The novel fractional discrete multivariate grey system model and its applications

Fractional order accumulation is a novel and popular tool which is efficient to improve accuracy of the grey models. However, most existing grey models with fractional order accumulation are all developed on the conventional methodology of grey models, which may be inaccurate in the applications. In...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mathematical Modelling Jg. 70; S. 402
Hauptverfasser: Ma, Xin, Xie, Mei, Wu, Wenqing, Zeng, Bo, Wang, Yong, Wu, Xinxing
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York Elsevier BV 01.06.2019
Schlagworte:
ISSN:1088-8691, 0307-904X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Fractional order accumulation is a novel and popular tool which is efficient to improve accuracy of the grey models. However, most existing grey models with fractional order accumulation are all developed on the conventional methodology of grey models, which may be inaccurate in the applications. In this paper an existing fractional multivariate grey model with convolution integral is proved to be a biased model, and then a novel fractional discrete multivariate grey model based on discrete modelling technique is proposed, which is proved to be an unbiased model with mathematical analysis and stochastic testing. An algorithm based on the Grey Wolf Optimizer is introduced to optimize the fractional order of the proposed model. Four real world case studies with updated data sets are executed to assess the effectiveness of the proposed model in comparison with nine existing multivariate grey models. The results show that the Grey Wolf Optimizer-based algorithm is very efficient to optimize the fractional order of the proposed model, and the proposed model outperforms other nine models in the all the real world case studies.
AbstractList Fractional order accumulation is a novel and popular tool which is efficient to improve accuracy of the grey models. However, most existing grey models with fractional order accumulation are all developed on the conventional methodology of grey models, which may be inaccurate in the applications. In this paper an existing fractional multivariate grey model with convolution integral is proved to be a biased model, and then a novel fractional discrete multivariate grey model based on discrete modelling technique is proposed, which is proved to be an unbiased model with mathematical analysis and stochastic testing. An algorithm based on the Grey Wolf Optimizer is introduced to optimize the fractional order of the proposed model. Four real world case studies with updated data sets are executed to assess the effectiveness of the proposed model in comparison with nine existing multivariate grey models. The results show that the Grey Wolf Optimizer-based algorithm is very efficient to optimize the fractional order of the proposed model, and the proposed model outperforms other nine models in the all the real world case studies.
Author Zeng, Bo
Xie, Mei
Wu, Wenqing
Ma, Xin
Wu, Xinxing
Wang, Yong
Author_xml – sequence: 1
  givenname: Xin
  surname: Ma
  fullname: Ma, Xin
– sequence: 2
  givenname: Mei
  surname: Xie
  fullname: Xie, Mei
– sequence: 3
  givenname: Wenqing
  surname: Wu
  fullname: Wu, Wenqing
– sequence: 4
  givenname: Bo
  surname: Zeng
  fullname: Zeng, Bo
– sequence: 5
  givenname: Yong
  surname: Wang
  fullname: Wang, Yong
– sequence: 6
  givenname: Xinxing
  surname: Wu
  fullname: Wu, Xinxing
BookMark eNotjstKxDAYRoOMYGf0AdwFXLf-SZo0WcrgDQZEGMHdEHPRlN5M0oF5eyu6-jiLc_jWaDWMg0PomkBFgIjbttJTX1EgqgJSAVNnqAAGTamgfl-hgoCUpRSKXKB1Si0AoVJAgV73Xw4P49F12EdtchgH3WEbkokuO9zPXQ5HHYNe4DO6E06nlF2P-9Euih4sDjlhPU1dMPrXTpfo3Osuuav_3aC3h_v99qncvTw-b-92pWGU55IBV7S2ygqvDGMUoJG-BiK5ZI5_CG6sNdQITokDbSWhXhrvjALCLTSMbdDNX3eK4_fsUj604xyX9-lAKaNiyTPOfgBakFRR
CitedBy_id crossref_primary_10_1108_K_11_2020_0749
crossref_primary_10_1016_j_jclepro_2020_120793
crossref_primary_10_1016_j_enbuild_2022_112305
crossref_primary_10_1155_2021_5588798
crossref_primary_10_1016_j_apm_2021_06_025
crossref_primary_10_1016_j_eswa_2022_118261
crossref_primary_10_1016_j_renene_2025_122785
crossref_primary_10_1016_j_asoc_2019_04_035
crossref_primary_10_1016_j_cnsns_2025_108773
crossref_primary_10_1016_j_apm_2019_05_044
crossref_primary_10_1016_j_engappai_2022_105319
crossref_primary_10_1016_j_energy_2025_137370
crossref_primary_10_1016_j_physe_2021_115114
crossref_primary_10_1016_j_scitotenv_2019_04_289
crossref_primary_10_1108_GS_02_2020_0025
crossref_primary_10_1016_j_energy_2021_122786
crossref_primary_10_1080_01969722_2022_2055991
crossref_primary_10_1155_2021_6692503
crossref_primary_10_1016_j_isatra_2020_07_023
crossref_primary_10_1108_GS_02_2020_0023
crossref_primary_10_1016_j_scs_2020_102385
crossref_primary_10_1016_j_asoc_2020_106600
crossref_primary_10_1016_j_cie_2023_109278
crossref_primary_10_1016_j_isatra_2019_07_009
crossref_primary_10_1108_GS_12_2019_0067
crossref_primary_10_1016_j_jhydrol_2019_123960
crossref_primary_10_1007_s10098_022_02320_2
crossref_primary_10_1016_j_jclepro_2019_03_036
crossref_primary_10_1016_j_techfore_2022_122203
crossref_primary_10_1016_j_jclepro_2019_118573
crossref_primary_10_1016_j_rineng_2025_105111
crossref_primary_10_1108_TR_02_2022_0088
crossref_primary_10_1016_j_chaos_2020_109915
crossref_primary_10_1016_j_energy_2023_127824
crossref_primary_10_1155_2019_9162163
crossref_primary_10_1016_j_apm_2022_04_031
crossref_primary_10_1016_j_compbiomed_2022_105256
crossref_primary_10_1371_journal_pone_0225362
crossref_primary_10_1186_s13662_020_02699_6
crossref_primary_10_1007_s00500_024_09627_w
crossref_primary_10_1016_j_isatra_2020_07_017
crossref_primary_10_2166_nh_2019_060
crossref_primary_10_23919_JSEE_2022_000061
crossref_primary_10_3390_antibiotics10060692
crossref_primary_10_1007_s11071_023_08296_y
crossref_primary_10_1016_j_asoc_2020_106555
crossref_primary_10_3390_fractalfract9020120
crossref_primary_10_1177_18758967251356853
crossref_primary_10_1016_j_engappai_2022_104683
crossref_primary_10_1155_2021_6663773
crossref_primary_10_1108_GS_08_2023_0082
crossref_primary_10_1016_j_cam_2022_114460
crossref_primary_10_1108_MAEM_03_2024_0006
crossref_primary_10_1007_s40747_024_01497_x
crossref_primary_10_1016_j_eswa_2021_115761
crossref_primary_10_3390_su162411112
crossref_primary_10_1016_j_chaos_2021_111490
crossref_primary_10_1108_K_10_2018_0562
crossref_primary_10_1155_2020_9178098
crossref_primary_10_1016_j_eswa_2025_128085
crossref_primary_10_1108_GS_07_2022_0072
crossref_primary_10_1016_j_scitotenv_2023_163523
crossref_primary_10_3233_JIFS_212939
crossref_primary_10_3390_a18060347
crossref_primary_10_1007_s10668_022_02238_1
crossref_primary_10_1109_ACCESS_2020_2994105
crossref_primary_10_1002_zamm_201900046
crossref_primary_10_1016_j_chaos_2021_111657
crossref_primary_10_1108_GS_06_2022_0066
crossref_primary_10_1016_j_eswa_2024_125010
crossref_primary_10_1007_s11468_021_01512_8
crossref_primary_10_1016_j_renene_2024_122052
crossref_primary_10_1016_j_isatra_2024_02_023
crossref_primary_10_1016_j_apm_2021_03_047
crossref_primary_10_1016_j_egyr_2019_06_003
crossref_primary_10_3233_JIFS_213210
crossref_primary_10_1016_j_energy_2022_126384
crossref_primary_10_1016_j_matcom_2023_02_008
crossref_primary_10_1155_2021_4959457
crossref_primary_10_1155_2023_3028824
crossref_primary_10_1016_j_renene_2019_03_006
crossref_primary_10_1016_j_engappai_2019_103350
crossref_primary_10_1155_2019_1510257
crossref_primary_10_1108_GS_11_2024_0135
crossref_primary_10_1016_j_scitotenv_2019_135447
crossref_primary_10_1007_s00500_023_07896_5
crossref_primary_10_1016_j_energy_2025_135981
crossref_primary_10_1155_2020_6614570
crossref_primary_10_1016_j_engappai_2021_104261
crossref_primary_10_1016_j_energy_2019_04_096
crossref_primary_10_1007_s10553_020_01137_3
crossref_primary_10_1016_j_asoc_2019_03_035
crossref_primary_10_1155_2019_1731262
crossref_primary_10_1155_2020_4170804
crossref_primary_10_3390_su11215921
crossref_primary_10_1016_j_cnsns_2020_105617
crossref_primary_10_1016_j_apm_2022_11_014
crossref_primary_10_1108_GS_04_2025_0037
crossref_primary_10_1155_2020_6514236
crossref_primary_10_1016_j_energy_2022_124093
crossref_primary_10_1016_j_chaos_2020_109948
crossref_primary_10_1016_j_jhydrol_2019_04_085
crossref_primary_10_1016_j_eswa_2022_118104
crossref_primary_10_1016_j_eswa_2022_118500
crossref_primary_10_1007_s00521_019_04364_w
crossref_primary_10_1016_j_matcom_2025_07_021
crossref_primary_10_1016_j_physe_2022_115554
crossref_primary_10_1007_s00500_023_08203_y
crossref_primary_10_1016_j_eswa_2023_121356
crossref_primary_10_1016_j_ins_2025_122624
crossref_primary_10_1016_j_energy_2021_121533
crossref_primary_10_1016_j_chaos_2024_114746
crossref_primary_10_1007_s11071_020_05776_3
crossref_primary_10_1016_j_asoc_2020_106922
crossref_primary_10_1016_j_trb_2022_01_007
crossref_primary_10_1016_j_apenergy_2022_119854
crossref_primary_10_1016_j_seta_2020_100968
crossref_primary_10_1016_j_energy_2024_130368
crossref_primary_10_1016_j_cie_2020_106915
crossref_primary_10_1016_j_petlm_2022_03_002
crossref_primary_10_1007_s40314_020_01315_3
crossref_primary_10_1016_j_aei_2022_101871
crossref_primary_10_1016_j_apm_2023_09_026
crossref_primary_10_1016_j_matcom_2022_05_023
crossref_primary_10_1007_s11356_023_29706_z
crossref_primary_10_1108_GS_02_2023_0013
crossref_primary_10_1108_K_12_2018_0694
crossref_primary_10_1108_GS_09_2024_0108
crossref_primary_10_3233_JIFS_202711
crossref_primary_10_1016_j_energy_2022_124935
crossref_primary_10_1016_j_energy_2024_133622
crossref_primary_10_1016_j_energy_2025_135888
crossref_primary_10_1371_journal_pone_0217520
crossref_primary_10_1016_j_energy_2025_134675
crossref_primary_10_3390_app14031219
crossref_primary_10_1155_2019_6343298
crossref_primary_10_1016_j_nima_2021_165739
crossref_primary_10_1155_2020_4564653
crossref_primary_10_3390_mi10070443
crossref_primary_10_1016_j_asoc_2019_106029
crossref_primary_10_1016_j_energy_2023_128380
crossref_primary_10_1080_10298436_2024_2329231
crossref_primary_10_1016_j_neucom_2021_05_048
crossref_primary_10_1016_j_energy_2024_131833
crossref_primary_10_1016_j_aei_2025_103124
crossref_primary_10_3390_su12104325
crossref_primary_10_3390_su142416998
crossref_primary_10_1016_j_energy_2025_134605
crossref_primary_10_3390_fractalfract7110809
crossref_primary_10_3390_fractalfract8040217
crossref_primary_10_3390_systems11060285
crossref_primary_10_1016_j_eswa_2023_121627
crossref_primary_10_1007_s11082_023_04684_1
crossref_primary_10_1016_j_engappai_2025_110736
crossref_primary_10_1016_j_apm_2022_06_042
crossref_primary_10_1016_j_energy_2020_118085
crossref_primary_10_1016_j_physa_2019_123341
crossref_primary_10_1016_j_apm_2022_01_029
crossref_primary_10_1108_K_05_2020_0284
crossref_primary_10_3390_systems11080394
crossref_primary_10_3390_ijerph19094953
ContentType Journal Article
Copyright Copyright Elsevier BV Jun 2019
Copyright_xml – notice: Copyright Elsevier BV Jun 2019
DBID 7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.apm.2019.01.039
DatabaseName Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
Mathematics
EISSN 0307-904X
GroupedDBID -W8
-~X
.7I
.GO
.QK
0BK
0R~
23M
2DF
4.4
53G
5GY
6J9
7SC
8FD
8VB
AAGDL
AAGZJ
AAHIA
AAHSB
AAMFJ
AAMIU
AAPUL
AATTQ
AAZMC
ABCCY
ABDBF
ABFIM
ABIVO
ABJNI
ABLIJ
ABPEM
ABRYG
ABTAI
ABXUL
ABXYU
ABZLS
ACGFS
ACGOD
ACHQT
ACTIO
ACTOA
ACUHS
ADAHI
ADCVX
ADKVQ
ADYSH
AECIN
AEFOU
AEGXH
AEISY
AEKEX
AEMOZ
AEMXT
AEOZL
AEPSL
AEYOC
AEZRU
AFHDM
AFRVT
AGDLA
AGMYJ
AGRBW
AHDZW
AHQJS
AIJEM
AIYEW
AJWEG
AKBVH
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AVBZW
AWYRJ
BEJHT
BLEHA
BMOTO
BOHLJ
CCCUG
CQ1
CS3
DGFLZ
DKSSO
EAP
EBR
EBS
EBU
EDJ
EJD
EMK
EPL
EPS
EST
ESX
E~B
E~C
F5P
FEDTE
G-F
GTTXZ
H13
HF~
HVGLF
HZ~
J.O
JQ2
K1G
KYCEM
L7M
LJTGL
L~C
L~D
M4Z
NA5
O9-
P2P
PQQKQ
QWB
RNANH
ROSJB
RSYQP
S-F
STATR
TASJS
TBQAZ
TDBHL
TEH
TFH
TFL
TFW
TH9
TNTFI
TRJHH
TUROJ
TUS
TWZ
UPT
UT5
UT9
VAE
ZL0
~01
~S~
ID FETCH-LOGICAL-c325t-305924d9d6f9c3320078f4018583e5b65cddc2c6521e0ad812f8cfec9015d0733
ISICitedReferencesCount 192
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000468714000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1088-8691
IngestDate Sun Jul 13 04:42:58 EDT 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-305924d9d6f9c3320078f4018583e5b65cddc2c6521e0ad812f8cfec9015d0733
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2232659235
PQPubID 2045280
ParticipantIDs proquest_journals_2232659235
PublicationCentury 2000
PublicationDate 20190601
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: 20190601
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle Applied Mathematical Modelling
PublicationYear 2019
Publisher Elsevier BV
Publisher_xml – name: Elsevier BV
SSID ssj0012860
ssj0005904
Score 2.6122253
Snippet Fractional order accumulation is a novel and popular tool which is efficient to improve accuracy of the grey models. However, most existing grey models with...
SourceID proquest
SourceType Aggregation Database
StartPage 402
SubjectTerms Accumulation
Algorithms
Convolution
Convolution integrals
Mathematical analysis
Model accuracy
Title The novel fractional discrete multivariate grey system model and its applications
URI https://www.proquest.com/docview/2232659235
Volume 70
WOSCitedRecordID wos000468714000023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAWR
  databaseName: Taylor and Francis Online Journals
  customDbUrl:
  eissn: 0307-904X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012860
  issn: 1088-8691
  databaseCode: TFW
  dateStart: 19970301
  isFulltext: true
  titleUrlDefault: https://www.tandfonline.com
  providerName: Taylor & Francis
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JT8JAFJ4oetCDUdS4Zw7GCxkDXWeOaiQeADWp2nghMJ1JMKYgIJF_75uli5IYPXhpSEmbwvv63vd2hE570guBiAsCXptHwB7DK-VKl8jAa6iJWU6gtzU8tsJOh8Yxu7PBnIleJxCmKf34YKN_FTWcA2Gr1tk_iDu_KZyAzyB0OILY4fhrwafDmXitybHpWjB5GKCHU2EKCGfgIAPHrIGvPbeznM1KnDyVUM5rl_lrRlrb-bRX1durLn3NbKAObyvJxYMceLHJgrTFIDcC77q6T6RvpeuehdE8l8NyMEL1PwXlYETRJfNY0qmgyAgNzFKuc2GbteohYXVTnJkpYrNBxGpSTzdiL2p4E2x4Oe-N1ByBBtNDV808pK_TtDu33eZDq9WNruPobPRG1KIxlZC3W1eW0YoT-kwpwqj5VFQFMeWe2iyUQ02XefYDsqy4rg_89gALtlwTlGgTbVjPAl8YRGyhJZFW0XohqEkVreXmbr6N7gEoWAMFF0DBGVBwGShYAQUboGANFAxAwQAUXAbKDnpoXkdXN8Qu2CDcdfwpAV0P7nfCkkAy7roqbE0lONzUp67w-4HPk4Q7PACKJ-q9BLigpFwKrjhkorZ97qJKOkzFHsLA-pJAhExKz_MY71O3xxsh7YeOJxKg3PvoKPt7uvZlmXSBmjoqre_6Bz9_fYjWCrQdocp0_C6O0SqfTQeT8YmW4Cc0WmOs
linkProvider Taylor & Francis
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+novel+fractional+discrete+multivariate+grey+system+model+and+its+applications&rft.jtitle=Applied+Mathematical+Modelling&rft.au=Ma%2C+Xin&rft.au=Xie%2C+Mei&rft.au=Wu%2C+Wenqing&rft.au=Zeng%2C+Bo&rft.date=2019-06-01&rft.pub=Elsevier+BV&rft.issn=1088-8691&rft.eissn=0307-904X&rft.volume=70&rft.spage=402&rft_id=info:doi/10.1016%2Fj.apm.2019.01.039&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1088-8691&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1088-8691&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1088-8691&client=summon