An Extended DBSCAN Clustering Algorithm

Finding clusters of different densities is a challenging task. DBSCAN “Density-Based Spatial Clustering of Applications with Noise” method has trouble discovering clusters of various densities since it uses a fixed radius. This article proposes an extended DBSCAN for finding clusters of different de...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of advanced computer science & applications Ročník 13; číslo 3
Hlavní autor: Fahim, Ahmed
Médium: Journal Article
Jazyk:angličtina
Vydáno: West Yorkshire Science and Information (SAI) Organization Limited 2022
Témata:
ISSN:2158-107X, 2156-5570
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Finding clusters of different densities is a challenging task. DBSCAN “Density-Based Spatial Clustering of Applications with Noise” method has trouble discovering clusters of various densities since it uses a fixed radius. This article proposes an extended DBSCAN for finding clusters of different densities. The proposed method uses a dynamic radius and assigns a regional density value for each object, then counts the objects of similar density within the radius. If the neighborhood size ≥ MinPts, then the object is a core, and a cluster can grow from it, otherwise, the object is assigned noise temporarily. Two objects are similar in local density if their similarity ≥ threshold. The proposed method can discover clusters of any density from the data effectively. The method requires three parameters; MinPts, Eps (distance to the kth neighbor), and similarity threshold. The practical results show the superior ability of the suggested method to detect clusters of different densities even with no discernible separations between them.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2158-107X
2156-5570
DOI:10.14569/IJACSA.2022.0130331