Approximate Multipliers Using Bio-Inspired Algorithm

As most of the real-world problems are imprecise, dedicating a lot of hardware for precise computations is futile for low-power applications and few applications where the precision is not of paramount importance. For such applications an imprecise computational block is sufficient if it has other p...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of electrical engineering & technology Ročník 16; číslo 1; s. 559 - 568
Hlavní autoři: Senthilkumar, K. K., Kumarasamy, Kunaraj, Dhandapani, Vaithiyanathan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Singapore Springer Singapore 01.01.2021
대한전기학회
Témata:
ISSN:1975-0102, 2093-7423
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract As most of the real-world problems are imprecise, dedicating a lot of hardware for precise computations is futile for low-power applications and few applications where the precision is not of paramount importance. For such applications an imprecise computational block is sufficient if it has other performance benefits like low power and low area. We propose Constrained Cartesian Genetic Programming (CCGP), a variant of CGP to evolve lower order imprecise multipliers and further the higher order multipliers are constructed from them. Gate-level architectures for 2 × 2, 3 × 2, 3 × 3 and 4 × 4 imprecise multipliers are evolved. Also, we propose few partitioning methodologies for the construction of higher order multipliers using the evolved imprecise lower order multipliers. The constructed evolved-partitioned multiplier (EPM) of orders 8 × 8 and 16 × 16 has significant performance benefits over the existing multiplier architectures in terms of cell area and power. The circuits are synthesized using Cadence SoC Encounter ® using TSMC ® 180 nm standard cell library. The 16-bit EPMs show a maximum power reduction of 33% compared to other truncated multipliers and an area improvement of 2%.
AbstractList As most of the real-world problems are imprecise, dedicating a lot of hardware for precise computations is futile for lowpower applications and few applications where the precision is not of paramount importance. For such applications an imprecise computational block is suffi cient if it has other performance benefi ts like low power and low area. We propose Constrained Cartesian Genetic Programming (CCGP), a variant of CGP to evolve lower order imprecise multipliers and further the higher order multipliers are constructed from them. Gate-level architectures for 2 × 2, 3 × 2, 3 × 3 and 4 × 4 imprecise multipliers are evolved. Also, we propose few partitioning methodologies for the construction of higher order multipliers using the evolved imprecise lower order multipliers. The constructed evolved-partitioned multiplier (EPM) of orders 8 × 8 and 16 × 16 has signifi cant performance benefi ts over the existing multiplier architectures in terms of cell area and power. The circuits are synthesized using Cadence SoC Encounter ® using TSMC ® 180 nm standard cell library. The 16-bit EPMs show a maximum power reduction of 33% compared to other truncated multipliers and an area improvement of 2%. KCI Citation Count: 0
As most of the real-world problems are imprecise, dedicating a lot of hardware for precise computations is futile for low-power applications and few applications where the precision is not of paramount importance. For such applications an imprecise computational block is sufficient if it has other performance benefits like low power and low area. We propose Constrained Cartesian Genetic Programming (CCGP), a variant of CGP to evolve lower order imprecise multipliers and further the higher order multipliers are constructed from them. Gate-level architectures for 2 × 2, 3 × 2, 3 × 3 and 4 × 4 imprecise multipliers are evolved. Also, we propose few partitioning methodologies for the construction of higher order multipliers using the evolved imprecise lower order multipliers. The constructed evolved-partitioned multiplier (EPM) of orders 8 × 8 and 16 × 16 has significant performance benefits over the existing multiplier architectures in terms of cell area and power. The circuits are synthesized using Cadence SoC Encounter ® using TSMC ® 180 nm standard cell library. The 16-bit EPMs show a maximum power reduction of 33% compared to other truncated multipliers and an area improvement of 2%.
Author Kumarasamy, Kunaraj
Senthilkumar, K. K.
