An Extended DBSCAN Clustering Algorithm
Finding clusters of different densities is a challenging task. DBSCAN “Density-Based Spatial Clustering of Applications with Noise” method has trouble discovering clusters of various densities since it uses a fixed radius. This article proposes an extended DBSCAN for finding clusters of different de...
Uložené v:
| Vydané v: | International journal of advanced computer science & applications Ročník 13; číslo 3 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
West Yorkshire
Science and Information (SAI) Organization Limited
2022
|
| Predmet: | |
| ISSN: | 2158-107X, 2156-5570 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Finding clusters of different densities is a challenging task. DBSCAN “Density-Based Spatial Clustering of Applications with Noise” method has trouble discovering clusters of various densities since it uses a fixed radius. This article proposes an extended DBSCAN for finding clusters of different densities. The proposed method uses a dynamic radius and assigns a regional density value for each object, then counts the objects of similar density within the radius. If the neighborhood size ≥ MinPts, then the object is a core, and a cluster can grow from it, otherwise, the object is assigned noise temporarily. Two objects are similar in local density if their similarity ≥ threshold. The proposed method can discover clusters of any density from the data effectively. The method requires three parameters; MinPts, Eps (distance to the kth neighbor), and similarity threshold. The practical results show the superior ability of the suggested method to detect clusters of different densities even with no discernible separations between them. |
|---|---|
| AbstractList | Finding clusters of different densities is a challenging task. DBSCAN “Density-Based Spatial Clustering of Applications with Noise” method has trouble discovering clusters of various densities since it uses a fixed radius. This article proposes an extended DBSCAN for finding clusters of different densities. The proposed method uses a dynamic radius and assigns a regional density value for each object, then counts the objects of similar density within the radius. If the neighborhood size ≥ MinPts, then the object is a core, and a cluster can grow from it, otherwise, the object is assigned noise temporarily. Two objects are similar in local density if their similarity ≥ threshold. The proposed method can discover clusters of any density from the data effectively. The method requires three parameters; MinPts, Eps (distance to the kth neighbor), and similarity threshold. The practical results show the superior ability of the suggested method to detect clusters of different densities even with no discernible separations between them. |
| Author | Fahim, Ahmed |
| Author_xml | – sequence: 1 givenname: Ahmed surname: Fahim fullname: Fahim, Ahmed |
| BookMark | eNp9kLFOwzAQhi0EEqX0DRgiMTClnO2ck7CFUKCogqEgsVlJbZdUqVNsV4K3J7SdGLjlbvi_u9N3Ro5tZzUhFxTGNEGRX0-finJejBkwNgbKgXN6RAaMoogRUzjezVlMIX0_JSPvV9AXz5nI-IBcFTaafAVtlVbR3e28LJ6jst36oF1jl1HRLjvXhI_1OTkxVev16NCH5O1-8lo-xrOXh2lZzOIFZxhiLpK6To0WihnIgAMiYxUVIgVRg9FoaIpKGJMlKk0wq2vNNWL_tlICQPMhudzv3bjuc6t9kKtu62x_UjKBLGd5gkmfutmnFq7z3mkjF02oQtPZ4KqmlRTkzo3cu5G_buTBTQ8nf-CNa9aV-_4f-wFYimZA |
| CitedBy_id | crossref_primary_10_1007_s42835_023_01641_6 crossref_primary_10_1109_ACCESS_2024_3457587 crossref_primary_10_1016_j_oceaneng_2023_115179 crossref_primary_10_32604_cmc_2023_036820 crossref_primary_10_4018_IJCINI_385733 |
| ContentType | Journal Article |
| Copyright | 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7XB 8FE 8FG 8FK 8G5 ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ GUQSH HCIFZ JQ2 K7- M2O MBDVC P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U |
| DOI | 10.14569/IJACSA.2022.0130331 |
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni Edition) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student Research Library Prep SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Research Library Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic |
| DatabaseTitle | CrossRef Publicly Available Content Database Research Library Prep Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College Research Library (Alumni Edition) ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Research Library ProQuest Central (New) Advanced Technologies & Aerospace Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 2156-5570 |
| ExternalDocumentID | 10_14569_IJACSA_2022_0130331 |
| GroupedDBID | .DC 5VS 8G5 AAYXX ABUWG ADMLS AFFHD AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS AZQEC BENPR BGLVJ CCPQU CITATION DWQXO EBS EJD GNUQQ GUQSH HCIFZ K7- KQ8 M2O OK1 PHGZM PHGZT PIMPY PQGLB RNS 3V. 7XB 8FE 8FG 8FK JQ2 MBDVC P62 PKEHL PQEST PQQKQ PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c325t-364bb7fe6d2f080305522a166706b0fe5f175d6ff84d7458bbe3e55013dd600e3 |
| IEDL.DBID | P5Z |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000798589300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2158-107X |
| IngestDate | Sun Jul 13 04:48:54 EDT 2025 Sat Nov 29 02:26:05 EST 2025 Tue Nov 18 22:29:43 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-364bb7fe6d2f080305522a166706b0fe5f175d6ff84d7458bbe3e55013dd600e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2652929454?pq-origsite=%requestingapplication% |
| PQID | 2652929454 |
| PQPubID | 5444811 |
| ParticipantIDs | proquest_journals_2652929454 crossref_citationtrail_10_14569_IJACSA_2022_0130331 crossref_primary_10_14569_IJACSA_2022_0130331 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-00-00 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – year: 2022 text: 2022-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | West Yorkshire |
| PublicationPlace_xml | – name: West Yorkshire |
| PublicationTitle | International journal of advanced computer science & applications |
| PublicationYear | 2022 |
| Publisher | Science and Information (SAI) Organization Limited |
| Publisher_xml | – name: Science and Information (SAI) Organization Limited |
| SSID | ssj0000392683 |
| Score | 2.2234316 |
| Snippet | Finding clusters of different densities is a challenging task. DBSCAN “Density-Based Spatial Clustering of Applications with Noise” method has trouble... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| SubjectTerms | Algorithms Cluster analysis Clustering Computer science Datasets Density Neighborhoods Noise Similarity |
| Title | An Extended DBSCAN Clustering Algorithm |
| URI | https://www.proquest.com/docview/2652929454 |
| Volume | 13 |
| WOSCitedRecordID | wos000798589300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: P5Z dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Computer Science Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: K7- dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: BENPR dateStart: 20100101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: PIMPY dateStart: 20100101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 2156-5570 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000392683 issn: 2158-107X databaseCode: M2O dateStart: 20100101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwGP0ELQMLN6IcVQYkJkNiO3YyoVBacbVEHFJhierYBqRSoC38fuzELbDAwJLlS6zkyf4ux-8B7GoiVSxphIiSBNEwjJCIlY-EUiKSmrEoKA4KX_BOJ-p249Q13Ebut8qJTywctXzJbY_8ALMQm1BOQ3r4-oasapTdXXUSGrNQtSwJVrohDe-nPRbfBH9WMHEao2Ux5V13es6kDfHB6VnSuE5MjYjxvt3AK5XmvkWnn865iDitxf--6xIsuFzTS8rJsQwzarACixMdB88t61XYSwZe0zXDveOj60bS8Rr9d0uhYAKbl_QfzODjx-c1uG01bxonyAkooJzgcIwIo0JwrZjE2mSGltwL417AGPeZ8LUKtUkeJNM6opLTMBJCEWVKloBIaRIhRdahMngZqA3wBO2ZXDFmEY0DqnLZM9-neiTQnHOBhV8DMgEuyx27uBW56Ge2yrBwZyXcmYU7c3DXAE2fei3ZNf64f3sCeObW2ij7Qnvzd_MWzNvBygbKNlTGw3e1A3P5x_hpNKxD9ajZSa_qMHvOkbm28WW9mE7Gkp6207tP3VfLmg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYILO2InBxAnQ2I7tnNAKBQQpaVCAqTeQh3bgFTK0hbET_GN2FlYLnDiwDmJlfhN5j2PPTMAG4YoHSkqENGKIBqGAslI-0hqLYUyjIkgSxRu8GZTtFrR2RC8lbkw7lhl6RMzR63uUxcj38EsxJbKaUj3Hh6R6xrldlfLFhq5WdT164tdsvV2awcW302Mjw4vqseo6CqAUoLDPiKMSsmNZgobK5dcxSuM2wFj3GfSNzo0llEVM0ZQxWkopNREWx0fEKWsOtDEjjsMI5QI7v6rOkcfMR3fig2WVf60ROqqpvJWka1nZUq0UzuJq-exXZNivO02DPPOdl_Y8DsZZAx3NPnf5mYKJgot7cW58U_DkO7OwGTZp8Ir3NYsbMVd77AI9nsH--fVuOlVOwNXIsIStxd3ru3H9G_u5uDyT153Hird-65eAE_SttXCERM0CqhOVdvOp26TwHDOJZb-IpASqCQtqqe7Jh6dxK2iHLxJDm_i4E0KeBcBfTz1kFcP-eX-lRLgpPAlveQT3aWfL6_D2PHFaSNp1Jr1ZRh3A-fBohWo9J8GehVG0-f-be9pLTNbD67-2hbeAR92Iaw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Extended+DBSCAN+Clustering+Algorithm&rft.jtitle=International+journal+of+advanced+computer+science+%26+applications&rft.au=Fahim%2C+Ahmed&rft.date=2022&rft.pub=Science+and+Information+%28SAI%29+Organization+Limited&rft.issn=2158-107X&rft.eissn=2156-5570&rft.volume=13&rft.issue=3&rft_id=info:doi/10.14569%2FIJACSA.2022.0130331 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2158-107X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2158-107X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2158-107X&client=summon |