Evaluating Domain Knowledge and Time Series Features for Automated Detection of Schizophrenia from EEG Signals

Over the recent years, Schizophrenia has become a serious mental disorder that is affecting almost 21 million people globally. There are different symptoms to recognize schizophrenia from healthy people. It can affect the thinking pattern of the brain. Delusions, hallucinations, and disorganized spe...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of advanced computer science & applications Ročník 12; číslo 11
Hlavní autoři: Hussain, Saqib, Pirzada, Nasrullah, Saba, Erum, Panhwar, Muhammad Aamir, Ahmed, Tanveer
Médium: Journal Article
Jazyk:angličtina
Vydáno: West Yorkshire Science and Information (SAI) Organization Limited 2021
Témata:
ISSN:2158-107X, 2156-5570
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Over the recent years, Schizophrenia has become a serious mental disorder that is affecting almost 21 million people globally. There are different symptoms to recognize schizophrenia from healthy people. It can affect the thinking pattern of the brain. Delusions, hallucinations, and disorganized speech are the common symptoms of Schizophrenia. In this study, we have used electroencephalography (EEG) signals to analyze and diagnose Schizophrenia using machine learning algorithms and found that temporal features performed well as compared to statistical features. EEG signals are the best way to analyze this disorder as they are intimately linked with human thinking patterns and provide information about brain activities. The present work proposes a Machine Learning (ML) model based on Logistic Regression (LR) along with two feature extraction libraries Time Series Feature Extraction Library (TSFEL) and MNE Python toolkit to diagnose Schizophrenia from EEG signals. The results are analyzed based on 5 different sampling techniques. The dataset was cross-validated using leave one subject out cross-validation (LOSOCV) using Scikit learn and achieve greater accuracy, sensitivity, specificity, macro average recall, and macro f1 score on temporal features respectively.
AbstractList Over the recent years, Schizophrenia has become a serious mental disorder that is affecting almost 21 million people globally. There are different symptoms to recognize schizophrenia from healthy people. It can affect the thinking pattern of the brain. Delusions, hallucinations, and disorganized speech are the common symptoms of Schizophrenia. In this study, we have used electroencephalography (EEG) signals to analyze and diagnose Schizophrenia using machine learning algorithms and found that temporal features performed well as compared to statistical features. EEG signals are the best way to analyze this disorder as they are intimately linked with human thinking patterns and provide information about brain activities. The present work proposes a Machine Learning (ML) model based on Logistic Regression (LR) along with two feature extraction libraries Time Series Feature Extraction Library (TSFEL) and MNE Python toolkit to diagnose Schizophrenia from EEG signals. The results are analyzed based on 5 different sampling techniques. The dataset was cross-validated using leave one subject out cross-validation (LOSOCV) using Scikit learn and achieve greater accuracy, sensitivity, specificity, macro average recall, and macro f1 score on temporal features respectively.
Author Hussain, Saqib
Saba, Erum
Panhwar, Muhammad Aamir
Pirzada, Nasrullah
Ahmed, Tanveer
Author_xml – sequence: 1
  givenname: Saqib
  surname: Hussain
  fullname: Hussain, Saqib
– sequence: 2
  givenname: Nasrullah
  surname: Pirzada
  fullname: Pirzada, Nasrullah
– sequence: 3
  givenname: Erum
  surname: Saba
  fullname: Saba, Erum
– sequence: 4
  givenname: Muhammad Aamir
  surname: Panhwar
  fullname: Panhwar, Muhammad Aamir
– sequence: 5
  givenname: Tanveer
  surname: Ahmed
  fullname: Ahmed, Tanveer
BookMark eNp9kEtPwzAQhC0EEqX0H3CwxDnFdmI34Rb1RaEShxSJW-Qm69ZVYhfHAcGvJ32cOLCXmcPMave7QZfGGkDojpIhjbhIHhbP6ThLh4wwOiSUUSrIBeoxykXA-YhcHn0cUDJ6v0aDptmRbsKEiTjsITP9lFUrvTYbPLG11Aa_GPtVQbkBLE2JV7oGnIHT0OAZSN-6zijrcNr6Lu-hxBPwUHhtDbYKZ8VW_9j91oHREitnazydznGmN0ZWzS26Up3A4Kx99DabrsZPwfJ1vhiny6AIGfdBlDBCCYuAlCpWJVdruiZSqCJKYhkpFQkGhIdkXaoQRJKUVHAVQ1woUsaC0bCP7k97985-tND4fGdbd7ggZ4JzSsOIxF3q8ZQqnG0aByovtJeHT7yTusopyY-I8xPi_IA4PyPuytGf8t7pWrrv_2u_w0yBgg