Dhandapani, Vaithiyanathan
Author_xml – sequence: 1
  givenname: K. K.
  orcidid: 0000-0001-8785-3548
  surname: Senthilkumar
  fullname: Senthilkumar, K. K.
  organization: Prince Shri Venkateshwara Padmavathy Engineering College
– sequence: 2
  givenname: Kunaraj
  orcidid: 0000-0002-9218-8850
  surname: Kumarasamy
  fullname: Kumarasamy, Kunaraj
  email: k.kunaraj@gmail.com
  organization: Loyola-ICAM College of Engineering and Technology (LICET)
– sequence: 3
  givenname: Vaithiyanathan
  orcidid: 0000-0001-5235-2620
  surname: Dhandapani
  fullname: Dhandapani, Vaithiyanathan
  organization: National Institute of Technology Delhi
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002669004$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNp9kD1PwzAQhi1UJNrCH2DKymA423ESj6Xio1IREmpnK3Xs4Da1IztV4d8TGiaGTu9w73OneyZo5LzTCN0SuCcA-UNMacE4BgoYgGcpPl6gMQXBcJ5SNkJjIvJ-TIBeoUmMW4CMAGdjlM7aNvgvuy87nbwdms62jdUhJutoXZ08Wo8XLrY26CqZNbUPtvvcX6NLUzZR3_zlFK2fn1bzV7x8f1nMZ0usGOUdZkxXmcpA5IwwXRQl15oKwjZGKFZx2BQVIQYqQw1JN0aJKtfACtCCUMVKzqbobtjrgpE7ZaUv7SlrL3dBzj5WCykyxmkKfZcOXRV8jEEb2Yb-q_AtCchfR3JwJHtH8uRIHnuo-Acp25Wd9a4LpW3Oo2xAY3_H1TrIrT8E1-s4R_0Axlx9mQ
CitedBy_id crossref_primary_10_1051_e3sconf_202339901009
crossref_primary_10_1007_s42979_022_01045_9
crossref_primary_10_1051_e3sconf_202339901014
crossref_primary_10_1016_j_vlsi_2025_102535
Cites_doi 10.1109/ICCD.2017.22
10.1109/ICET.2010.5638462
10.1109/EH.2000.869353
10.1109/ISCAS.2019.8702199
10.1109/CJECE.2013.6704691
10.1109/ETS.2013.6569370
10.7873/DATE.2013.280
10.1109/ICES.2013.6613278
10.1109/ACSSC.2000.911206
10.1109/EH.2004.1310814
10.1166/jolpe.2011.1157
10.1109/TVLSI.2008.2004544
10.1109/EH.1999.785435
10.1145/2228360.2228504
10.1109/ISCAS.2008.4542165
10.1049/iet-cds.2009.0329
10.1109/ACSSC.2005.1599946
ContentType Journal Article
Copyright The Korean Institute of Electrical Engineers 2020
Copyright_xml – notice: The Korean Institute of Electrical Engineers 2020
DBID AAYXX
CITATION
ACYCR
DOI 10.1007/s42835-020-00564-w
DatabaseName CrossRef
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2093-7423
EndPage 568
ExternalDocumentID oai_kci_go_kr_ARTI_9635240
10_1007_s42835_020_00564_w
GroupedDBID -~X
.UV
0R~
2WC
406
9ZL
AACDK
AAHNG
AAJBT
AASML
AATNV
AAUYE
AAYYP
ABAKF
ABECU
ABFTV
ABJNI
ABKCH
ABMQK
ABTEG
ABTKH
ABTMW
ACAOD
ACDTI
ACHSB
ACOKC
ACPIV
ACZOJ
ADKNI
ADTPH
ADURQ
ADYFF
AEFQL
AEMSY
AENEX
AESKC
AFBBN
AFQWF
AGDGC
AGMZJ
AGQEE
AIGIU
AILAN
AITGF
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AXYYD
BGNMA
CSCUP
DBRKI
DPUIP
EBLON
EBS
EJD
FIGPU
FNLPD
FRJ
GGCAI
GW5
IKXTQ
IWAJR
JDI
JZLTJ
KOV
KVFHK
LLZTM
M4Y
NPVJJ
NQJWS
NU0
OK1
PT4
ROL
RSV
SJYHP
SNE
SNPRN
SOHCF
SOJ
SRMVM
SSLCW
TDB
UOJIU
UTJUX
VEKWB
VFIZW
ZMTXR
AAYXX
ABBRH
ABDBE
ABFSG
ABJCF
ABRTQ
ACSTC
AEUYN
AEZWR
AFDZB
AFFHD
AFHIU
AFKRA
AFOHR
AHPBZ
AHWEU
AIXLP
ARAPS
ATHPR
AYFIA
BENPR
BGLVJ
CCPQU
CITATION
HCIFZ
M7S
PHGZM
PHGZT
PQGLB
PTHSS
AAFGU
AAYFA
ABFGW
ABKAS
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ACYCR
ADMDM
ADOXG
AEFTE
AESTI
AEVTX
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
Z7R
Z7S
Z7X
Z88
ID FETCH-LOGICAL-c325t-33ed6c6097313e88a5ee2913bf9c3d50b8d11f0df2f14bfc9d7e0380e912c3a53
IEDL.DBID RSV
ISICitedReferencesCount 27
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000584895000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1975-0102
IngestDate Tue Nov 21 21:08:46 EST 2023
Sat Nov 29 01:45:14 EST 2025
Tue Nov 18 22:39:03 EST 2025
Fri Feb 21 02:36:04 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Imprecise computation
Low power arithmetic
Cartesian Genetic Programming
Recursive multiplier
Evolutionary computation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-33ed6c6097313e88a5ee2913bf9c3d50b8d11f0df2f14bfc9d7e0380e912c3a53
ORCID 0000-0002-9218-8850
0000-0001-8785-3548
0000-0001-5235-2620
PageCount 10
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9635240
crossref_primary_10_1007_s42835_020_00564_w
crossref_citationtrail_10_1007_s42835_020_00564_w
springer_journals_10_1007_s42835_020_00564_w
PublicationCentury 2000
PublicationDate 20210100
2021-01-00
2021-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 1
  year: 2021
  text: 20210100
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Journal of electrical engineering & technology
PublicationTitleAbbrev J. Electr. Eng. Technol
PublicationYear 2021
Publisher Springer Singapore
대한전기학회
Publisher_xml – name: Springer Singapore
– name: 대한전기학회
References Oltean M, Grosan C (2004) Evolving digital circuits using multi expression programming. In: Proceedings NASA/DoD conference on evolvable hardware, pp 87–94, 24–26
MillerJFJobDVassilevVKPrinciples in the evolutionary design of digital circuits - part lGenet Program Evolvable Mach2000118351035.68640
Irfan M, Habib Q, Hassan GM, Yahya KM, Hayat S (2010) Combinational digital circuit synthesis using Cartesian Genetic Programming from a NAND gate template. In: International conference onemerging technologies (ICET), pp 343–347
Vassilev VK, Miller JE (2000) Towards the automatic design of more efficient digital circuits. In: Evolvable hardware, proceedings. The second NASA/DoD workshop, pp 151–160
Wang S, Wu YW (2003) Minimization of switching activities of partial products for designing low-power multipliers. In: IEEE transactions on very large scale integration (VLSI) systems, vol 11, issue 3, pp 418–433
Chinnery D, Keutzer K (2003) Low power multiplication algorithm for switching activity reduction through operand decomposition. In: Proceedings 21st international conference on computer design, pp 21–26
Shen NY, Chen (2002) Low-power multipliers by minimizing switching activities of partial products. In: IEEE international symposium oncircuits and systems, ISCAS 2002, vol 4, pp 93–96
Vassilev VK, Job D, Miller JF (2000) Towards the automatic design of more efficient digital circuits. In: The second NASA/DoD workshop on evolvable hardware, pp 151–160
Mudassir R, Anis M, Jaffari J (2008) Switching activity reduction in low power Booth multiplier. In: ISCAS 2008, IEEE international symposium on circuits and systems, pp 3306–3309, 18–21
KulkarniPGuptaPMilosDTrading accuracy for power in a multiplier architectureJ Low Power Electron2011749050110.1166/jolpe.2011.1157
Sekanina L, Vasicek Z (2013) Approximate circuit design by means of evolvable hardware. In: IEEE international conference on evolvable systems (SSCI-ICES), IEEE CS, 2013, pp 21–28
Biswas K, Mokrian P, Huapeng W, Ahmadi M (2005) Truncation schemes for recursive multipliers. In: Conference record of the thirty-ninth asilomar conference on signals, systems and computers, pp 1177–1180
Azarmehr M, Ahmadi M, Jullien GA, Muscedere R (2010) High-speed and low-power reconfigurable architectures of 2-digit two-dimensional logarithmic number system-based recursive multipliers. In: Circuits, devices & systems, IET, vol 4, issue 5, pp 374–381
Yang T, Ukezono T, Sato V (2017) Low-power and high-speed approximate multiplier design with a tree compressor. In: IEEE international conference on computer design (ICCD), Boston, MA, pp 89–96
Mohapatra D (2011) Approximate computing: enabling voltage over-scaling in multimedia applications. Ph.D Thesis, Purdue University
Venkataramani S, Roy K, Raghunathan A (2013) Substitute-and-simplify: a unified design paradigm for approximate and quality configurable circuits. In: Design, automation & test in Europe conference & exhibition (DATE), pp 1367–1372, 18–22
Kalganova T, Miller J (1999) Evolving more efficient digital circuits by allowing circuit layout evolution and multi-objective fitness. In: Proceedings of the first NASA/DoD workshop on evolvable hardware, pp 54–63
Danysh AN, Swartzlander EE (1998) A recursive fast multiplier. In: Signals, systems & computers, conference record of the thirty-second asilomar conference, vol 1, pp 197–201
Kim J, Swartzlander EE (2000) Improving the recursive multiplier. In: Conference record of the thirty-fourth asilomar conference on signals, systems and computers, vol 2, pp 1320–1324
Wang S, Wu YW, Chen (2000) Low-power multipliers by minimizing inter-data switching activities. In: Proceedings of the 43rd IEEE midwest symposium on circuits and systems, vol 1, pp 88–89
KunarajKSeshasayananRLeading one detectors and leading one position detectors - an evolutionary design methodologyCan J Electr Comput Eng201336310311010.1109/CJECE.2013.6704691
King EJ, Swartzlander EE (1997) Data-dependent truncation scheme for parallel multipliers. In: 31st asilomar conf. signals, syst. computer, vol 2, pp 1178–1182
Han J, Orshansky M (2013) Approximate computing: an emerging paradigm for energy-efficient design. In: 18th IEEE European test symposium (ETS), pp 1, 6, 27
Kunaraj K, Seshasayanan R (2014) Constrained cartesian genetic programming - a new paradigm for evolving imprecise multipliers. In: International journal on numerical and analytical methods in engineering, vol 2, issue 1, pp 5–8
Yi X, Pei H, Zhang Z, Zhou H, He Y (2019) Design of an energy-efficient approximate compressor for error-resilient multiplications. In: IEEE international symposium on circuits and systems (ISCAS), pp 1–5
Hong CC, Satzoda RK (2010) A low error and high performance multiplexer-based truncated multiplier. In: IEEE transactions on very large scale integration (VLSI) systems, vol 18, issue 12, pp 1767–1771
Mottaghi-Dastjerdi M, Afzali-Kusha A, Pedram M (2009) BZ-FAD: a low-power low-area multiplier based on shift-and-add architecture. In: IEEE transactions on very large scale integration (VLSI) systems, vol 17, issue 2, pp 302–306
Vassilev VK, Miller JE (2000) Scalability problems of digital circuit evolution evolvability and efficient designs. In: Evolvable hardware, proceedings. The second NASA/DoD workshop on evolvable hardware, pp 55–64
Venkataramani S, Sabne A, Kozhikkottu V, Raghunathan A (2012) SALSA: systematic logic synthesis of approximate circuits. In: 49th ACM/EDAC/IEEE design automation conference (DAC), pp 796–801
564_CR3
564_CR4
564_CR5
564_CR6
564_CR7
564_CR28
564_CR8
564_CR9
564_CR29
564_CR1
564_CR2
JF Miller (564_CR18) 2000; 1
564_CR13
564_CR12
564_CR15
564_CR14
564_CR11
564_CR10
K Kunaraj (564_CR26) 2013; 36
564_CR17
P Kulkarni (564_CR27) 2011; 7
564_CR16
564_CR19
564_CR24
564_CR23
564_CR25
564_CR20
564_CR22
564_CR21
References_xml – reference: Mohapatra D (2011) Approximate computing: enabling voltage over-scaling in multimedia applications. Ph.D Thesis, Purdue University
– reference: Venkataramani S, Roy K, Raghunathan A (2013) Substitute-and-simplify: a unified design paradigm for approximate and quality configurable circuits. In: Design, automation & test in Europe conference & exhibition (DATE), pp 1367–1372, 18–22
