Evaluating Domain Knowledge and Time Series Features for Automated Detection of Schizophrenia from EEG Signals
Over the recent years, Schizophrenia has become a serious mental disorder that is affecting almost 21 million people globally. There are different symptoms to recognize schizophrenia from healthy people. It can affect the thinking pattern of the brain. Delusions, hallucinations, and disorganized spe...
Uloženo v:
| Vydáno v: | International journal of advanced computer science & applications Ročník 12; číslo 11 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
West Yorkshire
Science and Information (SAI) Organization Limited
2021
|
| Témata: | |
| ISSN: | 2158-107X, 2156-5570 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Over the recent years, Schizophrenia has become a serious mental disorder that is affecting almost 21 million people globally. There are different symptoms to recognize schizophrenia from healthy people. It can affect the thinking pattern of the brain. Delusions, hallucinations, and disorganized speech are the common symptoms of Schizophrenia. In this study, we have used electroencephalography (EEG) signals to analyze and diagnose Schizophrenia using machine learning algorithms and found that temporal features performed well as compared to statistical features. EEG signals are the best way to analyze this disorder as they are intimately linked with human thinking patterns and provide information about brain activities. The present work proposes a Machine Learning (ML) model based on Logistic Regression (LR) along with two feature extraction libraries Time Series Feature Extraction Library (TSFEL) and MNE Python toolkit to diagnose Schizophrenia from EEG signals. The results are analyzed based on 5 different sampling techniques. The dataset was cross-validated using leave one subject out cross-validation (LOSOCV) using Scikit learn and achieve greater accuracy, sensitivity, specificity, macro average recall, and macro f1 score on temporal features respectively. |
|---|---|
| AbstractList | Over the recent years, Schizophrenia has become a serious mental disorder that is affecting almost 21 million people globally. There are different symptoms to recognize schizophrenia from healthy people. It can affect the thinking pattern of the brain. Delusions, hallucinations, and disorganized speech are the common symptoms of Schizophrenia. In this study, we have used electroencephalography (EEG) signals to analyze and diagnose Schizophrenia using machine learning algorithms and found that temporal features performed well as compared to statistical features. EEG signals are the best way to analyze this disorder as they are intimately linked with human thinking patterns and provide information about brain activities. The present work proposes a Machine Learning (ML) model based on Logistic Regression (LR) along with two feature extraction libraries Time Series Feature Extraction Library (TSFEL) and MNE Python toolkit to diagnose Schizophrenia from EEG signals. The results are analyzed based on 5 different sampling techniques. The dataset was cross-validated using leave one subject out cross-validation (LOSOCV) using Scikit learn and achieve greater accuracy, sensitivity, specificity, macro average recall, and macro f1 score on temporal features respectively. |
| Author | Hussain, Saqib Saba, Erum Panhwar, Muhammad Aamir Pirzada, Nasrullah Ahmed, Tanveer |
| Author_xml | – sequence: 1 givenname: Saqib surname: Hussain fullname: Hussain, Saqib – sequence: 2 givenname: Nasrullah surname: Pirzada fullname: Pirzada, Nasrullah – sequence: 3 givenname: Erum surname: Saba fullname: Saba, Erum – sequence: 4 givenname: Muhammad Aamir surname: Panhwar fullname: Panhwar, Muhammad Aamir – sequence: 5 givenname: Tanveer surname: Ahmed fullname: Ahmed, Tanveer |
