_10_013
crossref_primary_10_1115_1_4068692
crossref_primary_10_1016_j_ijmecsci_2023_108622
crossref_primary_10_3390_app112110032
crossref_primary_10_1007_s10409_024_24210_x
crossref_primary_10_1016_j_ijmecsci_2025_110418
crossref_primary_10_1007_s10483_022_2852_5
crossref_primary_10_1016_j_jsv_2022_116799
crossref_primary_10_1016_j_ymssp_2024_111285
crossref_primary_10_1016_j_ijmecsci_2022_107351
crossref_primary_10_1016_j_precisioneng_2024_07_004
crossref_primary_10_1007_s10409_021_01070_6
crossref_primary_10_1140_epjp_s13360_021_01240_2
crossref_primary_10_1007_s11071_024_09440_y
crossref_primary_10_1016_j_ast_2024_109735
crossref_primary_10_1177_10775463231188160
crossref_primary_10_1007_s11071_023_09166_3
crossref_primary_10_1038_s44455_025_00002_9
crossref_primary_10_1016_j_cnsns_2024_108140
crossref_primary_10_1016_j_ymssp_2024_112289
crossref_primary_10_3390_machines11050512
crossref_primary_10_1016_j_ijmecsci_2023_108598
crossref_primary_10_1016_j_apm_2023_01_039
crossref_primary_10_3389_fmats_2023_1256098
crossref_primary_10_1016_j_ijmecsci_2024_109227
crossref_primary_10_1016_j_tws_2024_112609
crossref_primary_10_1007_s10409_024_23501_x
crossref_primary_10_1007_s11071_020_05878_y
crossref_primary_10_1098_rspa_2025_0212
crossref_primary_10_1016_j_ymssp_2022_109348
crossref_primary_10_1007_s11071_024_10206_9
crossref_primary_10_1016_j_tws_2025_113964
crossref_primary_10_1007_s42235_023_00352_y
crossref_primary_10_1155_2021_9920674
crossref_primary_10_1155_vib_5559809
crossref_primary_10_1016_j_mechmachtheory_2022_104878
crossref_primary_10_3390_vibration7010013
crossref_primary_10_1016_j_engstruct_2025_120028
crossref_primary_10_1016_j_ijmecsci_2023_108760
crossref_primary_10_1016_j_jsv_2022_117543
crossref_primary_10_1186_s10033_022_00758_5
Cites_doi 10.1016/j.ymssp.2017.07.029
10.1016/j.jsv.2005.12.025
10.1016/j.jsv.2013.10.026
10.1016/j.jsv.2012.05.019
10.1016/j.jsv.2017.01.021
10.1016/j.cma.2015.07.017
10.1016/j.jfluidstructs.2006.09.005
10.1016/j.jsv.2006.10.011
10.1007/s11071-016-3065-x
10.1007/s11071-018-4575-5
10.1115/1.4038285
10.1016/j.jsv.2014.10.027
10.1007/s11071-017-3862-x
10.1016/j.jsv.2012.10.037
10.1016/j.jsv.2008.04.017
10.1016/j.jsv.2008.01.046
10.1016/j.jsv.2007.12.025
10.1016/j.jsv.2008.01.014
10.1115/1.4034989
10.1016/j.ymssp.2018.02.048
10.1016/j.jsv.2016.06.004
10.1016/j.ymssp.2018.02.014
10.1115/1.4037883
10.1007/s11071-016-3188-0
10.1115/1.4042932
10.1016/j.apacoust.2019.02.013
10.1016/j.jsv.2015.02.005
10.1016/j.ymssp.2017.12.015
10.1016/j.jsv.2007.12.019
10.1016/j.ymssp.2018.08.040
10.1088/1361-665X/ab1ec8
10.1016/j.ymssp.2018.09.004
10.1016/j.jsv.2008.04.014
10.1016/j.jsv.2013.01.034
10.1016/j.jsv.2008.11.034
10.1007/s11071-017-3535-9
10.1088/1748-3190/10/5/056015
10.1016/j.ijnonlinmec.2018.09.004
10.1016/j.jsv.2014.02.009
10.1016/j.cnsns.2019.105143
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright Elsevier Science Ltd. Jul 21, 2020
Copyright_xml – notice: 2020 Elsevier Ltd
– notice: Copyright Elsevier Science Ltd. Jul 21, 2020
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.jsv.2020.115344
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1095-8568
ExternalDocumentID 10_1016_j_jsv_2020_115344
S0022460X20301759
GroupedDBID --K
--M
--Z
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFSI
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DM4
E.L
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
J1W
JJJVA
KOM
LG5
M24
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSQ
SST
SSZ
T5K
TN5
XPP
ZMT
~G-
29L
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AHPGS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
EFKBS
EJD
FEDTE
FGOYB
G-2
HMV
HVGLF
HZ~
H~9
IHE
NDZJH
R2-
SEW
SMS
SPG
T9H
VOH
WUQ
ZY4
~HD
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c325t-4eefe8e2d9b704df3907ae8dd8e325b944bcc0876ea4be3b8b3c9c3e40043df43
ISICitedReferencesCount 169
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000534051200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-460X
IngestDate Sun Nov 09 07:46:02 EST 2025
Sat Nov 29 07:26:09 EST 2025
Tue Nov 18 19:50:34 EST 2025
Fri Feb 23 02:46:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adjustable load capacity
Quasi-zero stiffness
Passive vibration isolator
Large stoke
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-4eefe8e2d9b704df3907ae8dd8e325b944bcc0876ea4be3b8b3c9c3e40043df43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2440490710
PQPubID 2047461
ParticipantIDs proquest_journals_2440490710
crossref_citationtrail_10_1016_j_jsv_2020_115344
crossref_primary_10_1016_j_jsv_2020_115344
elsevier_sciencedirect_doi_10_1016_j_jsv_2020_115344
PublicationCentury 2000
PublicationDate 2020-07-21
PublicationDateYYYYMMDD 2020-07-21
PublicationDate_xml – month: 07
  year: 2020
  text: 2020-07-21
  day: 21
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Journal of sound and vibration
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier Science Ltd
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Science Ltd
References Zhou, Xu, Bishop (bib20) 2015; 338
Gatti (bib27) 2019; 28
Wang, Jing, Guo (bib35) 2019; 95
Mao, Ding, Chen (bib3) 2018; 86
Xiuting, Zhang, Xu, Wang (bib9) 2017; 85
Gatti (bib29) 2020; 83
Ribeiro, Amabili (bib13) 2008; 315
Bian, Jing (bib32) 2019; 125
Wu, Jing, Sun, Li (bib37) 2016; 380
Carrella, Brennan, Waters (bib7) 2007; 301
Liu, Huang, Hua (bib43) 2013; 332
Detroux, Renson, Masset, Kerschen (bib40) 2015; 296
Xu, Yu, Zhou, Bishop (bib22) 2013; 332
Liu, Xu, Ji (bib11) 2012; 331
Dai, Jing, Wang, Yue, Yuan (bib30) 2018; 105
Carrella, Brennan, Waters, Shin (bib14) 2008; 315
Carrella, Brennan, Kovacic, Waters (bib17) 2009; 322
Dai, Jing, Sun, Wang, Yue (bib36) 2018; 109
Ibrahim (bib4) 2008; 314
Kovacic, Brennan, Waters (bib8) 2008; 315
Lu, Yang, Brennan, Liu, Chen (bib12) 2016; 84
Liu, Huang, Hua (bib24) 2013; 332
Mao, Ding, Chen (bib5) 2019; 141
Wang, Zhou, Xu, Ouyang, Duan (bib21) 2016; 87
Hu, Tang (bib41) 2006; 294
Zhou, Xiao, Xu, Ouyang, Li (bib19) 2017; 394
Zhu, Yang, Zhang, Feng, Ma (bib26) 2017; 89
Hu, Jing (bib31) 2017; 91
Mojahed, Moore, Bergman, Vakakis (bib28) 2018; 107
Mao, Ding, Chen (bib1) 2017; 84
Wu, Chen, Shan (bib10) 2014; 333
Liu, Dowell, Thomas (bib42) 2007; 23
Zhou, Wang, Xu, Bishop (bib6) 2015; 346
Virgin, Santillan, Plaut (bib15) 2008; 315
Li, Tan, Kong, Wang, Yang (bib2) 2018; 100
Huang, Liu, Sun, Zhang, Hua (bib25) 2014; 333
Thomas, Bilbao (bib16) 2008; 315
Feng, Jing (bib33) 2019; 117
Wu, Jing, Bian, Li, Allen (bib34) 2015; 10
Kim, Kang (bib39) 2019; 150
Cheng, Li, Wang, Jiang (bib18) 2016; 87
Zhou, Xiao, Xu, Ouyang, Li (bib23) 2017; 394
Xingjian, Linli, Xiao, Bo, Quankun (bib38) 2019; 118
Bian (10.1016/j.jsv.2020.115344_bib32) 2019; 125
Mojahed (10.1016/j.jsv.2020.115344_bib28) 2018; 107
Wu (10.1016/j.jsv.2020.115344_bib10) 2014; 333
Xiuting (10.1016/j.jsv.2020.115344_bib9) 2017; 85
Carrella (10.1016/j.jsv.2020.115344_bib17) 2009; 322
Hu (10.1016/j.jsv.2020.115344_bib41) 2006; 294
Mao (10.1016/j.jsv.2020.115344_bib3) 2018; 86
Lu (10.1016/j.jsv.2020.115344_bib12) 2016; 84
Hu (10.1016/j.jsv.2020.115344_bib31) 2017; 91
Mao (10.1016/j.jsv.2020.115344_bib5) 2019; 141
Zhou (10.1016/j.jsv.2020.115344_bib20) 2015; 338
Zhu (10.1016/j.jsv.2020.115344_bib26) 2017; 89
Wang (10.1016/j.jsv.2020.115344_bib35) 2019; 95
Liu (10.1016/j.jsv.2020.115344_bib42) 2007; 23
Carrella (10.1016/j.jsv.2020.115344_bib14) 2008; 315
Virgin (10.1016/j.jsv.2020.115344_bib15) 2008; 315
Wang (10.1016/j.jsv.2020.115344_bib21) 2016; 87
Xingjian (10.1016/j.jsv.2020.115344_bib38) 2019; 118
Ibrahim (10.1016/j.jsv.2020.115344_bib4) 2008; 314
Li (10.1016/j.jsv.2020.115344_bib2) 2018; 100
Zhou (10.1016/j.jsv.2020.115344_bib23) 2017; 394
Gatti (10.1016/j.jsv.2020.115344_bib27) 2019; 28
Wu (10.1016/j.jsv.2020.115344_bib34) 2015; 10
Huang (10.1016/j.jsv.2020.115344_bib25) 2014; 333
Liu (10.1016/j.jsv.2020.115344_bib11) 2012; 331
Wu (10.1016/j.jsv.2020.115344_bib37) 2016; 380
Kovacic (10.1016/j.jsv.2020.115344_bib8) 2008; 315
Zhou (10.1016/j.jsv.2020.115344_bib6) 2015; 346
Carrella (10.1016/j.jsv.2020.115344_bib7) 2007; 301
Dai (10.1016/j.jsv.2020.115344_bib30) 2018; 105
Liu (10.1016/j.jsv.2020.115344_bib43) 2013; 332
Mao (10.1016/j.jsv.2020.115344_bib1) 2017; 84
Feng (10.1016/j.jsv.2020.115344_bib33) 2019; 117
Detroux (10.1016/j.jsv.2020.115344_bib40) 2015; 296
Gatti (10.1016/j.jsv.2020.115344_bib29) 2020; 83
Xu (10.1016/j.jsv.2020.115344_bib22) 2013; 332
Ribeiro (10.1016/j.jsv.2020.115344_bib13) 2008; 315
Dai (10.1016/j.jsv.2020.115344_bib36) 2018; 109
Zhou (10.1016/j.jsv.2020.115344_bib19) 2017; 394
Thomas (10.1016/j.jsv.2020.115344_bib16) 2008; 315
Cheng (10.1016/j.jsv.2020.115344_bib18) 2016; 87
Kim (10.1016/j.jsv.2020.115344_bib39) 2019; 150
Liu (10.1016/j.jsv.2020.115344_bib24) 2013; 332
References_xml – volume: 91
  start-page: 157
  year: 2017
  end-page: 185
  ident: bib31
  article-title: A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs
  publication-title: Nonlinear Dynam.
– volume: 89
  start-page: 1545
  year: 2017
  end-page: 1568
  ident: bib26
  article-title: Nonlinear dynamic model of air spring with a damper for vehicle ride comfort
  publication-title: Nonlinear Dynam.
– volume: 331
  start-page: 4691
  year: 2012
  end-page: 4703
  ident: bib11
  article-title: Theoretical design and experimental verification of a tunable floating vibration isolation system
  publication-title: J. Sound Vib.
– volume: 346
  start-page: 53
  year: 2015
  end-page: 69
  ident: bib6
  article-title: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms
  publication-title: J. Sound Vib.
– volume: 332
  start-page: 3359
  year: 2013
  end-page: 3376
  ident: bib24
  article-title: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector
  publication-title: J. Sound Vib.
– volume: 95
  start-page: 445
  year: 2019
  end-page: 464
  ident: bib35
  article-title: Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints
  publication-title: Nonlinear Dynam.
– volume: 28
  year: 2019
  ident: bib27
  article-title: A K-shaped spring configuration to boost elastic potential energy
  publication-title: Smart Mater. Struct.
– volume: 296
  start-page: 18
  year: 2015
  end-page: 38
  ident: bib40
  article-title: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 23
  start-page: 351
  year: 2007
  end-page: 363
  ident: bib42
  article-title: A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces
  publication-title: J. Fluid Struct.
– volume: 118
  start-page: 317
  year: 2019
  end-page: 339
  ident: bib38
  article-title: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers
  publication-title: Mech. Syst. Signal Process.
– volume: 294
  start-page: 637
  year: 2006
  end-page: 639
  ident: bib41
  article-title: Solution of a Duffing-harmonic oscillator by the method of harmonic balance
  publication-title: J. Sound Vib.
– volume: 83
  start-page: 105143
  year: 2020
  ident: bib29
  article-title: Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behavior for large deflections
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
– volume: 100
  start-page: 360
  year: 2018
  end-page: 370
  ident: bib2
  article-title: The influence of flywheel micro vibration on space camera and vibration suppression
  publication-title: Mech. Syst. Signal Process.
– volume: 125
  start-page: 21
  year: 2019
  end-page: 51
  ident: bib32
  article-title: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure
  publication-title: Mech. Syst. Signal Process.
– volume: 84
  start-page: 111006
  year: 2017
  end-page: 111011
  ident: bib1
  article-title: Vibration of flexible structures under nonlinear boundary conditions
  publication-title: J. Appl. Mech.
– volume: 85
  start-page: 11002
  year: 2017
  end-page: 11013
  ident: bib9
  article-title: Dynamical analysis and realization of an adaptive isolator
  publication-title: J. Appl. Mech.
– volume: 150
  start-page: 162
  year: 2019
  end-page: 168
  ident: bib39
  article-title: The V-shaped band-stop vibration isolator inspired by middle ear
  publication-title: Appl. Acoust.
– volume: 394
  start-page: 59
  year: 2017
  end-page: 74
  ident: bib19
  article-title: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform
  publication-title: J. Sound Vib.
– volume: 315
  start-page: 721
  year: 2008
  end-page: 731
  ident: bib15
  article-title: Vibration isolation using extreme geometric nonlinearity
  publication-title: J. Sound Vib.
– volume: 322
  start-page: 707
  year: 2009
  end-page: 717
  ident: bib17
  article-title: On the force transmissibility of a vibration isolator with quasi-zero-stiffness
  publication-title: J. Sound Vib.
– volume: 332
  start-page: 3359
  year: 2013
  end-page: 3376
  ident: bib43
  article-title: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector
  publication-title: J. Sound Vib.
– volume: 141
  year: 2019
  ident: bib5
  article-title: Passive isolation by nonlinear boundaries for flexible structures
  publication-title: J. Vib. Acoust.
– volume: 394
  start-page: 59
  year: 2017
  end-page: 74
  ident: bib23
  article-title: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform
  publication-title: J. Sound Vib.
– volume: 105
  start-page: 214
  year: 2018
  end-page: 240
  ident: bib30
  article-title: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system
  publication-title: Mech. Syst. Signal Process.
– volume: 84
  start-page: 21001
  year: 2016
  end-page: 21009
  ident: bib12
  article-title: Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness
  publication-title: J. Appl. Mech.
– volume: 332
  start-page: 3377
  year: 2013
  end-page: 3389
  ident: bib22
  article-title: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic
  publication-title: J. Sound Vib.
– volume: 109
  start-page: 111
  year: 2018
  end-page: 133
  ident: bib36
  article-title: Accurate modeling and analysis of a bio-inspired isolation system: with application to on-orbit capture
  publication-title: Mech. Syst. Signal Process.
– volume: 314
  start-page: 371
  year: 2008
  end-page: 452
  ident: bib4
  article-title: Recent advances in nonlinear passive vibration isolators
  publication-title: J. Sound Vib.
– volume: 86
  year: 2018
  ident: bib3
  article-title: Nonlinear torsional vibration absorber for flexible structures
  publication-title: J. Appl. Mech.
– volume: 301
  start-page: 678
  year: 2007
  end-page: 689
  ident: bib7
  article-title: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic
  publication-title: J. Sound Vib.
– volume: 87
  start-page: 633
  year: 2016
  end-page: 646
  ident: bib21
  article-title: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness
  publication-title: Nonlinear Dynam.
– volume: 87
  start-page: 2267
  year: 2016
  end-page: 2279
  ident: bib18
  article-title: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping
  publication-title: Nonlinear Dynam.
– volume: 333
  start-page: 2958
  year: 2014
  end-page: 2970
  ident: bib10
  article-title: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness
  publication-title: J. Sound Vib.
– volume: 380
  start-page: 90
  year: 2016
  end-page: 111
  ident: bib37
  article-title: A 6DOF passive vibration isolator using X-shape supporting structures
  publication-title: J. Sound Vib.
– volume: 338
  start-page: 121
  year: 2015
  end-page: 133
  ident: bib20
  article-title: A torsion quasi-zero stiffness vibration isolator
  publication-title: J. Sound Vib.
– volume: 315
  start-page: 371
  year: 2008
  end-page: 374
  ident: bib13
  article-title: Special issue on Geometrically non-linear vibrations of structures—euromech 483
  publication-title: J. Sound Vib.
– volume: 333
  start-page: 1132
  year: 2014
  end-page: 1148
  ident: bib25
  article-title: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study
  publication-title: J. Sound Vib.
– volume: 117
  start-page: 786
  year: 2019
  end-page: 812
  ident: bib33
  article-title: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia
  publication-title: Mech. Syst. Signal Process.
– volume: 315
  start-page: 569
  year: 2008
  end-page: 590
  ident: bib16
  article-title: Geometrically nonlinear flexural vibrations of plates: in-plane boundary conditions and some symmetry properties
  publication-title: J. Sound Vib.
– volume: 107
  start-page: 94
  year: 2018
  end-page: 111
  ident: bib28
  article-title: Strong geometric softening–hardening nonlinearities in an oscillator composed of linear stiffness and damping elements
  publication-title: Int. J. Non Lin. Mech.
– volume: 315
  start-page: 700
  year: 2008
  end-page: 711
  ident: bib8
  article-title: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic
  publication-title: J. Sound Vib.
– volume: 10
  year: 2015
  ident: bib34
  article-title: Vibration isolation by exploring bio-inspired structural nonlinearity
  publication-title: Bioinspiration Biomimetics
– volume: 315
  start-page: 712
  year: 2008
  end-page: 720
  ident: bib14
  article-title: On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets
  publication-title: J. Sound Vib.
– volume: 100
  start-page: 360
  year: 2018
  ident: 10.1016/j.jsv.2020.115344_bib2
  article-title: The influence of flywheel micro vibration on space camera and vibration suppression
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.07.029
– volume: 294
  start-page: 637
  year: 2006
  ident: 10.1016/j.jsv.2020.115344_bib41
  article-title: Solution of a Duffing-harmonic oscillator by the method of harmonic balance
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2005.12.025
– volume: 333
  start-page: 1132
  year: 2014
  ident: 10.1016/j.jsv.2020.115344_bib25
  article-title: Vibration isolation characteristics of a nonlinear isolator using Euler buckled beam as negative stiffness corrector: a theoretical and experimental study
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2013.10.026
– volume: 331
  start-page: 4691
  year: 2012
  ident: 10.1016/j.jsv.2020.115344_bib11
  article-title: Theoretical design and experimental verification of a tunable floating vibration isolation system
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2012.05.019
– volume: 394
  start-page: 59
  year: 2017
  ident: 10.1016/j.jsv.2020.115344_bib19
  article-title: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.01.021
– volume: 296
  start-page: 18
  year: 2015
  ident: 10.1016/j.jsv.2020.115344_bib40
  article-title: The harmonic balance method for bifurcation analysis of large-scale nonlinear mechanical systems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2015.07.017
– volume: 23
  start-page: 351
  year: 2007
  ident: 10.1016/j.jsv.2020.115344_bib42
  article-title: A high dimensional harmonic balance approach for an aeroelastic airfoil with cubic restoring forces
  publication-title: J. Fluid Struct.
  doi: 10.1016/j.jfluidstructs.2006.09.005
– volume: 301
  start-page: 678
  year: 2007
  ident: 10.1016/j.jsv.2020.115344_bib7
  article-title: Static analysis of a passive vibration isolator with quasi-zero-stiffness characteristic
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2006.10.011
– volume: 87
  start-page: 633
  year: 2016
  ident: 10.1016/j.jsv.2020.115344_bib21
  article-title: Force transmissibility of a two-stage vibration isolation system with quasi-zero stiffness
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-016-3065-x
– volume: 95
  start-page: 445
  year: 2019
  ident: 10.1016/j.jsv.2020.115344_bib35
  article-title: Nonlinear analysis of a bio-inspired vertically asymmetric isolation system under different structural constraints
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-018-4575-5
– volume: 86
  year: 2018
  ident: 10.1016/j.jsv.2020.115344_bib3
  article-title: Nonlinear torsional vibration absorber for flexible structures
  publication-title: J. Appl. Mech.
– volume: 85
  start-page: 11002
  year: 2017
  ident: 10.1016/j.jsv.2020.115344_bib9
  article-title: Dynamical analysis and realization of an adaptive isolator
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4038285
– volume: 338
  start-page: 121
  year: 2015
  ident: 10.1016/j.jsv.2020.115344_bib20
  article-title: A torsion quasi-zero stiffness vibration isolator
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.10.027
– volume: 91
  start-page: 157
  year: 2017
  ident: 10.1016/j.jsv.2020.115344_bib31
  article-title: A 6-DOF passive vibration isolator based on Stewart structure with X-shaped legs
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-017-3862-x
– volume: 332
  start-page: 3359
  year: 2013
  ident: 10.1016/j.jsv.2020.115344_bib43
  article-title: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2012.10.037
– volume: 315
  start-page: 371
  year: 2008
  ident: 10.1016/j.jsv.2020.115344_bib13
  article-title: Special issue on Geometrically non-linear vibrations of structures—euromech 483
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.04.017
– volume: 315
  start-page: 712
  year: 2008
  ident: 10.1016/j.jsv.2020.115344_bib14
  article-title: On the design of a high-static–low-dynamic stiffness isolator using linear mechanical springs and magnets
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.01.046
– volume: 315
  start-page: 721
  year: 2008
  ident: 10.1016/j.jsv.2020.115344_bib15
  article-title: Vibration isolation using extreme geometric nonlinearity
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.12.025
– volume: 314
  start-page: 371
  year: 2008
  ident: 10.1016/j.jsv.2020.115344_bib4
  article-title: Recent advances in nonlinear passive vibration isolators
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.01.014
– volume: 84
  start-page: 21001
  year: 2016
  ident: 10.1016/j.jsv.2020.115344_bib12
  article-title: Experimental investigation of a two-stage nonlinear vibration isolation system with high-static-low-dynamic stiffness
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4034989
– volume: 109
  start-page: 111
  year: 2018
  ident: 10.1016/j.jsv.2020.115344_bib36
  article-title: Accurate modeling and analysis of a bio-inspired isolation system: with application to on-orbit capture
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.048
– volume: 380
  start-page: 90
  year: 2016
  ident: 10.1016/j.jsv.2020.115344_bib37
  article-title: A 6DOF passive vibration isolator using X-shape supporting structures
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.06.004
– volume: 125
  start-page: 21
  year: 2019
  ident: 10.1016/j.jsv.2020.115344_bib32
  article-title: Superior nonlinear passive damping characteristics of the bio-inspired limb-like or X-shaped structure
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.02.014
– volume: 84
  start-page: 111006
  year: 2017
  ident: 10.1016/j.jsv.2020.115344_bib1
  article-title: Vibration of flexible structures under nonlinear boundary conditions
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4037883
– volume: 87
  start-page: 2267
  year: 2016
  ident: 10.1016/j.jsv.2020.115344_bib18
  article-title: Force and displacement transmissibility of a quasi-zero stiffness vibration isolator with geometric nonlinear damping
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-016-3188-0
– volume: 141
  year: 2019
  ident: 10.1016/j.jsv.2020.115344_bib5
  article-title: Passive isolation by nonlinear boundaries for flexible structures
  publication-title: J. Vib. Acoust.
  doi: 10.1115/1.4042932
– volume: 150
  start-page: 162
  year: 2019
  ident: 10.1016/j.jsv.2020.115344_bib39
  article-title: The V-shaped band-stop vibration isolator inspired by middle ear
  publication-title: Appl. Acoust.
  doi: 10.1016/j.apacoust.2019.02.013
– volume: 346
  start-page: 53
  year: 2015
  ident: 10.1016/j.jsv.2020.115344_bib6
  article-title: Nonlinear dynamic characteristics of a quasi-zero stiffness vibration isolator with cam–roller–spring mechanisms
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2015.02.005
– volume: 105
  start-page: 214
  year: 2018
  ident: 10.1016/j.jsv.2020.115344_bib30
  article-title: Post-capture vibration suppression of spacecraft via a bio-inspired isolation system
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2017.12.015
– volume: 315
  start-page: 700
  year: 2008
  ident: 10.1016/j.jsv.2020.115344_bib8
  article-title: A study of a nonlinear vibration isolator with a quasi-zero stiffness characteristic
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2007.12.019
– volume: 117
  start-page: 786
  year: 2019
  ident: 10.1016/j.jsv.2020.115344_bib33
  article-title: Human body inspired vibration isolation: beneficial nonlinear stiffness, nonlinear damping & nonlinear inertia
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.08.040
– volume: 28
  year: 2019
  ident: 10.1016/j.jsv.2020.115344_bib27
  article-title: A K-shaped spring configuration to boost elastic potential energy
  publication-title: Smart Mater. Struct.
  doi: 10.1088/1361-665X/ab1ec8
– volume: 118
  start-page: 317
  year: 2019
  ident: 10.1016/j.jsv.2020.115344_bib38
  article-title: A novel bio-inspired anti-vibration structure for operating hand-held jackhammers
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2018.09.004
– volume: 315
  start-page: 569
  year: 2008
  ident: 10.1016/j.jsv.2020.115344_bib16
  article-title: Geometrically nonlinear flexural vibrations of plates: in-plane boundary conditions and some symmetry properties
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.04.014
– volume: 332
  start-page: 3377
  year: 2013
  ident: 10.1016/j.jsv.2020.115344_bib22
  article-title: Theoretical and experimental analyses of a nonlinear magnetic vibration isolator with quasi-zero-stiffness characteristic
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2013.01.034
– volume: 332
  start-page: 3359
  year: 2013
  ident: 10.1016/j.jsv.2020.115344_bib24
  article-title: On the characteristics of a quasi-zero stiffness isolator using Euler buckled beam as negative stiffness corrector
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2012.10.037
– volume: 322
  start-page: 707
  year: 2009
  ident: 10.1016/j.jsv.2020.115344_bib17
  article-title: On the force transmissibility of a vibration isolator with quasi-zero-stiffness
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2008.11.034
– volume: 89
  start-page: 1545
  year: 2017
  ident: 10.1016/j.jsv.2020.115344_bib26
  article-title: Nonlinear dynamic model of air spring with a damper for vehicle ride comfort
  publication-title: Nonlinear Dynam.
  doi: 10.1007/s11071-017-3535-9
– volume: 10
  year: 2015
  ident: 10.1016/j.jsv.2020.115344_bib34
  article-title: Vibration isolation by exploring bio-inspired structural nonlinearity
  publication-title: Bioinspiration Biomimetics
  doi: 10.1088/1748-3190/10/5/056015
– volume: 107
  start-page: 94
  year: 2018
  ident: 10.1016/j.jsv.2020.115344_bib28
  article-title: Strong geometric softening–hardening nonlinearities in an oscillator composed of linear stiffness and damping elements
  publication-title: Int. J. Non Lin. Mech.
  doi: 10.1016/j.ijnonlinmec.2018.09.004
– volume: 394
  start-page: 59
  year: 2017
  ident: 10.1016/j.jsv.2020.115344_bib23
  article-title: A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2017.01.021
– volume: 333
  start-page: 2958
  year: 2014
  ident: 10.1016/j.jsv.2020.115344_bib10
  article-title: Analysis and experiment of a vibration isolator using a novel magnetic spring with negative stiffness
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2014.02.009
– volume: 83
  start-page: 105143
  year: 2020
  ident: 10.1016/j.jsv.2020.115344_bib29
  article-title: Statics and dynamics of a nonlinear oscillator with quasi-zero stiffness behavior for large deflections
  publication-title: Commun. Nonlinear Sci. Numer. Simulat.
  doi: 10.1016/j.cnsns.2019.105143
SSID ssj0009434
Score 2.6444151
Snippet Quasi-zero stiffness (QZS) is beneficial for low-frequency vibration isolation. However, most isolators based on QZS have a small working stroke and a limited...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 115344
SubjectTerms Adjustable load capacity
Amplitudes
Dynamic models
Euler-Lagrange equation
Frequencies
Large stoke
Load
Low frequencies
Numerical analysis
Passive vibration isolator
Polygons
Quasi-zero stiffness
Resonant frequencies
Springs (elastic)
Stiffness
Vibration analysis
Vibration control
Vibration isolators
Title Large stroke quasi-zero stiffness vibration isolator using three-link mechanism
URI https://dx.doi.org/10.1016/j.jsv.2020.115344
https://www.proquest.com/docview/2440490710
Volume 478
WOSCitedRecordID wos000534051200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect (Freedom Collection)
  customDbUrl:
  eissn: 1095-8568
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009434
  issn: 0022-460X
  databaseCode: AIEXJ
  dateStart: 19950107
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBZt0kIvpU-aNi069NSgxWtp19IxhPRFSS8pmFyEJcvJblo7rHeX0F_fGUm20w0JzaEXs8j2IPx9OxqN5kHI-2IKTEhMwsbCJQwrejHJLWeJKUtY0aUpqsI3m8iOjmSeq-5Et_XtBLK6lpeX6uK_Qg1jADamzt4B7l4oDMBvAB2uADtc_wn4bxjbjTkgzbnDnMl2xn67RQMjs6ryim2NW-QQ5AhTwV333qoNaVML5xie6e79cpgS3NUXvG69ttiOyZ889NJ6BRJ8qp96ypw0K7_CNfUpy4GOp4MXPzqrh3y0k7Oiib4CdnC2ityNbgnYgyYZC7nOV9IExDTJr6paEdr1RGUJxigPxR-v6fHgUpiP5u16hNJHw7N_18zeWMv6CMMueG2uQYRGETqIuE-202yiQAFu7385zL8OFZoFF11peZx3dwTugwE35nGTEbOxnHsb5fgJeRzhofuBFE_JPVc_Iw99kK9tn5Pvnho0UIMO1KA9NWgPJu2oQT016EAN2lPjBfnx8fD44DOLDTWY5elkyYRzlZMuLZXJElFWXCVZ4WRZSgf3jRLCWIs1Cl0hjONGGm6V5Q71PC8rwV-Srbqp3StCeTFJizIzU1VaocCszKQF1V7hKXE1rsY7JOm-kLax2jw2Pfmpb0Rmh3zoX7kIpVZue1h0n11HWzHYgBoodNtrux1EOv5nW51ijUyFtvbru0zhDXk0EH-XbC0XK_eWPLDr5axdvIv0-gPaOJS-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Large+stroke+quasi-zero+stiffness+vibration+isolator+using+three-link+mechanism&rft.jtitle=Journal+of+sound+and+vibration&rft.au=Yan%2C+Ge&rft.au=Zou%2C+Hong-Xiang&rft.au=Wang%2C+Sen&rft.au=Zhao%2C+Lin-Chuan&rft.date=2020-07-21&rft.issn=0022-460X&rft.volume=478&rft.spage=115344&rft_id=info:doi/10.1016%2Fj.jsv.2020.115344&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jsv_2020_115344
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-460X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-460X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-460X&client=summon