– reference: Irfan M, Habib Q, Hassan GM, Yahya KM, Hayat S (2010) Combinational digital circuit synthesis using Cartesian Genetic Programming from a NAND gate template. In: International conference onemerging technologies (ICET), pp 343–347
– reference: Chinnery D, Keutzer K (2003) Low power multiplication algorithm for switching activity reduction through operand decomposition. In: Proceedings 21st international conference on computer design, pp 21–26
– reference: Azarmehr M, Ahmadi M, Jullien GA, Muscedere R (2010) High-speed and low-power reconfigurable architectures of 2-digit two-dimensional logarithmic number system-based recursive multipliers. In: Circuits, devices & systems, IET, vol 4, issue 5, pp 374–381
– reference: Kim J, Swartzlander EE (2000) Improving the recursive multiplier. In: Conference record of the thirty-fourth asilomar conference on signals, systems and computers, vol 2, pp 1320–1324
– reference: Wang S, Wu YW, Chen (2000) Low-power multipliers by minimizing inter-data switching activities. In: Proceedings of the 43rd IEEE midwest symposium on circuits and systems, vol 1, pp 88–89
– reference: Hong CC, Satzoda RK (2010) A low error and high performance multiplexer-based truncated multiplier. In: IEEE transactions on very large scale integration (VLSI) systems, vol 18, issue 12, pp 1767–1771
– reference: KulkarniPGuptaPMilosDTrading accuracy for power in a multiplier architectureJ Low Power Electron2011749050110.1166/jolpe.2011.1157
– reference: Biswas K, Mokrian P, Huapeng W, Ahmadi M (2005) Truncation schemes for recursive multipliers. In: Conference record of the thirty-ninth asilomar conference on signals, systems and computers, pp 1177–1180
– reference: Oltean M, Grosan C (2004) Evolving digital circuits using multi expression programming. In: Proceedings NASA/DoD conference on evolvable hardware, pp 87–94, 24–26
– reference: Vassilev VK, Job D, Miller JF (2000) Towards the automatic design of more efficient digital circuits. In: The second NASA/DoD workshop on evolvable hardware, pp 151–160
– reference: Vassilev VK, Miller JE (2000) Towards the automatic design of more efficient digital circuits. In: Evolvable hardware, proceedings. The second NASA/DoD workshop, pp 151–160
– reference: Han J, Orshansky M (2013) Approximate computing: an emerging paradigm for energy-efficient design. In: 18th IEEE European test symposium (ETS), pp 1, 6, 27
– reference: Shen NY, Chen (2002) Low-power multipliers by minimizing switching activities of partial products. In: IEEE international symposium oncircuits and systems, ISCAS 2002, vol 4, pp 93–96
– reference: MillerJFJobDVassilevVKPrinciples in the evolutionary design of digital circuits - part lGenet Program Evolvable Mach2000118351035.68640
– reference: Yi X, Pei H, Zhang Z, Zhou H, He Y (2019) Design of an energy-efficient approximate compressor for error-resilient multiplications. In: IEEE international symposium on circuits and systems (ISCAS), pp 1–5
– reference: Sekanina L, Vasicek Z (2013) Approximate circuit design by means of evolvable hardware. In: IEEE international conference on evolvable systems (SSCI-ICES), IEEE CS, 2013, pp 21–28
– reference: KunarajKSeshasayananRLeading one detectors and leading one position detectors - an evolutionary design methodologyCan J Electr Comput Eng201336310311010.1109/CJECE.2013.6704691
– reference: Kunaraj K, Seshasayanan R (2014) Constrained cartesian genetic programming - a new paradigm for evolving imprecise multipliers. In: International journal on numerical and analytical methods in engineering, vol 2, issue 1, pp 5–8
– reference: Mudassir R, Anis M, Jaffari J (2008) Switching activity reduction in low power Booth multiplier. In: ISCAS 2008, IEEE international symposium on circuits and systems, pp 3306–3309, 18–21
– reference: Mottaghi-Dastjerdi M, Afzali-Kusha A, Pedram M (2009) BZ-FAD: a low-power low-area multiplier based on shift-and-add architecture. In: IEEE transactions on very large scale integration (VLSI) systems, vol 17, issue 2, pp 302–306
– reference: Wang S, Wu YW (2003) Minimization of switching activities of partial products for designing low-power multipliers. In: IEEE transactions on very large scale integration (VLSI) systems, vol 11, issue 3, pp 418–433
– reference: King EJ, Swartzlander EE (1997) Data-dependent truncation scheme for parallel multipliers. In: 31st asilomar conf. signals, syst. computer, vol 2, pp 1178–1182
– reference: Venkataramani S, Sabne A, Kozhikkottu V, Raghunathan A (2012) SALSA: systematic logic synthesis of approximate circuits. In: 49th ACM/EDAC/IEEE design automation conference (DAC), pp 796–801
– reference: Yang T, Ukezono T, Sato V (2017) Low-power and high-speed approximate multiplier design with a tree compressor. In: IEEE international conference on computer design (ICCD), Boston, MA, pp 89–96
– reference: Vassilev VK, Miller JE (2000) Scalability problems of digital circuit evolution evolvability and efficient designs. In: Evolvable hardware, proceedings. The second NASA/DoD workshop on evolvable hardware, pp 55–64
– reference: Danysh AN, Swartzlander EE (1998) A recursive fast multiplier. In: Signals, systems & computers, conference record of the thirty-second asilomar conference, vol 1, pp 197–201
– reference: Kalganova T, Miller J (1999) Evolving more efficient digital circuits by allowing circuit layout evolution and multi-objective fitness. In: Proceedings of the first NASA/DoD workshop on evolvable hardware, pp 54–63
– ident: 564_CR28
  doi: 10.1109/ICCD.2017.22
– ident: 564_CR14
  doi: 10.1109/ICET.2010.5638462
– ident: 564_CR19
  doi: 10.1109/EH.2000.869353
– ident: 564_CR20
– ident: 564_CR29
  doi: 10.1109/ISCAS.2019.8702199
– volume: 36
  start-page: 103
  issue: 3
  year: 2013
  ident: 564_CR26
  publication-title: Can J Electr Comput Eng
  doi: 10.1109/CJECE.2013.6704691
– ident: 564_CR24
– ident: 564_CR8
– ident: 564_CR21
  doi: 10.1109/ETS.2013.6569370
– ident: 564_CR2
– ident: 564_CR6
– ident: 564_CR16
– ident: 564_CR23
  doi: 10.7873/DATE.2013.280
– ident: 564_CR25
  doi: 10.1109/ICES.2013.6613278
– ident: 564_CR4
  doi: 10.1109/ACSSC.2000.911206
– ident: 564_CR9
  doi: 10.1109/EH.2004.1310814
– ident: 564_CR7
– volume: 7
  start-page: 490
  year: 2011
  ident: 564_CR27
  publication-title: J Low Power Electron
  doi: 10.1166/jolpe.2011.1157
– ident: 564_CR12
  doi: 10.1109/TVLSI.2008.2004544
– ident: 564_CR15
  doi: 10.1109/EH.1999.785435
– ident: 564_CR22
  doi: 10.1145/2228360.2228504
– ident: 564_CR11
  doi: 10.1109/ISCAS.2008.4542165
– ident: 564_CR13
  doi: 10.1049/iet-cds.2009.0329
– ident: 564_CR1
– ident: 564_CR3
– volume: 1
  start-page: 8
  issue: 1
  year: 2000
  ident: 564_CR18
  publication-title: Genet Program Evolvable Mach
– ident: 564_CR5
– ident: 564_CR10
  doi: 10.1109/ACSSC.2005.1599946
– ident: 564_CR17
SSID ssj0061053
Score 2.3261652
Snippet As most of the real-world problems are imprecise, dedicating a lot of hardware for precise computations is futile for low-power applications and few...
As most of the real-world problems are imprecise, dedicating a lot of hardware for precise computations is futile for lowpower applications and few...
SourceID nrf
crossref
springer
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 559
SubjectTerms Electrical Engineering
Electrical Machines and Networks
Electronics and Microelectronics
Engineering
Instrumentation
Original Article
Power Electronics
전기공학
Title Approximate Multipliers Using Bio-Inspired Algorithm
URI https://link.springer.com/article/10.1007/s42835-020-00564-w
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002669004
Volume 16
WOSCitedRecordID wos000584895000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Journal of Electrical Engineering & Technology, 2021, 16(1), , pp.559-568
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 2093-7423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0061053
  issn: 1975-0102
  databaseCode: RSV
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5u-qAP3sXNC0V808DaJF36OMWhoEO8sbfQ3GbZbKWrzp9vkrVDEQf61Jc0hJOTc772fPkOAMfEAQUdQmqSG8SYS8hJqKHNHgbPxzLgbqev270e7fej2_JS2Lhiu1clSRepZ5fdnDQYtJ87Vr8Sw0kNLJp0R-1xvLt_quKvwQNOe9KP2paWZvk7zd_n-JaOammuf1REXaLprv1vietgtQSWXmfqCRtgQaWbYOWL3OAWwB0rIP6RGJCqvJspk9B2wvYcb8A7SzJ4ldrKu5JeZzTI8qR4ftkGj92Lh_NLWHZNgAIFpIAIKRmK0Mrw-EhRGhOlgshHXEcCSdLiVPq-bkkdaB9zLSLZVi1EWyryA4FignZAPc1StQs8E8djA2CiWBKFYxTGNCRcIIq1xkpT3gB-ZTwmSklx29lixGZiyM4izFiEOYuwSQOczN55nQpqzB19ZPaEDUXCrA62fQ4yNsyZQftXzAQPYnyqAU6r7WDlCRzPmbP5t-F7YDmwPBb322Uf1Iv8TR2AJfFeJOP80LneJ6_A0Yg
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZS8NAEB68QH3wFusZxDddaLK76eaximKxFvGib0uyRw2tqaT1-PnubpOiiAV9ystmCTOTmS-Zb78BOKIOKOgQMVPcECGJRAkNNbLVw-D5WAaJ83Sz1mqxdju6KQ6FDUq2e9mSdJl6fNjNSYMh-7lj9SsJep-GWWIqliXy3d49lvnX4AGnPelHNUtLs_yd7d_3-FaOprNc_-iIukJzsfy_R1yBpQJYevVRJKzClMrWYPGL3OA6kLoVEP9IDUhV3vWISWgnYXuON-Cdpn3UyGznXUmv3uv083T49LwBDxfn92eXqJiagAQO6BBhrGQoQivD42PFWEyVCiIfJzoSWNJqwqTv66rUgfZJokUka6qKWVVFfiBwTPEmzGT9TG2BZ_J4bABMFEuqSIzDmIU0EZgRrYnSLKmAXxqPi0JS3E626PGxGLKzCDcW4c4i_L0Cx-N7XkaCGhNXHxqf8K5IudXBttdOn3dzbtB-g5vkQU1MVeCkdAcv3sDBhD23_7b8AOYv76-bvNloXe3AQmA5Le4XzC7MDPNXtQdz4m2YDvJ9F4afi_XUbA
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZT8MwDLa4hOCBGzHOCvEG0dYm6dLHcUxMjGkSh3iL2hyjGnRTV46fT5IdAiGQEE99SaPKduzPjf0Z4Ig6oKBDxExwQ4QkEiU01MhGD4PnYxkkTtPNaqvFHh6i9qcuflftPr6SHPY0WJamrCj3pS5PGt8cTRiyqY_lsiTobRpmiR0aZPP1m_uxLzbYwPFQ-lHVlqjZWp7tn_f4Epqms1x_ux11Qae-_P_PXYGlEeD0akMLWYUpla3B4icawnUgNUss_p4a8Kq862GFoZ2Q7bl6Au807aFGZm_klfRqT51enhaPzxtwV7-4PbtEo2kKSOCAFghjJUMRWnoeHyvGYqpUEPk40ZHAklYSJn1fV6QOtE8SLSJZVRXMKiryA4FjijdhJutlags8499jA2yiWFJFYhzGLKSJwIxoTZRmSQn8sSC5GFGN24kXT3xCkuwkwo1EuJMIfyvB8eSd_pBo49fVh0Y_vCtSbvmx7bPT492cmyygwY1TocbWSnAyVg0fnczBL3tu_235Acy3z-u82Whd7cBCYEtd3J-ZXZgp8he1B3PitUgH-b6zyA_H291Q
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Approximate+Multipliers+Using+Bio-Inspired+Algorithm&rft.jtitle=Journal+of+electrical+engineering+%26+technology&rft.au=K.+K.+Senthilkumar&rft.au=Kunaraj+Kumarasamy%28Loyola-ICAM+College+of+Engineering+and+Technology&rft.au=Vaithiyanathan+Dhandapani&rft.date=2021-01-01&rft.pub=%EB%8C%80%ED%95%9C%EC%A0%84%EA%B8%B0%ED%95%99%ED%9A%8C&rft.issn=1975-0102&rft.eissn=2093-7423&rft.spage=559&rft.epage=568&rft_id=info:doi/10.1007%2Fs42835-020-00564-w&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9635240
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1975-0102&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1975-0102&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1975-0102&client=summon