| BookMark | eNp9kEtPwzAQhC0EEqX0H3CwxDnFdmI34Rb1RaEShxSJW-Qm69ZVYhfHAcGvJ32cOLCXmcPMave7QZfGGkDojpIhjbhIHhbP6ThLh4wwOiSUUSrIBeoxykXA-YhcHn0cUDJ6v0aDptmRbsKEiTjsITP9lFUrvTYbPLG11Aa_GPtVQbkBLE2JV7oGnIHT0OAZSN-6zijrcNr6Lu-hxBPwUHhtDbYKZ8VW_9j91oHREitnazydznGmN0ZWzS26Up3A4Kx99DabrsZPwfJ1vhiny6AIGfdBlDBCCYuAlCpWJVdruiZSqCJKYhkpFQkGhIdkXaoQRJKUVHAVQ1woUsaC0bCP7k97985-tND4fGdbd7ggZ4JzSsOIxF3q8ZQqnG0aByovtJeHT7yTusopyY-I8xPi_IA4PyPuytGf8t7pWrrv_2u_w0yBgg |
| CitedBy_id | crossref_primary_10_1007_s10489_023_04702_5 |
| ContentType | Journal Article |
| Copyright | 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2021.0121160 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central ProQuest Technology Collection ProQuest One ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2021_0121160 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c325t-49201024e0df8fd5fb1b0a6fc498a4ff462e0530bdf3e699d165f8e8cf0d86213 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000738621400059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Sun Jul 13 04:30:15 EDT 2025 Tue Nov 18 22:17:21 EST 2025 Sat Nov 29 02:26:04 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 11 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-49201024e0df8fd5fb1b0a6fc498a4ff462e0530bdf3e699d165f8e8cf0d86213 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2655113408?pq-origsite=%requestingapplication% |
| PQID | 2655113408 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_2655113408 crossref_citationtrail_10_14569_IJACSA_2021_0121160 crossref_primary_10_14569_IJACSA_2021_0121160 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2021 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.1372025 |
| Snippet | Over the recent years, Schizophrenia has become a serious mental disorder that is affecting almost 21 million people globally. There are different symptoms to... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Algorithms Brain Electroencephalography Feature extraction Hallucinations Machine learning Mental disorders Regression models Schizophrenia Statistical analysis Time series |
| Title | Evaluating Domain Knowledge and Time Series Features for Automated Detection of Schizophrenia from EEG Signals |
| URI | https://www.proquest.com/docview/2655113408 |
| Volume | 12 |
| WOSCitedRecordID | wos000738621400059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCFtjxEoVQ-cDV1_Fr7hJY2hVJ1iShIC5fI8aNaCbKlm-X340mctlzg0IsvfijKZ3vGY8_3IfSaSiei15FIZxURyWcmOnhFrGQhrUveMDuITUxmMz2fmyoH3Fb5WeW4J_YbtV86iJEfMJVse8EF1W8vfxFQjYLb1SyhcR9tFowVMM9PJ-Q6xkKT8Vc9E2cybMBiOpnn7LnkNpiDk4_Tw_NpOiOy4k1PddbzVN6yTn9vzr3FOd6667duo0fZ18TTYXLsoHuhfYy2Rh0HnJf1E9SWmfK7vcBHy5920eLTMdSGbesx5IlgiKOFFQafcZ3O6Dh5u3i67lL75LTio9D1j7pavIxp5Fsv-TBksOCyfI_PFxfA1vwUfT0uvxx-IFmHgTjOZEeEgStzJgL1UUcvY1M01KrohNFWxCgUA4EJ2vjIgzLGF0pGHbSL1CfwC_4MbbTLNjxH2AbnKW_ixHgjGik1b7i1MTQmGC8U3UV8_P-1yyTloJXxo4bDCqBWD6jVgFqdUdtF5LrX5UDS8Z_2eyNudV6yq_oGtBf_rn6JHsJgQxxmD210V-vwCj1wv7vF6mofbb4rZ9Xn_X4mpvKMfUplJb-nmurkrPr2B53r5s8 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMU2uIDHE0T23HsA0Kr7pYuW1ZILdLeguNHtRJky24WxJ_iN-LJo48LnHrgFim2JcdfZj6PPd8AvEoyK4JTgWbWSCoiZ6bKO0lNxnz8L3nJTFtsIp9O1WymP23A7z4XBq9V9jaxMdRuYTFGvs9k9O0pF4l6d_6dYtUoPF3tS2i0sJj4Xz_jlm31djyM6_uascPR6cER7aoKUMtZVlOh8QCYCZ-4oILLQpmWiZHBCq2MCEFIhuUSktIF7qXWLpVZUF7ZkLg4lZTHcW_BbcFVjlr9k5xexHSSSDZko_wZHSmqpuazLlsv0hS9P_4wODgZxD0pS9800mqNLuYVb3jdGTQe7nDrf_s2D-B-x6XJoAX_Q9jw1SPY6utUkM5sPYZq1EmaV2dkuPhm5hWZ9KFEYipHMA-GYJzQrwhy4vUyPkQ2TwbrOraPpJwMfd1cWqvIIsSRr9xUJJihQ0aj9-RkfoZq1E_g843M-ilsVovKPwNivHUJL0OunRZllilecmOCL7XXTshkG3i_3oXtRNixFsjXAjdjiJKiRUmBKCk6lGwDveh13oqQ_KP9To-TojNJq-ISJM___vol3D06_XhcHI-nkxdwDwduY047sFkv134X7tgf9Xy13GvQT-DLTUPqD-eyPuk |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+Domain+Knowledge+and+Time+Series+Features+for+Automated+Detection+of+Schizophrenia+from+EEG+Signals&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Hussain%2C+Saqib&rft.au=Pirzada%2C+Nasrullah&rft.au=Saba%2C+Erum&rft.au=Panhwar%2C+Muhammad+Aamir&rft.date=2021&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=12&rft.issue=11&rft_id=info:doi/10.14569%2FIJACSA.2021.0121160&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2021_0121160 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |