An Extended DBSCAN Clustering Algorithm

Finding clusters of different densities is a challenging task. DBSCAN “Density-Based Spatial Clustering of Applications with Noise” method has trouble discovering clusters of various densities since it uses a fixed radius. This article proposes an extended DBSCAN for finding clusters of different de...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of advanced computer science & applications Ročník 13; číslo 3
Hlavný autor: Fahim, Ahmed
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: West Yorkshire Science and Information (SAI) Organization Limited 2022
Predmet:
ISSN:2158-107X, 2156-5570
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Finding clusters of different densities is a challenging task. DBSCAN “Density-Based Spatial Clustering of Applications with Noise” method has trouble discovering clusters of various densities since it uses a fixed radius. This article proposes an extended DBSCAN for finding clusters of different densities. The proposed method uses a dynamic radius and assigns a regional density value for each object, then counts the objects of similar density within the radius. If the neighborhood size ≥ MinPts, then the object is a core, and a cluster can grow from it, otherwise, the object is assigned noise temporarily. Two objects are similar in local density if their similarity ≥ threshold. The proposed method can discover clusters of any density from the data effectively. The method requires three parameters; MinPts, Eps (distance to the kth neighbor), and similarity threshold. The practical results show the superior ability of the suggested method to detect clusters of different densities even with no discernible separations between them.
AbstractList Finding clusters of different densities is a challenging task. DBSCAN “Density-Based Spatial Clustering of Applications with Noise” method has trouble discovering clusters of various densities since it uses a fixed radius. This article proposes an extended DBSCAN for finding clusters of different densities. The proposed method uses a dynamic radius and assigns a regional density value for each object, then counts the objects of similar density within the radius. If the neighborhood size ≥ MinPts, then the object is a core, and a cluster can grow from it, otherwise, the object is assigned noise temporarily. Two objects are similar in local density if their similarity ≥ threshold. The proposed method can discover clusters of any density from the data effectively. The method requires three parameters; MinPts, Eps (distance to the kth neighbor), and similarity threshold. The practical results show the superior ability of the suggested method to detect clusters of different densities even with no discernible separations between them.
Author Fahim, Ahmed
Author_xml – sequence: 1
  givenname: Ahmed
  surname: Fahim
  fullname: Fahim, Ahmed
BookMark eNp9kLFOwzAQhi0EEqX0DRgiMTClnO2ck7CFUKCogqEgsVlJbZdUqVNsV4K3J7SdGLjlbvi_u9N3Ro5tZzUhFxTGNEGRX0-finJejBkwNgbKgXN6RAaMoogRUzjezVlMIX0_JSPvV9AXz5nI-IBcFTaafAVtlVbR3e28LJ6jst36oF1jl1HRLjvXhI_1OTkxVev16NCH5O1-8lo-xrOXh2lZzOIFZxhiLpK6To0WihnIgAMiYxUVIgVRg9FoaIpKGJMlKk0wq2vNNWL_tlICQPMhudzv3bjuc6t9kKtu62x_UjKBLGd5gkmfutmnFq7z3mkjF02oQtPZ4KqmlRTkzo3cu5G_buTBTQ8nf-CNa9aV-_4f-wFYimZA
CitedBy_id crossref_primary_10_1007_s42835_023_01641_6
crossref_primary_10_1109_ACCESS_2024_3457587
crossref_primary_10_1016_j_oceaneng_2023_115179
crossref_primary_10_32604_cmc_2023_036820
crossref_primary_10_4018_IJCINI_385733
ContentType Journal Article
Copyright 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7XB
8FE
8FG
8FK
8G5
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
GUQSH
HCIFZ
JQ2
K7-
M2O
MBDVC
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
DOI 10.14569/IJACSA.2022.0130331
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Central (purchase pre-March 2016)
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni Edition)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
Research Library Prep
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Research Library
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
DatabaseTitle CrossRef
Publicly Available Content Database
Research Library Prep
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Research Library
ProQuest Central (New)
Advanced Technologies & Aerospace Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2156-5570
ExternalDocumentID 10_14569_IJACSA_2022_0130331
GroupedDBID .DC
5VS
8G5
AAYXX
ABUWG
ADMLS
AFFHD
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
CITATION
DWQXO
EBS
EJD
GNUQQ
GUQSH
HCIFZ
K7-
KQ8
M2O
OK1
PHGZM
PHGZT
PIMPY
PQGLB
RNS
3V.
7XB
8FE
8FG
8FK
JQ2
MBDVC
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c325t-364bb7fe6d2f080305522a166706b0fe5f175d6ff84d7458bbe3e55013dd600e3
IEDL.DBID P5Z
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798589300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2158-107X
IngestDate Sun Jul 13 04:48:54 EDT 2025
Sat Nov 29 02:26:05 EST 2025
Tue Nov 18 22:29:43 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-364bb7fe6d2f080305522a166706b0fe5f175d6ff84d7458bbe3e55013dd600e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2652929454?pq-origsite=%requestingapplication%
PQID 2652929454
PQPubID 5444811
ParticipantIDs proquest_journals_2652929454
crossref_citationtrail_10_14569_IJACSA_2022_0130331
crossref_primary_10_14569_IJACSA_2022_0130331
PublicationCentury 2000
PublicationDate 2022-00-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – year: 2022
  text: 2022-00-00
PublicationDecade 2020
PublicationPlace West Yorkshire
PublicationPlace_xml – name: West Yorkshire
PublicationTitle International journal of advanced computer science & applications
PublicationYear 2022
Publisher Science and Information (SAI) Organization Limited
Publisher_xml – name: Science and Information (SAI) Organization Limited
SSID ssj0000392683
Score 2.2234316
Snippet Finding clusters of different densities is a challenging task. DBSCAN “Density-Based Spatial Clustering of Applications with Noise” method has trouble...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
SubjectTerms Algorithms
Cluster analysis
Clustering
Computer science
Datasets
Density
Neighborhoods
Noise
Similarity
Title An Extended DBSCAN Clustering Algorithm
URI https://www.proquest.com/docview/2652929454
Volume 13
WOSCitedRecordID wos000798589300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: P5Z
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Computer Science Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: K7-
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: BENPR
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: PIMPY
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 2156-5570
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000392683
  issn: 2158-107X
  databaseCode: M2O
  dateStart: 20100101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwGP0ELQMLN6IcVQYkJkNiO3YyoVBacbVEHFJhierYBqRSoC38fuzELbDAwJLlS6zkyf4ux-8B7GoiVSxphIiSBNEwjJCIlY-EUiKSmrEoKA4KX_BOJ-p249Q13Ebut8qJTywctXzJbY_8ALMQm1BOQ3r4-oasapTdXXUSGrNQtSwJVrohDe-nPRbfBH9WMHEao2Ux5V13es6kDfHB6VnSuE5MjYjxvt3AK5XmvkWnn865iDitxf--6xIsuFzTS8rJsQwzarACixMdB88t61XYSwZe0zXDveOj60bS8Rr9d0uhYAKbl_QfzODjx-c1uG01bxonyAkooJzgcIwIo0JwrZjE2mSGltwL417AGPeZ8LUKtUkeJNM6opLTMBJCEWVKloBIaRIhRdahMngZqA3wBO2ZXDFmEY0DqnLZM9-neiTQnHOBhV8DMgEuyx27uBW56Ge2yrBwZyXcmYU7c3DXAE2fei3ZNf64f3sCeObW2ij7Qnvzd_MWzNvBygbKNlTGw3e1A3P5x_hpNKxD9ajZSa_qMHvOkbm28WW9mE7Gkp6207tP3VfLmg
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYILO2InBxAnQ2I7tnNAKBQQpaVCAqTeQh3bgFTK0hbET_GN2FlYLnDiwDmJlfhN5j2PPTMAG4YoHSkqENGKIBqGAslI-0hqLYUyjIkgSxRu8GZTtFrR2RC8lbkw7lhl6RMzR63uUxcj38EsxJbKaUj3Hh6R6xrldlfLFhq5WdT164tdsvV2awcW302Mjw4vqseo6CqAUoLDPiKMSsmNZgobK5dcxSuM2wFj3GfSNzo0llEVM0ZQxWkopNREWx0fEKWsOtDEjjsMI5QI7v6rOkcfMR3fig2WVf60ROqqpvJWka1nZUq0UzuJq-exXZNivO02DPPOdl_Y8DsZZAx3NPnf5mYKJgot7cW58U_DkO7OwGTZp8Ir3NYsbMVd77AI9nsH--fVuOlVOwNXIsIStxd3ru3H9G_u5uDyT153Hird-65eAE_SttXCERM0CqhOVdvOp26TwHDOJZb-IpASqCQtqqe7Jh6dxK2iHLxJDm_i4E0KeBcBfTz1kFcP-eX-lRLgpPAlveQT3aWfL6_D2PHFaSNp1Jr1ZRh3A-fBohWo9J8GehVG0-f-be9pLTNbD67-2hbeAR92Iaw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Extended+DBSCAN+Clustering+Algorithm&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Fahim%2C+Ahmed&rft.date=2022&rft.pub=Science+and+Information+%28SAI%29+Organization+Limited&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=13&rft.issue=3&rft_id=info:doi/10.14569%2FIJACSA.2022.0130331
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon