Link-based traffic state estimation and prediction for arterial networks using license-plate recognition data

•Urban network-level traffic states inference model using partially available data.•Complete solution for link queue lengths and travel times inference using LPR data.•New framework combines traffic flow theory and customized machine learning models.•Applicable to LPR data and other similar vehicle...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transportation research. Part C, Emerging technologies Jg. 117; S. 102660
Hauptverfasser: Zhan, Xianyuan, Li, Ruimin, Ukkusuri, Satish V.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.08.2020
Schlagworte:
ISSN:0968-090X, 1879-2359
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Urban network-level traffic states inference model using partially available data.•Complete solution for link queue lengths and travel times inference using LPR data.•New framework combines traffic flow theory and customized machine learning models.•Applicable to LPR data and other similar vehicle re-identification data.•The framework is efficient, calibration-free and easily deployable in real world. License-plate recognition (LPR) data are emerging data sources in urban transportation systems which contain rich information. Large-scale LPR systems have seen rapid development in many parts of the world. However, limited by privacy considerations, LPR data are seldom available to the research community, which lead to huge research gap in data-driven applications. In this study, we propose a complete solution using LPR data for link-based traffic state estimation and prediction for arterial networks. The proposed integrative data-driven framework provides the inference of both cycle maximum queue length states and average travel times of links using LPR data from a subset of intersections in an arterial network. The framework contains three novel data-driven sub-components that are highly customized based on the characteristics of LPR data, including: a traffic signal timing inference model to find signal timing information from the LPR timestamp sequences; a light-weighted queue length approximation model to estimate lane-based cycle maximum queue lengths and a network-wide traffic state inference model to perform network-level estimation and prediction using partially observed data. This study exploits and utilizes the unique features of LPR data and other similar vehicle re-identification data for urban network-wide link-based traffic state estimation and prediction. A six days’ LPR dataset from a small road network in the city of Langfang in China and a more comprehensive link-level field experiment dataset are used to validate the model. Numerical results show that the framework provides good estimation and prediction accuracy. The proposed framework is efficient and calibration-free, which can be easily implemented in urban networks for various real-time traffic monitoring and control applications.
AbstractList •Urban network-level traffic states inference model using partially available data.•Complete solution for link queue lengths and travel times inference using LPR data.•New framework combines traffic flow theory and customized machine learning models.•Applicable to LPR data and other similar vehicle re-identification data.•The framework is efficient, calibration-free and easily deployable in real world. License-plate recognition (LPR) data are emerging data sources in urban transportation systems which contain rich information. Large-scale LPR systems have seen rapid development in many parts of the world. However, limited by privacy considerations, LPR data are seldom available to the research community, which lead to huge research gap in data-driven applications. In this study, we propose a complete solution using LPR data for link-based traffic state estimation and prediction for arterial networks. The proposed integrative data-driven framework provides the inference of both cycle maximum queue length states and average travel times of links using LPR data from a subset of intersections in an arterial network. The framework contains three novel data-driven sub-components that are highly customized based on the characteristics of LPR data, including: a traffic signal timing inference model to find signal timing information from the LPR timestamp sequences; a light-weighted queue length approximation model to estimate lane-based cycle maximum queue lengths and a network-wide traffic state inference model to perform network-level estimation and prediction using partially observed data. This study exploits and utilizes the unique features of LPR data and other similar vehicle re-identification data for urban network-wide link-based traffic state estimation and prediction. A six days’ LPR dataset from a small road network in the city of Langfang in China and a more comprehensive link-level field experiment dataset are used to validate the model. Numerical results show that the framework provides good estimation and prediction accuracy. The proposed framework is efficient and calibration-free, which can be easily implemented in urban networks for various real-time traffic monitoring and control applications.
ArticleNumber 102660
Author Li, Ruimin
Zhan, Xianyuan
Ukkusuri, Satish V.
Author_xml – sequence: 1
  givenname: Xianyuan
  surname: Zhan
  fullname: Zhan, Xianyuan
  email: zhanxianyuan@jd.com
  organization: JD Intelligent City Research, JD Digits, Beijing 101111, China
– sequence: 2
  givenname: Ruimin
  surname: Li
  fullname: Li, Ruimin
  email: lrmin@tsinghua.edu.cn
  organization: Department of Civil Engineering, Tsinghua University, Beijing 100084, China
– sequence: 3
  givenname: Satish V.
  surname: Ukkusuri
  fullname: Ukkusuri, Satish V.
  email: sukkusur@purdue.edu
  organization: Lyles school of Civil Engineering, Purdue University, West Lafayette, IN 47907, USA
BookMark eNp9kM1KAzEURoMo2FYfwF1eYGoymSQNrqT4BwU3Cu5CJrlT0k4zJYmKb2-mdeWiq8u3OBfOmaLzMARA6IaSOSVU3G7mOdp5Tepx10KQMzShC6mqmnF1jiZEiUVFFPm4RNOUNoQQqricoN3Kh23VmgQO52i6zlucssmAIWW_M9kPAZvg8D6C8_YwuyFiEzNEb3ocIH8PcZvwZ_JhjXtvISSo9v34I4Id1sEfKGeyuUIXnekTXP_dGXp_fHhbPler16eX5f2qsqzmuWKika0VwKQVwrVGElemax0nlhGhgAvRuAaga5ipObCWFyGpOChqDKVshujxr41DShE6vY9FJv5oSvTYS2906aXHXvrYqzDyH2N9PviXLr4_Sd4dSShKXx6iTtZDsCVYCZC1G_wJ-hd-9ont
CitedBy_id crossref_primary_10_1007_s11869_025_01796_3
crossref_primary_10_3390_asi5010023
crossref_primary_10_1016_j_jclepro_2022_135172
crossref_primary_10_1109_TITS_2023_3336238
crossref_primary_10_1177_03611981221086643
crossref_primary_10_1016_j_physa_2022_127079
crossref_primary_10_1155_2022_2166345
crossref_primary_10_1016_j_commtr_2021_100012
crossref_primary_10_1038_s41598_024_64483_w
crossref_primary_10_3390_s21010195
crossref_primary_10_1155_2022_3930795
crossref_primary_10_1109_TVT_2022_3171835
crossref_primary_10_3390_su151511893
crossref_primary_10_1080_21680566_2023_2165191
crossref_primary_10_1016_j_trc_2024_104743
crossref_primary_10_1080_21680566_2021_1991504
crossref_primary_10_1016_j_pmcj_2024_101935
crossref_primary_10_1016_j_physa_2024_129790
crossref_primary_10_1109_TITS_2024_3440359
crossref_primary_10_3390_su131910595
crossref_primary_10_1080_23249935_2025_2525291
crossref_primary_10_1080_23249935_2025_2517306
crossref_primary_10_1016_j_physa_2023_128995
crossref_primary_10_1016_j_trc_2024_104979
crossref_primary_10_1145_3627819
crossref_primary_10_1080_21680566_2024_2363273
crossref_primary_10_1109_TITS_2023_3322982
crossref_primary_10_1007_s13042_024_02337_7
crossref_primary_10_3390_s20185039
crossref_primary_10_1016_j_trc_2025_105029
crossref_primary_10_26599_BDMA_2023_9020017
crossref_primary_10_1016_j_trc_2021_103062
crossref_primary_10_1049_itr2_12198
crossref_primary_10_1080_19475683_2025_2453553
crossref_primary_10_1109_TITS_2021_3049264
crossref_primary_10_1109_TITS_2024_3394748
crossref_primary_10_1016_j_physa_2021_126750
crossref_primary_10_1109_TITS_2023_3279279
crossref_primary_10_1155_2022_5119209
crossref_primary_10_1080_15472450_2024_2392720
Cites_doi 10.1109/TPDS.2008.147
10.1016/j.trc.2011.05.014
10.1016/j.trc.2013.04.001
10.1016/j.trc.2015.06.001
10.1016/j.trpro.2017.05.214
10.1109/TITS.2015.2405759
10.1016/j.trc.2011.01.002
10.1109/TITS.2012.2187895
10.1007/s11116-014-9541-6
10.1016/j.trc.2009.04.003
10.1016/j.trc.2009.02.003
10.1109/ITSC.2010.5624994
10.1016/j.trb.2007.08.005
10.1016/j.trc.2012.04.007
10.1145/1014052.1014089
10.1109/TITS.2010.2049105
10.1016/j.trb.2005.11.003
10.1016/j.trc.2017.07.006
10.1016/j.trc.2007.03.001
10.1145/2623330.2623656
10.1155/2017/1738085
10.3141/1617-23
10.1162/089976699300016674
10.1016/j.aap.2016.07.030
10.1098/rsta.2011.0550
10.1109/TITS.2007.899720
10.1016/S0968-090X(03)00026-3
10.7551/mitpress/3206.001.0001
10.1080/15472450802023337
10.1016/j.trc.2007.06.002
10.1007/BFb0053999
10.1016/j.trc.2009.10.006
10.1016/j.trb.2012.03.006
10.1177/0361198119844756
10.1023/A:1018628609742
10.3141/2035-08
10.1016/j.autcon.2015.12.007
10.3141/2024-11
10.1109/ACCESS.2018.2873569
10.1109/TKDE.2016.2621104
10.1109/TITS.2014.2323341
10.1109/TITS.2004.837813
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.trc.2020.102660
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1879-2359
ExternalDocumentID 10_1016_j_trc_2020_102660
S0968090X20305751
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AAAKG
AACTN
AAEDT
AAEDW
AAFJI
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
AAYFN
ABBOA
ABLJU
ABMAC
ABMMH
ABUCO
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKYCK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOMHK
AOUOD
APLSM
ASPBG
AVARZ
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HAMUX
HMY
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LY1
LY7
M3Y
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PRBVW
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDS
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SSO
SSS
SST
SSV
SSZ
T5K
TN5
WUQ
XPP
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c325t-3647bc6e37c66dba70dbc6dbd50c3069e5664d4eef43a25e3b5000795e91aa113
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000550161200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0968-090X
IngestDate Sat Nov 29 07:05:12 EST 2025
Tue Nov 18 20:54:08 EST 2025
Fri Feb 23 02:47:38 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Arterial network
Traffic state estimation
Gaussian process
License plate recognition data
Hybrid dynamic Bayesian network
Signal timing inference
Queue length approximation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-3647bc6e37c66dba70dbc6dbd50c3069e5664d4eef43a25e3b5000795e91aa113
ParticipantIDs crossref_primary_10_1016_j_trc_2020_102660
crossref_citationtrail_10_1016_j_trc_2020_102660
elsevier_sciencedirect_doi_10_1016_j_trc_2020_102660
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Transportation research. Part C, Emerging technologies
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhan, Zheng, Yi, Ukkusuri (b0280) 2017; 29
Zhan, Li, Ukkusuri (b0270) 2015; 57
Beijing Traffic Management Bureau, 2017. Location table of fixed traffic monitoring equipment.
Zhan, Hasan, Ukkusuri, Kamga (b0265) 2013; 33
Dempster, Laird, Rubin (b0060) 1977
Huang, Darwiche (b0105) 1994; 11
Berger (b0025) 2013
Kwong, Kavaler, Rajagopal, Varaiya (b0130) 2009; 17
Axer, Friedrich (b0010) 2017; 25
Koller, Friedman (b0125) 2009
Hao, Ban, Bennett, Ji, Sun (b0080) 2012; 13
Zhang, Rice (b0285) 2003; 11
Bertini, Lasky, Monsere (b0030) 2005
Murphy (b0150) 2001; 33
Murphy (b0155) 1998
Yasin, Karim, Abdullah (b0255) 2010; 8
Zhang, Xie (b0290) 2007; 2024
Wu, Ho, Lee (b0240) 2004; 5
Ghahramani, Z., 1998. Learning dynamic bayesian networks, in: Adaptive processing of sequences and data structures. Springer, pp. 168–197.
Vigos, Papageorgiou, Wang (b0225) 2008; 16
Skabardonis, Geroliminis (b0205) 2008; 12
Xumei, Huibo, Wang (b0250) 2012; 12
Zhan, Ukkusuri, Yang (b0275) 2016; 72
.
Williams, C.K., Rasmussen, C.E., 2006. Gaussian processes for machine learning. the MIT Press 2, 4.
Coifman, Cassidy (b0045) 2002; 36
Roweis, Ghahramani (b0185) 1999; 11
Cowell, Dawid, Lauritzen, Spiegelhalter (b0055) 2006
Zhu, Li, Zhu, Ni (b0300) 2009; 20
Ahmadi, Jahangiri, Berardi, Machiani (b0005) 2018
Vickrey (b0220) 1969; 59
Wang, Y., Zheng, Y., Xue, Y., 2014. Travel time estimation of a path using sparse trajectories, in: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM. pp. 25–34.
Bishop (b0035) 2006
Du, Yan, Zhu, Sun (b0065) 2019; 2673
Mo, Li, Zhan (b0145) 2017; 82
Fayazi, Vahidi, Mahler, Winckler (b0070) 2014; 16
Jahangiri, Rakha (b0115) 2015; 16
Oh, Ritchie, Jeng (b0170) 2007; 8
Hunter, T., Herring, R., Abbeel, P., Bayen, A., 2009. Path and travel time inference from gps probe vehicle data. NIPS Analyzing Networks and Learning with Graphs 12.
He, X., Das, R., 2015. RFID in China 2015-2025: forecasts, players, opportunities. Technical Report. IDTechEX Research.
Tseng, Hsueh, Tseng, Yang, Chao, Chou (b0215) 2018; 6
Chen, Yang, Xu (b0040) 2017; 2017
Li, Rose (b0135) 2011; 19
Suykens, Vandewalle (b0210) 1999; 9
Murphy (b0160) 2002
Roberts, Osborne, Ebden, Reece, Gibson, Aigrain (b0180) 2013; 371
Shafique, Hato (b0190) 2015; 42
Sherali, Desai, Rakha (b0200) 2006; 40
Wu, X., Srihari, R., 2004. Incorporating prior knowledge with weighted margin support vector machines, in: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM. pp. 326–333.
Herring, R., Hofleitner, A., Abbeel, P., Bayen, A., 2010. Estimating arterial traffic conditions using sparse probe data, in: Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, IEEE. pp. 929–936.
Yeon, Elefteriadou, Lawphongpanich (b0260) 2008; 42
Herrera, Work, Herring, Ban, Jacobson, Bayen (b0090) 2010; 18
Liu, Wu, Ma, Hu (b0140) 2009; 17
Park, Rilett (b0175) 1998
Hofleitner, Herring, Bayen (b0100) 2012; 46
Ni, Wang, Sun, Li (b0165) 2016; 96
Ban, Hao, Sun (b0015) 2011; 19
Jeng, Tok, Ritchie (b0120) 2010; 11
Zheng, VanZuylen (b0295) 2013; 31
Sharma, Bullock, Bonneson (b0195) 2007
Coifman, Krishnamurthy (b0050) 2007; 15
Zhu (10.1016/j.trc.2020.102660_b0300) 2009; 20
Park (10.1016/j.trc.2020.102660_b0175) 1998
10.1016/j.trc.2020.102660_b0020
Cowell (10.1016/j.trc.2020.102660_b0055) 2006
Murphy (10.1016/j.trc.2020.102660_b0155) 1998
Huang (10.1016/j.trc.2020.102660_b0105) 1994; 11
Mo (10.1016/j.trc.2020.102660_b0145) 2017; 82
Berger (10.1016/j.trc.2020.102660_b0025) 2013
Chen (10.1016/j.trc.2020.102660_b0040) 2017; 2017
Tseng (10.1016/j.trc.2020.102660_b0215) 2018; 6
Murphy (10.1016/j.trc.2020.102660_b0150) 2001; 33
Axer (10.1016/j.trc.2020.102660_b0010) 2017; 25
10.1016/j.trc.2020.102660_b0235
10.1016/j.trc.2020.102660_b0230
10.1016/j.trc.2020.102660_b0110
Fayazi (10.1016/j.trc.2020.102660_b0070) 2014; 16
10.1016/j.trc.2020.102660_b0075
Ahmadi (10.1016/j.trc.2020.102660_b0005) 2018
Yeon (10.1016/j.trc.2020.102660_b0260) 2008; 42
Zhan (10.1016/j.trc.2020.102660_b0270) 2015; 57
Shafique (10.1016/j.trc.2020.102660_b0190) 2015; 42
Wu (10.1016/j.trc.2020.102660_b0240) 2004; 5
Zhan (10.1016/j.trc.2020.102660_b0275) 2016; 72
Jahangiri (10.1016/j.trc.2020.102660_b0115) 2015; 16
Dempster (10.1016/j.trc.2020.102660_b0060) 1977
Liu (10.1016/j.trc.2020.102660_b0140) 2009; 17
Coifman (10.1016/j.trc.2020.102660_b0050) 2007; 15
Hao (10.1016/j.trc.2020.102660_b0080) 2012; 13
Oh (10.1016/j.trc.2020.102660_b0170) 2007; 8
Du (10.1016/j.trc.2020.102660_b0065) 2019; 2673
Zhang (10.1016/j.trc.2020.102660_b0290) 2007; 2024
Jeng (10.1016/j.trc.2020.102660_b0120) 2010; 11
Li (10.1016/j.trc.2020.102660_b0135) 2011; 19
Bishop (10.1016/j.trc.2020.102660_b0035) 2006
10.1016/j.trc.2020.102660_b0245
Hofleitner (10.1016/j.trc.2020.102660_b0100) 2012; 46
Sherali (10.1016/j.trc.2020.102660_b0200) 2006; 40
Vigos (10.1016/j.trc.2020.102660_b0225) 2008; 16
Zhan (10.1016/j.trc.2020.102660_b0280) 2017; 29
Ban (10.1016/j.trc.2020.102660_b0015) 2011; 19
Koller (10.1016/j.trc.2020.102660_b0125) 2009
10.1016/j.trc.2020.102660_b0085
Vickrey (10.1016/j.trc.2020.102660_b0220) 1969; 59
Roberts (10.1016/j.trc.2020.102660_b0180) 2013; 371
Suykens (10.1016/j.trc.2020.102660_b0210) 1999; 9
Coifman (10.1016/j.trc.2020.102660_b0045) 2002; 36
Skabardonis (10.1016/j.trc.2020.102660_b0205) 2008; 12
Herrera (10.1016/j.trc.2020.102660_b0090) 2010; 18
Roweis (10.1016/j.trc.2020.102660_b0185) 1999; 11
Murphy (10.1016/j.trc.2020.102660_b0160) 2002
Zheng (10.1016/j.trc.2020.102660_b0295) 2013; 31
Sharma (10.1016/j.trc.2020.102660_b0195) 2007
10.1016/j.trc.2020.102660_b0095
Bertini (10.1016/j.trc.2020.102660_b0030) 2005
Xumei (10.1016/j.trc.2020.102660_b0250) 2012; 12
Ni (10.1016/j.trc.2020.102660_b0165) 2016; 96
Zhang (10.1016/j.trc.2020.102660_b0285) 2003; 11
Kwong (10.1016/j.trc.2020.102660_b0130) 2009; 17
Yasin (10.1016/j.trc.2020.102660_b0255) 2010; 8
Zhan (10.1016/j.trc.2020.102660_b0265) 2013; 33
References_xml – year: 2009
  ident: b0125
  article-title: Probabilistic graphical models: principles and techniques
– year: 1998
  ident: b0155
  article-title: Inference and learning in hybrid Bayesian networks
– volume: 2017
  start-page: 1738085
  year: 2017
  ident: b0040
  article-title: Clustering Vehicle Temporal and Spatial Travel Behavior Using License Plate Recognition Data
  publication-title: J. Adv. Transport.
– volume: 13
  start-page: 792
  year: 2012
  end-page: 804
  ident: b0080
  article-title: Signal timing estimation using sample intersection travel times
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b0210
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– start-page: 163
  year: 1998
  end-page: 170
  ident: b0175
  article-title: Forecasting multiple-period freeway link travel times using modular neural networks
  publication-title: Transport. Res. Rec.: J. Transp. Res. Board
– year: 2006
  ident: b0055
  article-title: Probabilistic networks and expert systems: Exact computational methods for Bayesian networks
– reference: He, X., Das, R., 2015. RFID in China 2015-2025: forecasts, players, opportunities. Technical Report. IDTechEX Research.
– volume: 42
  start-page: 163
  year: 2015
  end-page: 188
  ident: b0190
  article-title: Use of acceleration data for transportation mode prediction
  publication-title: Transportation
– volume: 72
  start-page: 237
  year: 2016
  end-page: 246
  ident: b0275
  article-title: A bayesian mixture model for short-term average link travel time estimation using large-scale limited information trip-based data
  publication-title: Autom. Constr.
– volume: 2024
  start-page: 92
  year: 2007
  end-page: 99
  ident: b0290
  article-title: Forecasting of short-term freeway volume with v-support vector machines
  publication-title: Transp. Res. Rec.
– volume: 33
  start-page: 37
  year: 2013
  end-page: 49
  ident: b0265
  article-title: Urban link travel time estimation using large-scale taxi data with partial information
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 15
  start-page: 135
  year: 2007
  end-page: 153
  ident: b0050
  article-title: Vehicle reidentification and travel time measurement across freeway junctions using the existing detector infrastructure
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 82
  start-page: 358
  year: 2017
  end-page: 378
  ident: b0145
  article-title: Speed profile estimation using license plate recognition data
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 11
  start-page: 187
  year: 2003
  end-page: 210
  ident: b0285
  article-title: Short-term travel time prediction
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 46
  start-page: 1097
  year: 2012
  end-page: 1122
  ident: b0100
  article-title: Arterial travel time forecast with streaming data: A hybrid approach of flow modeling and machine learning
  publication-title: Transport. Res. Part B: Methodol.
– volume: 29
  start-page: 272
  year: 2017
  end-page: 285
  ident: b0280
  article-title: Citywide traffic volume estimation using trajectory data
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1
  year: 2018
  end-page: 25
  ident: b0005
  article-title: Crash severity analysis of rear-end crashes in california using statistical and machine learning classification methods
  publication-title: J. Transport. Safety Secur.
– volume: 8
  start-page: 460
  year: 2007
  end-page: 469
  ident: b0170
  article-title: Anonymous vehicle reidentification using heterogeneous detection systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
– start-page: 1
  year: 1977
  end-page: 38
  ident: b0060
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: J. Royal Stat. Soc. Ser. B Methodol.
– volume: 18
  start-page: 568
  year: 2010
  end-page: 583
  ident: b0090
  article-title: Evaluation of traffic data obtained via gps-enabled mobile phones: The mobile century field experiment
  publication-title: Transport. Res. Part C: Emerg. Technol.
– reference: Herring, R., Hofleitner, A., Abbeel, P., Bayen, A., 2010. Estimating arterial traffic conditions using sparse probe data, in: Intelligent Transportation Systems (ITSC), 2010 13th International IEEE Conference on, IEEE. pp. 929–936.
– start-page: 69
  year: 2007
  end-page: 80
  ident: b0195
  article-title: Input-output and hybrid techniques for real-time prediction of delay and maximum queue length at signalized intersections
  publication-title: Transport. Res. Rec.: J. Transp. Res. Board
– volume: 19
  start-page: 1006
  year: 2011
  end-page: 1018
  ident: b0135
  article-title: Incorporating uncertainty into short-term travel time predictions
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 12
  start-page: 29
  year: 2012
  end-page: 34
  ident: b0250
  article-title: Brt vehicle travel time prediction based on svm and kalman filter
  publication-title: J. Transport. Syst. Eng. Inform. Technol.
– reference: Wang, Y., Zheng, Y., Xue, Y., 2014. Travel time estimation of a path using sparse trajectories, in: Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, ACM. pp. 25–34.
– volume: 59
  start-page: 251
  year: 1969
  end-page: 260
  ident: b0220
  article-title: Congestion theory and transport investment
  publication-title: Am. Econ. Rev.
– volume: 2673
  start-page: 189
  year: 2019
  end-page: 201
  ident: b0065
  article-title: Signal timing parameters estimation for intersections using floating car data
  publication-title: Transport. Res. Rec.
– reference: Wu, X., Srihari, R., 2004. Incorporating prior knowledge with weighted margin support vector machines, in: Proceedings of the tenth ACM SIGKDD international conference on Knowledge discovery and data mining, ACM. pp. 326–333.
– volume: 16
  start-page: 19
  year: 2014
  end-page: 28
  ident: b0070
  article-title: Traffic signal phase and timing estimation from low-frequency transit bus data
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 17
  start-page: 586
  year: 2009
  end-page: 606
  ident: b0130
  article-title: Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 11
  start-page: 639
  year: 2010
  end-page: 646
  ident: b0120
  article-title: Freeway corridor performance measurement based on vehicle reidentification
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 17
  start-page: 412
  year: 2009
  end-page: 427
  ident: b0140
  article-title: Real-time queue length estimation for congested signalized intersections
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 20
  start-page: 740
  year: 2009
  end-page: 752
  ident: b0300
  article-title: Hero: Online real-time vehicle tracking
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 12
  start-page: 64
  year: 2008
  end-page: 74
  ident: b0205
  article-title: Real-time monitoring and control on signalized arterials
  publication-title: J. Intell. Transport. Syst.
– volume: 33
  start-page: 1024
  year: 2001
  end-page: 1034
  ident: b0150
  article-title: The bayes net toolbox for matlab
  publication-title: Comput. Sci. Stat.
– volume: 42
  start-page: 325
  year: 2008
  end-page: 338
  ident: b0260
  article-title: Travel time estimation on a freeway using discrete time markov chains
  publication-title: Transport. Res. Part B: Methodol.
– year: 2002
  ident: b0160
  article-title: Dynamic bayesian networks: representation, inference and learning. Ph.D. thesis
– volume: 31
  start-page: 145
  year: 2013
  end-page: 157
  ident: b0295
  article-title: Urban link travel time estimation based on sparse probe vehicle data
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 19
  start-page: 1133
  year: 2011
  end-page: 1156
  ident: b0015
  article-title: Real time queue length estimation for signalized intersections using travel times from mobile sensors
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 6
  start-page: 57311
  year: 2018
  end-page: 57323
  ident: b0215
  article-title: Congestion prediction with big data for real-time highway traffic
  publication-title: IEEE Access
– volume: 16
  start-page: 18
  year: 2008
  end-page: 35
  ident: b0225
  article-title: Real-time estimation of vehicle-count within signalized links
  publication-title: Transport. Res. Part C: Emerg. Technol.
– volume: 25
  start-page: 1645
  year: 2017
  end-page: 1661
  ident: b0010
  article-title: Signal timing estimation based on low frequency floating car data
  publication-title: Transport. Res. Proc.
– reference: Beijing Traffic Management Bureau, 2017. Location table of fixed traffic monitoring equipment.
– year: 2013
  ident: b0025
  article-title: Statistical decision theory and Bayesian analysis
– volume: 40
  start-page: 857
  year: 2006
  end-page: 871
  ident: b0200
  article-title: A discrete optimization approach for locating automatic vehicle identification readers for the provision of roadway travel times
  publication-title: Transport. Res. Part B: Methodol.
– year: 2006
  ident: b0035
  article-title: Pattern Recognition and Machine Learning
– volume: 16
  start-page: 2406
  year: 2015
  end-page: 2417
  ident: b0115
  article-title: Applying machine learning techniques to transportation mode recognition using mobile phone sensor data
  publication-title: IEEE Trans. Intell. Transport. Syst.
– volume: 8
  start-page: 1738
  year: 2010
  end-page: 1751
  ident: b0255
  article-title: Travel time measurement in real-time using automatic number plate recognition for Malaysian environment
  publication-title: J. East. Asia Soc. Transport. Stud.
– volume: 371
  start-page: 20110550
  year: 2013
  ident: b0180
  article-title: Gaussian processes for time-series modelling
  publication-title: Phil. Trans. R. Soc. A
– volume: 36
  start-page: 899
  year: 2002
  end-page: 917
  ident: b0045
  article-title: Vehicle reidentification and travel time measurement on congested freeways
  publication-title: Transport. Res. Part A: Policy Pract.
– reference: Hunter, T., Herring, R., Abbeel, P., Bayen, A., 2009. Path and travel time inference from gps probe vehicle data. NIPS Analyzing Networks and Learning with Graphs 12.
– volume: 96
  start-page: 118
  year: 2016
  end-page: 129
  ident: b0165
  article-title: Evaluation of pedestrian safety at intersections: a theoretical framework based on pedestrian-vehicle interaction patterns
  publication-title: Acc. Anal. Prevent.
– reference: .
– volume: 57
  start-page: 85
  year: 2015
  end-page: 102
  ident: b0270
  article-title: Lane-based real-time queue length estimation using license plate recognition data
  publication-title: Transport. Res. Part C: Emerg. Technol.
– start-page: 296
  year: 2005
  end-page: 301
  ident: b0030
  article-title: Validating predicted rural corridor travel times from an automated license plate recognition system: Oregon’s frontier project
  publication-title: IEEE Proc. Intell. Transport. Syst.
– reference: Williams, C.K., Rasmussen, C.E., 2006. Gaussian processes for machine learning. the MIT Press 2, 4.
– volume: 11
  start-page: 305
  year: 1999
  end-page: 345
  ident: b0185
  article-title: A unifying review of linear gaussian models
  publication-title: Neural Comput.
– volume: 5
  start-page: 276
  year: 2004
  end-page: 281
  ident: b0240
  article-title: Travel-time prediction with support vector regression
  publication-title: IEEE Trans. Intell. Transport. Syst.
– reference: Ghahramani, Z., 1998. Learning dynamic bayesian networks, in: Adaptive processing of sequences and data structures. Springer, pp. 168–197.
– volume: 11
  start-page: 158
  year: 1994
  ident: b0105
  article-title: Inference in belief networks: a procedural guide
  publication-title: Int. J. Approx. Reason.
– volume: 20
  start-page: 740
  year: 2009
  ident: 10.1016/j.trc.2020.102660_b0300
  article-title: Hero: Online real-time vehicle tracking
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2008.147
– volume: 36
  start-page: 899
  year: 2002
  ident: 10.1016/j.trc.2020.102660_b0045
  article-title: Vehicle reidentification and travel time measurement on congested freeways
  publication-title: Transport. Res. Part A: Policy Pract.
– volume: 19
  start-page: 1006
  year: 2011
  ident: 10.1016/j.trc.2020.102660_b0135
  article-title: Incorporating uncertainty into short-term travel time predictions
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2011.05.014
– volume: 33
  start-page: 37
  year: 2013
  ident: 10.1016/j.trc.2020.102660_b0265
  article-title: Urban link travel time estimation using large-scale taxi data with partial information
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2013.04.001
– volume: 57
  start-page: 85
  year: 2015
  ident: 10.1016/j.trc.2020.102660_b0270
  article-title: Lane-based real-time queue length estimation using license plate recognition data
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2015.06.001
– volume: 25
  start-page: 1645
  year: 2017
  ident: 10.1016/j.trc.2020.102660_b0010
  article-title: Signal timing estimation based on low frequency floating car data
  publication-title: Transport. Res. Proc.
  doi: 10.1016/j.trpro.2017.05.214
– volume: 16
  start-page: 2406
  year: 2015
  ident: 10.1016/j.trc.2020.102660_b0115
  article-title: Applying machine learning techniques to transportation mode recognition using mobile phone sensor data
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2015.2405759
– volume: 19
  start-page: 1133
  year: 2011
  ident: 10.1016/j.trc.2020.102660_b0015
  article-title: Real time queue length estimation for signalized intersections using travel times from mobile sensors
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2011.01.002
– volume: 13
  start-page: 792
  year: 2012
  ident: 10.1016/j.trc.2020.102660_b0080
  article-title: Signal timing estimation using sample intersection travel times
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2012.2187895
– volume: 33
  start-page: 1024
  year: 2001
  ident: 10.1016/j.trc.2020.102660_b0150
  article-title: The bayes net toolbox for matlab
  publication-title: Comput. Sci. Stat.
– volume: 42
  start-page: 163
  year: 2015
  ident: 10.1016/j.trc.2020.102660_b0190
  article-title: Use of acceleration data for transportation mode prediction
  publication-title: Transportation
  doi: 10.1007/s11116-014-9541-6
– volume: 17
  start-page: 586
  year: 2009
  ident: 10.1016/j.trc.2020.102660_b0130
  article-title: Arterial travel time estimation based on vehicle re-identification using wireless magnetic sensors
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2009.04.003
– volume: 17
  start-page: 412
  year: 2009
  ident: 10.1016/j.trc.2020.102660_b0140
  article-title: Real-time queue length estimation for congested signalized intersections
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2009.02.003
– year: 2013
  ident: 10.1016/j.trc.2020.102660_b0025
– ident: 10.1016/j.trc.2020.102660_b0085
– volume: 12
  start-page: 29
  year: 2012
  ident: 10.1016/j.trc.2020.102660_b0250
  article-title: Brt vehicle travel time prediction based on svm and kalman filter
  publication-title: J. Transport. Syst. Eng. Inform. Technol.
– ident: 10.1016/j.trc.2020.102660_b0095
  doi: 10.1109/ITSC.2010.5624994
– volume: 42
  start-page: 325
  year: 2008
  ident: 10.1016/j.trc.2020.102660_b0260
  article-title: Travel time estimation on a freeway using discrete time markov chains
  publication-title: Transport. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2007.08.005
– volume: 31
  start-page: 145
  year: 2013
  ident: 10.1016/j.trc.2020.102660_b0295
  article-title: Urban link travel time estimation based on sparse probe vehicle data
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2012.04.007
– ident: 10.1016/j.trc.2020.102660_b0110
– ident: 10.1016/j.trc.2020.102660_b0245
  doi: 10.1145/1014052.1014089
– year: 2006
  ident: 10.1016/j.trc.2020.102660_b0035
– volume: 11
  start-page: 639
  year: 2010
  ident: 10.1016/j.trc.2020.102660_b0120
  article-title: Freeway corridor performance measurement based on vehicle reidentification
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2010.2049105
– volume: 40
  start-page: 857
  year: 2006
  ident: 10.1016/j.trc.2020.102660_b0200
  article-title: A discrete optimization approach for locating automatic vehicle identification readers for the provision of roadway travel times
  publication-title: Transport. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2005.11.003
– start-page: 296
  year: 2005
  ident: 10.1016/j.trc.2020.102660_b0030
  article-title: Validating predicted rural corridor travel times from an automated license plate recognition system: Oregon’s frontier project
  publication-title: IEEE Proc. Intell. Transport. Syst.
– volume: 82
  start-page: 358
  year: 2017
  ident: 10.1016/j.trc.2020.102660_b0145
  article-title: Speed profile estimation using license plate recognition data
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2017.07.006
– year: 2002
  ident: 10.1016/j.trc.2020.102660_b0160
– volume: 15
  start-page: 135
  year: 2007
  ident: 10.1016/j.trc.2020.102660_b0050
  article-title: Vehicle reidentification and travel time measurement across freeway junctions using the existing detector infrastructure
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2007.03.001
– ident: 10.1016/j.trc.2020.102660_b0230
  doi: 10.1145/2623330.2623656
– volume: 2017
  start-page: 1738085
  year: 2017
  ident: 10.1016/j.trc.2020.102660_b0040
  article-title: Clustering Vehicle Temporal and Spatial Travel Behavior Using License Plate Recognition Data
  publication-title: J. Adv. Transport.
  doi: 10.1155/2017/1738085
– start-page: 163
  year: 1998
  ident: 10.1016/j.trc.2020.102660_b0175
  article-title: Forecasting multiple-period freeway link travel times using modular neural networks
  publication-title: Transport. Res. Rec.: J. Transp. Res. Board
  doi: 10.3141/1617-23
– start-page: 1
  year: 1977
  ident: 10.1016/j.trc.2020.102660_b0060
  article-title: Maximum likelihood from incomplete data via the em algorithm
  publication-title: J. Royal Stat. Soc. Ser. B Methodol.
– volume: 11
  start-page: 305
  year: 1999
  ident: 10.1016/j.trc.2020.102660_b0185
  article-title: A unifying review of linear gaussian models
  publication-title: Neural Comput.
  doi: 10.1162/089976699300016674
– year: 1998
  ident: 10.1016/j.trc.2020.102660_b0155
– volume: 8
  start-page: 1738
  year: 2010
  ident: 10.1016/j.trc.2020.102660_b0255
  article-title: Travel time measurement in real-time using automatic number plate recognition for Malaysian environment
  publication-title: J. East. Asia Soc. Transport. Stud.
– volume: 96
  start-page: 118
  year: 2016
  ident: 10.1016/j.trc.2020.102660_b0165
  article-title: Evaluation of pedestrian safety at intersections: a theoretical framework based on pedestrian-vehicle interaction patterns
  publication-title: Acc. Anal. Prevent.
  doi: 10.1016/j.aap.2016.07.030
– volume: 371
  start-page: 20110550
  year: 2013
  ident: 10.1016/j.trc.2020.102660_b0180
  article-title: Gaussian processes for time-series modelling
  publication-title: Phil. Trans. R. Soc. A
  doi: 10.1098/rsta.2011.0550
– volume: 8
  start-page: 460
  year: 2007
  ident: 10.1016/j.trc.2020.102660_b0170
  article-title: Anonymous vehicle reidentification using heterogeneous detection systems
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2007.899720
– start-page: 1
  year: 2018
  ident: 10.1016/j.trc.2020.102660_b0005
  article-title: Crash severity analysis of rear-end crashes in california using statistical and machine learning classification methods
  publication-title: J. Transport. Safety Secur.
– volume: 11
  start-page: 187
  year: 2003
  ident: 10.1016/j.trc.2020.102660_b0285
  article-title: Short-term travel time prediction
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/S0968-090X(03)00026-3
– ident: 10.1016/j.trc.2020.102660_b0235
  doi: 10.7551/mitpress/3206.001.0001
– volume: 12
  start-page: 64
  year: 2008
  ident: 10.1016/j.trc.2020.102660_b0205
  article-title: Real-time monitoring and control on signalized arterials
  publication-title: J. Intell. Transport. Syst.
  doi: 10.1080/15472450802023337
– volume: 11
  start-page: 158
  year: 1994
  ident: 10.1016/j.trc.2020.102660_b0105
  article-title: Inference in belief networks: a procedural guide
  publication-title: Int. J. Approx. Reason.
– volume: 16
  start-page: 18
  year: 2008
  ident: 10.1016/j.trc.2020.102660_b0225
  article-title: Real-time estimation of vehicle-count within signalized links
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2007.06.002
– ident: 10.1016/j.trc.2020.102660_b0075
  doi: 10.1007/BFb0053999
– volume: 59
  start-page: 251
  year: 1969
  ident: 10.1016/j.trc.2020.102660_b0220
  article-title: Congestion theory and transport investment
  publication-title: Am. Econ. Rev.
– volume: 18
  start-page: 568
  year: 2010
  ident: 10.1016/j.trc.2020.102660_b0090
  article-title: Evaluation of traffic data obtained via gps-enabled mobile phones: The mobile century field experiment
  publication-title: Transport. Res. Part C: Emerg. Technol.
  doi: 10.1016/j.trc.2009.10.006
– volume: 46
  start-page: 1097
  year: 2012
  ident: 10.1016/j.trc.2020.102660_b0100
  article-title: Arterial travel time forecast with streaming data: A hybrid approach of flow modeling and machine learning
  publication-title: Transport. Res. Part B: Methodol.
  doi: 10.1016/j.trb.2012.03.006
– year: 2009
  ident: 10.1016/j.trc.2020.102660_b0125
– volume: 2673
  start-page: 189
  year: 2019
  ident: 10.1016/j.trc.2020.102660_b0065
  article-title: Signal timing parameters estimation for intersections using floating car data
  publication-title: Transport. Res. Rec.
  doi: 10.1177/0361198119844756
– volume: 9
  start-page: 293
  year: 1999
  ident: 10.1016/j.trc.2020.102660_b0210
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– start-page: 69
  year: 2007
  ident: 10.1016/j.trc.2020.102660_b0195
  article-title: Input-output and hybrid techniques for real-time prediction of delay and maximum queue length at signalized intersections
  publication-title: Transport. Res. Rec.: J. Transp. Res. Board
  doi: 10.3141/2035-08
– volume: 72
  start-page: 237
  year: 2016
  ident: 10.1016/j.trc.2020.102660_b0275
  article-title: A bayesian mixture model for short-term average link travel time estimation using large-scale limited information trip-based data
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2015.12.007
– volume: 2024
  start-page: 92
  year: 2007
  ident: 10.1016/j.trc.2020.102660_b0290
  article-title: Forecasting of short-term freeway volume with v-support vector machines
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2024-11
– volume: 6
  start-page: 57311
  year: 2018
  ident: 10.1016/j.trc.2020.102660_b0215
  article-title: Congestion prediction with big data for real-time highway traffic
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2873569
– volume: 29
  start-page: 272
  year: 2017
  ident: 10.1016/j.trc.2020.102660_b0280
  article-title: Citywide traffic volume estimation using trajectory data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2016.2621104
– year: 2006
  ident: 10.1016/j.trc.2020.102660_b0055
– ident: 10.1016/j.trc.2020.102660_b0020
– volume: 16
  start-page: 19
  year: 2014
  ident: 10.1016/j.trc.2020.102660_b0070
  article-title: Traffic signal phase and timing estimation from low-frequency transit bus data
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2014.2323341
– volume: 5
  start-page: 276
  year: 2004
  ident: 10.1016/j.trc.2020.102660_b0240
  article-title: Travel-time prediction with support vector regression
  publication-title: IEEE Trans. Intell. Transport. Syst.
  doi: 10.1109/TITS.2004.837813
SSID ssj0001957
Score 2.502333
Snippet •Urban network-level traffic states inference model using partially available data.•Complete solution for link queue lengths and travel times inference using...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102660
SubjectTerms Arterial network
Gaussian process
Hybrid dynamic Bayesian network
License plate recognition data
Queue length approximation
Signal timing inference
Traffic state estimation
Title Link-based traffic state estimation and prediction for arterial networks using license-plate recognition data
URI https://dx.doi.org/10.1016/j.trc.2020.102660
Volume 117
WOSCitedRecordID wos000550161200005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1879-2359
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001957
  issn: 0968-090X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELZWLRLwgKCAKJf8wBMrrzaHk_ixqooAoQrRQ3mLEh-CdhtWu5uq_Aj-MzM-klAOARIv0a4VxyvPF3s8-803hLwoeFNrk8VMw7vD0toYhiVtWaPSONUiEsbKNZ2-yw8Pi7IU7yeTryEX5nKRt21xdSWW_9XU0AbGxtTZvzB3_1BogM9gdLiC2eH6R4bH0yXDzUlh_QdUiJjarKEp6mm4RMWgDqA-yZ5qaLmdGD5vHTF8Pe1sGGEBK0m71my5wGf0fCPo5dPaet-210l3Y3gZoY8z8FJXm-m-XXUx2dMmaIWI_ojDiLFrvKkExH7pRlwhSzj40GH9sdB2cn7erTuXJX9UW1mm09k4ghEP_DkfVgupNQOPycYnM-RlzEu3UbnVucgFixMvIR6Wb5f7-cNW4KISZ7PNCpUqYytSkbnaBdcUto9wLBwqxtUvx4T87TjnAhbJ7b03B-XbfmuPhJOODb8t_E1uCYPXBvq5ozNyXo7vkjv-1EH3HFrukYlud8jNkJS-3iG3R7qU98nFgCHqMUQthuiAIQoYogOGKGCIBgzRgCFqMUS_wxAdYYgihh6Qk1cHx_uvma_LwWQS8w3DkgONzHSSyyxTTZ3PFXxVjeJzCSdQoeGIkKpUa5Mmdcx10mDVjVxwePfrOoqSh2Sr_dzqR4RyzmVWmFqmWNdBmoJnKjFRIxOjlGrELpmHSaykF63H2imLKrATzyqY9wrnvXLzvkte9l2WTrHldzenwTKVdzmdK1kBjH7d7fG_dXtCbg34f0q2NqtOPyM35CW8JqvnHmzfAL06q3U
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Link-based+traffic+state+estimation+and+prediction+for+arterial+networks+using+license-plate+recognition+data&rft.jtitle=Transportation+research.+Part+C%2C+Emerging+technologies&rft.au=Zhan%2C+Xianyuan&rft.au=Li%2C+Ruimin&rft.au=Ukkusuri%2C+Satish+V.&rft.date=2020-08-01&rft.pub=Elsevier+Ltd&rft.issn=0968-090X&rft.eissn=1879-2359&rft.volume=117&rft_id=info:doi/10.1016%2Fj.trc.2020.102660&rft.externalDocID=S0968090X20305751
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0968-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0968-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0968-090X&client=summon