CitedBy_id crossref_primary_10_1007_s10489_023_04702_5
ContentType Journal Article
Copyright 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2021.0121160
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
ProQuest Technology Collection
ProQuest One
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2021_0121160
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c325t-49201024e0df8fd5fb1b0a6fc498a4ff462e0530bdf3e699d165f8e8cf0d86213
IEDL.DBID K7-
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000738621400059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-107X
IngestDate Sun Jul 13 04:30:15 EDT 2025
Tue Nov 18 22:17:21 EST 2025
Sat Nov 29 02:26:04 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 11
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-49201024e0df8fd5fb1b0a6fc498a4ff462e0530bdf3e699d165f8e8cf0d86213
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2655113408?pq-origsite=%requestingapplication%
PQID 2655113408
PQPubID 5444811
ParticipantIDs proquest_journals_2655113408
crossref_citationtrail_10_14569_IJACSA_2021_0121160
crossref_primary_10_14569_IJACSA_2021_0121160
PublicationCentury 2000
PublicationDate 2021-00-00
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 2021-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2021
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.1372025
Snippet Over the recent years, Schizophrenia has become a serious mental disorder that is affecting almost 21 million people globally. There are different symptoms to...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Brain
Electroencephalography
Feature extraction
Hallucinations
Machine learning
Mental disorders
Regression models
Schizophrenia
Statistical analysis
Time series
Title Evaluating Domain Knowledge and Time Series Features for Automated Detection of Schizophrenia from EEG Signals
URI https://www.proquest.com/docview/2655113408
Volume 12
WOSCitedRecordID wos000738621400059&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Research Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: M2O
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELag5cCFtjxEoVQ-cDV1_Fr7hJY2hVJ1iShIC5fI8aNaCbKlm-X340mctlzg0IsvfijKZ3vGY8_3IfSaSiei15FIZxURyWcmOnhFrGQhrUveMDuITUxmMz2fmyoH3Fb5WeW4J_YbtV86iJEfMJVse8EF1W8vfxFQjYLb1SyhcR9tFowVMM9PJ-Q6xkKT8Vc9E2cybMBiOpnn7LnkNpiDk4_Tw_NpOiOy4k1PddbzVN6yTn9vzr3FOd6667duo0fZ18TTYXLsoHuhfYy2Rh0HnJf1E9SWmfK7vcBHy5920eLTMdSGbesx5IlgiKOFFQafcZ3O6Dh5u3i67lL75LTio9D1j7pavIxp5Fsv-TBksOCyfI_PFxfA1vwUfT0uvxx-IFmHgTjOZEeEgStzJgL1UUcvY1M01KrohNFWxCgUA4EJ2vjIgzLGF0pGHbSL1CfwC_4MbbTLNjxH2AbnKW_ixHgjGik1b7i1MTQmGC8U3UV8_P-1yyTloJXxo4bDCqBWD6jVgFqdUdtF5LrX5UDS8Z_2eyNudV6yq_oGtBf_rn6JHsJgQxxmD210V-vwCj1wv7vF6mofbb4rZ9Xn_X4mpvKMfUplJb-nmurkrPr2B53r5s8
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9QwEB6VggQXylMU2uIDHE0T23HsA0Kr7pYuW1ZILdLeguNHtRJky24WxJ_iN-LJo48LnHrgFim2JcdfZj6PPd8AvEoyK4JTgWbWSCoiZ6bKO0lNxnz8L3nJTFtsIp9O1WymP23A7z4XBq9V9jaxMdRuYTFGvs9k9O0pF4l6d_6dYtUoPF3tS2i0sJj4Xz_jlm31djyM6_uascPR6cER7aoKUMtZVlOh8QCYCZ-4oILLQpmWiZHBCq2MCEFIhuUSktIF7qXWLpVZUF7ZkLg4lZTHcW_BbcFVjlr9k5xexHSSSDZko_wZHSmqpuazLlsv0hS9P_4wODgZxD0pS9800mqNLuYVb3jdGTQe7nDrf_s2D-B-x6XJoAX_Q9jw1SPY6utUkM5sPYZq1EmaV2dkuPhm5hWZ9KFEYipHMA-GYJzQrwhy4vUyPkQ2TwbrOraPpJwMfd1cWqvIIsSRr9xUJJihQ0aj9-RkfoZq1E_g843M-ilsVovKPwNivHUJL0OunRZllilecmOCL7XXTshkG3i_3oXtRNixFsjXAjdjiJKiRUmBKCk6lGwDveh13oqQ_KP9To-TojNJq-ISJM___vol3D06_XhcHI-nkxdwDwduY047sFkv134X7tgf9Xy13GvQT-DLTUPqD-eyPuk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Evaluating+Domain+Knowledge+and+Time+Series+Features+for+Automated+Detection+of+Schizophrenia+from+EEG+Signals&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Hussain%2C+Saqib&rft.au=Pirzada%2C+Nasrullah&rft.au=Saba%2C+Erum&rft.au=Panhwar%2C+Muhammad+Aamir&rft.date=2021&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=12&rft.issue=11&rft_id=info:doi/10.14569%2FIJACSA.2021.0121160&rft.externalDBID=n%2Fa&rft.externalDocID=10_14569_IJACSA_2021_0121160
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon