DiffuScope: A diffusion-regularized autoencoder for spatial transcriptomic clustering

In recent years, the rapid advancement of spatial transcriptomics technologies has led to the public availability of a large and diverse collection of datasets spanning multiple species, organs, and tissue types. These datasets exhibit substantial biological and technical heterogeneity, highlighting...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational biology and chemistry Jg. 120; H. Pt 2; S. 108746
Hauptverfasser: Shi, Hua, Yi, Ding, Cui, Yang, Wang, Ruheng, Li, Yan, Ao, Chunyan, Guo, Ruihua, Zhang, Weihang, Peng, Tao, Le, Yuying, Cui, Yaxuan, Wei, Leyi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: England Elsevier Ltd 01.02.2026
Schlagworte:
ISSN:1476-9271, 1476-928X, 1476-928X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract In recent years, the rapid advancement of spatial transcriptomics technologies has led to the public availability of a large and diverse collection of datasets spanning multiple species, organs, and tissue types. These datasets exhibit substantial biological and technical heterogeneity, highlighting the urgent need for a generalizable clustering algorithm capable of adapting to such diversity. To address this challenge, we propose DiffuScope, a clustering framework based on Graph Convolutional Variational Autoencoders (GC-VAE). DiffuScope leverages self-supervised learning to extract informative latent representations from spatial transcriptomics data and incorporates two complementary loss functions — Reconstruction Loss and Diffusion Consistency Loss — to enhance feature learning, thereby improving clustering accuracy and cross-dataset generalization. We systematically and fairly benchmark DiffuScope against several state-of-the-art spatial transcriptomics clustering methods across 12 publicly available datasets. In addition, we assess the robustness of the proposed model by introducing random dropout noise into the spatial expression data. Finally, we apply DiffuScope to breast cancer and gastric cancer spatial transcriptomics datasets, demonstrating its ability to effectively delineate spatial domains and uncover biologically meaningful tissue structures. [Display omitted] •DiffuScope integrates graph autoencoders with diffusion loss for spatial clustering.•Achieves robust and accurate performance across diverse spatial transcriptomic datasets.•Reveals biologically meaningful domains in gastric and breast cancer tissues.
AbstractList In recent years, the rapid advancement of spatial transcriptomics technologies has led to the public availability of a large and diverse collection of datasets spanning multiple species, organs, and tissue types. These datasets exhibit substantial biological and technical heterogeneity, highlighting the urgent need for a generalizable clustering algorithm capable of adapting to such diversity. To address this challenge, we propose DiffuScope, a clustering framework based on Graph Convolutional Variational Autoencoders (GC-VAE). DiffuScope leverages self-supervised learning to extract informative latent representations from spatial transcriptomics data and incorporates two complementary loss functions — Reconstruction Loss and Diffusion Consistency Loss — to enhance feature learning, thereby improving clustering accuracy and cross-dataset generalization. We systematically and fairly benchmark DiffuScope against several state-of-the-art spatial transcriptomics clustering methods across 12 publicly available datasets. In addition, we assess the robustness of the proposed model by introducing random dropout noise into the spatial expression data. Finally, we apply DiffuScope to breast cancer and gastric cancer spatial transcriptomics datasets, demonstrating its ability to effectively delineate spatial domains and uncover biologically meaningful tissue structures. [Display omitted] •DiffuScope integrates graph autoencoders with diffusion loss for spatial clustering.•Achieves robust and accurate performance across diverse spatial transcriptomic datasets.•Reveals biologically meaningful domains in gastric and breast cancer tissues.
In recent years, the rapid advancement of spatial transcriptomics technologies has led to the public availability of a large and diverse collection of datasets spanning multiple species, organs, and tissue types. These datasets exhibit substantial biological and technical heterogeneity, highlighting the urgent need for a generalizable clustering algorithm capable of adapting to such diversity. To address this challenge, we propose DiffuScope, a clustering framework based on Graph Convolutional Variational Autoencoders (GC-VAE). DiffuScope leverages self-supervised learning to extract informative latent representations from spatial transcriptomics data and incorporates two complementary loss functions - Reconstruction Loss and Diffusion Consistency Loss - to enhance feature learning, thereby improving clustering accuracy and cross-dataset generalization. We systematically and fairly benchmark DiffuScope against several state-of-the-art spatial transcriptomics clustering methods across 12 publicly available datasets. In addition, we assess the robustness of the proposed model by introducing random dropout noise into the spatial expression data. Finally, we apply DiffuScope to breast cancer and gastric cancer spatial transcriptomics datasets, demonstrating its ability to effectively delineate spatial domains and uncover biologically meaningful tissue structures.In recent years, the rapid advancement of spatial transcriptomics technologies has led to the public availability of a large and diverse collection of datasets spanning multiple species, organs, and tissue types. These datasets exhibit substantial biological and technical heterogeneity, highlighting the urgent need for a generalizable clustering algorithm capable of adapting to such diversity. To address this challenge, we propose DiffuScope, a clustering framework based on Graph Convolutional Variational Autoencoders (GC-VAE). DiffuScope leverages self-supervised learning to extract informative latent representations from spatial transcriptomics data and incorporates two complementary loss functions - Reconstruction Loss and Diffusion Consistency Loss - to enhance feature learning, thereby improving clustering accuracy and cross-dataset generalization. We systematically and fairly benchmark DiffuScope against several state-of-the-art spatial transcriptomics clustering methods across 12 publicly available datasets. In addition, we assess the robustness of the proposed model by introducing random dropout noise into the spatial expression data. Finally, we apply DiffuScope to breast cancer and gastric cancer spatial transcriptomics datasets, demonstrating its ability to effectively delineate spatial domains and uncover biologically meaningful tissue structures.
In recent years, the rapid advancement of spatial transcriptomics technologies has led to the public availability of a large and diverse collection of datasets spanning multiple species, organs, and tissue types. These datasets exhibit substantial biological and technical heterogeneity, highlighting the urgent need for a generalizable clustering algorithm capable of adapting to such diversity. To address this challenge, we propose DiffuScope, a clustering framework based on Graph Convolutional Variational Autoencoders (GC-VAE). DiffuScope leverages self-supervised learning to extract informative latent representations from spatial transcriptomics data and incorporates two complementary loss functions - Reconstruction Loss and Diffusion Consistency Loss - to enhance feature learning, thereby improving clustering accuracy and cross-dataset generalization. We systematically and fairly benchmark DiffuScope against several state-of-the-art spatial transcriptomics clustering methods across 12 publicly available datasets. In addition, we assess the robustness of the proposed model by introducing random dropout noise into the spatial expression data. Finally, we apply DiffuScope to breast cancer and gastric cancer spatial transcriptomics datasets, demonstrating its ability to effectively delineate spatial domains and uncover biologically meaningful tissue structures.
ArticleNumber 108746
Author Zhang, Weihang
Le, Yuying
Peng, Tao
Ao, Chunyan
Li, Yan
Guo, Ruihua
Wang, Ruheng
Wei, Leyi
Cui, Yaxuan
Yi, Ding
Shi, Hua
Cui, Yang
Author_xml – sequence: 1
  givenname: Hua
  orcidid: 0000-0001-8812-5737
  surname: Shi
  fullname: Shi, Hua
  organization: School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China
– sequence: 2
  givenname: Ding
  surname: Yi
  fullname: Yi, Ding
  organization: Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
– sequence: 3
  givenname: Yang
  surname: Cui
  fullname: Cui, Yang
  organization: Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
– sequence: 4
  givenname: Ruheng
  surname: Wang
  fullname: Wang, Ruheng
  organization: University of Texas Southwestern Medical Center, Dallas, TX, USA
– sequence: 5
  givenname: Yan
  surname: Li
  fullname: Li, Yan
  organization: School of Opto-electronic and Communication Engineering, Xiamen University of Technology, Xiamen, China
– sequence: 6
  givenname: Chunyan
  surname: Ao
  fullname: Ao, Chunyan
  organization: Yangtze Delta Region Institute (Quzhou), University of Electronic Science and Technology of China, Quzhou, Zhejiang, China
– sequence: 7
  givenname: Ruihua
  surname: Guo
  fullname: Guo, Ruihua
  organization: School of computer science, the University of Sydney, Australia
– sequence: 8
  givenname: Weihang
  surname: Zhang
  fullname: Zhang, Weihang
  organization: Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Tokyo, Japan
– sequence: 9
  givenname: Tao
  surname: Peng
  fullname: Peng, Tao
  organization: School of Future Science and Engineering, Soochow University, China
– sequence: 10
  givenname: Yuying
  surname: Le
  fullname: Le, Yuying
  email: yuyinle@126.com
  organization: Department of Radiation Oncology, Fuzhou Pulmonary Hospital of Fujian Province, Teaching Hospital of Fujian Medical University, China
– sequence: 11
  givenname: Yaxuan
  surname: Cui
  fullname: Cui, Yaxuan
  email: s2236008@u.tsukuba.ac.jp
  organization: Department of Computer Science, University of Tsukuba, Tsukuba 3058577, Japan
– sequence: 12
  givenname: Leyi
  orcidid: 0000-0003-1444-190X
  surname: Wei
  fullname: Wei, Leyi
  email: weileyi@sdu.edu.cn
  organization: Centre for Artificial Intelligence driven Drug Discovery, Faculty of Applied Science, Macao Polytechnic University, SAR, Macao, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/41167001$$D View this record in MEDLINE/PubMed
BookMark eNqNkE1LxDAQhoMorrv6F6R48tI1H03SehPXLxA86IK3kCbTNUvb1KQV9NfbZVfx6GlmmOcdmGeK9lvfAkJnBM8JJuJiPTe-6Urna_MGzZxiysdFLjOxh45IJkVa0Px1_7eXZIKmMa4xpgxjfogmGSFCYkyO0HLhqmp4Nr6Dy-QqsZspOt-mAVZDrYP7ApvooffQGm8hJJUPSex073Sd9EG30QTX9b5xJjH1EHsIrl0do4NK1xFOdnWGlrc3L9f36ePT3cP11WNqGOV9SitZEMYzURQ8Z7msciCF5kWZAciSWVFYqi03JadSUMEMtgKDFhWThhpu2Qydb-92wb8PEHvVuGigrnULfoiKUSGZzBnBI3q6Q4eyAau64BodPtWPihG43AIm-BgDVL8IwWrjXa3VX-9q411tvY_hxTYM47cfDoKKxo3KwLoAplfWu_-c-QYeqJLY
Cites_doi 10.62347/PNGT6996
10.1093/bioinformatics/btr260
10.1186/s12943-024-02165-x
10.1038/s41467-025-59634-0
10.1093/bib/bbab236
10.1186/s13046-025-03394-8
10.1093/nar/gkad055
10.1016/j.artmed.2017.02.005
10.1186/s12915-023-01796-8
10.1101/gr.278439.123
10.1109/TNNLS.2024.3412753
10.5230/jgc.2017.17.e1
10.1016/j.semcancer.2022.03.011
10.1038/s41588-021-00911-1
10.1136/gutjnl-2024-332901
10.1038/s41588-022-01141-9
10.3389/fimmu.2020.609948
10.1038/s41592-021-01255-8
10.1038/s41467-023-43600-9
10.1111/cpr.13115
10.1093/bioinformatics/btz694
10.1101/gr.280281.124
10.1016/j.artmed.2017.03.001
10.1177/10732748241299072
10.1093/nar/gkaf138
10.1158/2159-8290.CD-24-0002
10.2174/0115748936278884240102094058
10.1016/j.eswa.2024.124702
10.1002/imt2.70060
10.1016/j.ymeth.2025.03.007
10.1002/imt2.70052
10.1038/s41592-023-01911-1
10.3389/fimmu.2024.1497251
10.1093/nar/gkac901
10.1038/s41587-021-00935-2
10.1002/advs.202306329
10.1089/omi.2011.0118
10.1186/s12915-024-02085-8
10.1016/j.critrevonc.2014.05.012
10.1038/s41467-022-29439-6
10.1038/s41586-023-06130-4
10.1016/j.ymeth.2024.11.013
10.1038/s41587-022-01448-2
10.1186/s40364-024-00646-1
10.3389/fimmu.2024.1483834
10.3390/biom12081130
10.1109/TCBB.2013.146
10.1093/bib/bbac475
ContentType Journal Article
Copyright 2025
Copyright © 2025. Published by Elsevier Ltd.
Copyright_xml – notice: 2025
– notice: Copyright © 2025. Published by Elsevier Ltd.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.compbiolchem.2025.108746
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1476-928X
ExternalDocumentID 41167001
10_1016_j_compbiolchem_2025_108746
S1476927125004074
Genre Journal Article
GroupedDBID ---
--K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9DU
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABGSF
ABJNI
ABMAC
ABNUV
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADECG
ADEWK
ADEZE
ADJOM
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AFZHZ
AGHFR
AGRDE
AGUBO
AGYEJ
AHPOS
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJSZI
AKBMS
AKRWK
AKURH
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SCB
SDF
SDG
SES
SEW
SPC
SPCBC
SSG
SSK
SSU
SSV
SSZ
T5K
UHS
ZMT
~G-
~HD
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c325t-2f79135469958387f8e19a59b4ee7b3d69d2ad5cb5276263c0d60ea6f37c2c5d3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001609201800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1476-9271
1476-928X
IngestDate Sat Nov 01 12:05:35 EDT 2025
Sat Nov 01 14:15:52 EDT 2025
Thu Nov 27 00:21:40 EST 2025
Sat Nov 29 17:03:55 EST 2025
IsPeerReviewed true
IsScholarly true
Issue Pt 2
Keywords Breast cancer
Graph Convolutional Variational Autoencoders
Spatial transcriptomics
Gastric cancer
Diffusion Consistency Loss
Language English
License Copyright © 2025. Published by Elsevier Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-2f79135469958387f8e19a59b4ee7b3d69d2ad5cb5276263c0d60ea6f37c2c5d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8812-5737
0000-0003-1444-190X
PMID 41167001
PQID 3267378310
PQPubID 23479
ParticipantIDs proquest_miscellaneous_3267378310
pubmed_primary_41167001
crossref_primary_10_1016_j_compbiolchem_2025_108746
elsevier_sciencedirect_doi_10_1016_j_compbiolchem_2025_108746
PublicationCentury 2000
PublicationDate 2026-02-01
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: 2026-02-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Computational biology and chemistry
PublicationTitleAlternate Comput Biol Chem
PublicationYear 2026
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Wu (bib41) 2021; 53
Cui, Wei, Wang, Ye, Sakurai (bib8) 2024; 19
Zhao, Li, Liu, Ma, Tang, Guo (bib57) 2024; 34
Zhu, Hao, Yu (bib59) 2023; 21
Guo, Huang, Ju, Zhao, Yu (bib15) 2024; 11
Prakash, Shaked (bib31) 2024; 14
Abdel-Rahman (bib2) 2015; 93
Yu, Wang, Han, He (bib49) 2012; 16
Dong, Zhang (bib12) 2022; 13
Cui (bib5) 2024; 2024
Liang, Soto, Haymaker, Chen (bib23) 2024
Huang (bib19) 2024; 22
Wei, He, Malik, Su, Cui, Manavalan (bib37) 2020
Li (bib22) 2024; 31
Imani (bib20) 2025; 44
C. Pang, J. Qiao, X. Zeng, Q. Zou, and L. Wei, n.d. Deep generative models in de novo drug molecule generation," Journal of Chemical Information and Modeling.
Wang, Chen, Zou (bib35) 2025; 36
Zhao (bib55) 2021; 39
Gavish (bib14) 2023; 618
.
Xie (bib42) 2024; 255
Qiao (bib32) 2025; 16
Xu (bib46) 2025; 53
Zong, Yu, Wang, Wang, Hu, Li (bib60) 2022; 2022
Hong, Zeng, Wei, Liu (bib17) 2020; 36
Liberzon, Subramanian, Pinchback, Thorvaldsdóttir, Tamayo, Mesirov (bib24) 2011; 27
Xu (bib44) 2022; 50
Zhang, Qi, Lan, Liu (bib53) 2025; 35
Macedo, Ladeira, Longatto-Filho, Martins (bib27) 2017; 17
Yang, Cao (bib48) 2022; 86
Fan (bib13) 2023; 20
Lee (bib21) 2025; 74
Xu, Wang, Xia, Wei, Wei (bib47) 2021; 54
Zeng (bib50) 2025
Zhang, Xie, Cui, Carone, Chen (bib54) 2022; 12
Ababneh, Velez, Zhao (bib1) 2025; 15
Cui (bib7) 2025; 238
Xie (bib43) 2025
Xu (bib45) 2023
Y. Cui, W. Zhang, X. Zeng, Y. Yang, S.-J. Park, and K. Nakai, Computational analysis of the functional impact of MHC-II-expressing triple-negative breast cancer," (in English), Frontiers in Immunology, Original Research vol. Volume 15 - 2024c, 2024-November-27 2024, doi
Cheng, Hu, Li (bib4) 2022; 24
Liu (bib25) 2024; 23
Noe, Mitchell (bib29) 2020; 11
Wei, Liao, Gao, Ji, He, Zou (bib38) 2014; 11
Zhang (bib51) 2024; 12
Hu (bib18) 2021; 18
Ning, Wang, Tao (bib28) 2024; 15
Zhao, He, Tang, Zou, Guo (bib56) 2022; 23
Zhou, Zhong, Zhang, Ren (bib58) 2023; 14
Cui, Zhang, Liang, Wang, Ferraro, Chen (bib9) 2021; 22
Barkley (bib3) 2022; 54
Wang (bib34) 2023; 51
Dao (bib11) 2025
Guo, Ye, Huang, Sakurai (bib16) 2025; 233
Tian, Chen, Macosko (bib33) 2023; 41
Wang, Zhai, Ding, Zou (bib36) 2024; 67
Wei, Wan, Guo, Wong (bib39) 2017; 83
Wei, Xing, Zeng, Chen, Su, Guo (bib40) 2017; 83
Zhang (bib52) 2024; 12
Cui (bib6) 2025; 26
Liu, Li, Chen, Cao, Zeng (bib26) 2024
Hu (10.1016/j.compbiolchem.2025.108746_bib18) 2021; 18
Cui (10.1016/j.compbiolchem.2025.108746_bib6) 2025; 26
Zhao (10.1016/j.compbiolchem.2025.108746_bib55) 2021; 39
Wang (10.1016/j.compbiolchem.2025.108746_bib35) 2025; 36
Zhao (10.1016/j.compbiolchem.2025.108746_bib57) 2024; 34
Xie (10.1016/j.compbiolchem.2025.108746_bib42) 2024; 255
Zong (10.1016/j.compbiolchem.2025.108746_bib60) 2022; 2022
Lee (10.1016/j.compbiolchem.2025.108746_bib21) 2025; 74
Zhou (10.1016/j.compbiolchem.2025.108746_bib58) 2023; 14
Liu (10.1016/j.compbiolchem.2025.108746_bib26) 2024
Zhang (10.1016/j.compbiolchem.2025.108746_bib54) 2022; 12
Guo (10.1016/j.compbiolchem.2025.108746_bib16) 2025; 233
Qiao (10.1016/j.compbiolchem.2025.108746_bib32) 2025; 16
Ning (10.1016/j.compbiolchem.2025.108746_bib28) 2024; 15
Wei (10.1016/j.compbiolchem.2025.108746_bib37) 2020
Noe (10.1016/j.compbiolchem.2025.108746_bib29) 2020; 11
Wang (10.1016/j.compbiolchem.2025.108746_bib34) 2023; 51
Xu (10.1016/j.compbiolchem.2025.108746_bib45) 2023
Xie (10.1016/j.compbiolchem.2025.108746_bib43) 2025
10.1016/j.compbiolchem.2025.108746_bib10
Liu (10.1016/j.compbiolchem.2025.108746_bib25) 2024; 23
Zeng (10.1016/j.compbiolchem.2025.108746_bib50) 2025
Liang (10.1016/j.compbiolchem.2025.108746_bib23) 2024
Wang (10.1016/j.compbiolchem.2025.108746_bib36) 2024; 67
Imani (10.1016/j.compbiolchem.2025.108746_bib20) 2025; 44
Xu (10.1016/j.compbiolchem.2025.108746_bib44) 2022; 50
Cheng (10.1016/j.compbiolchem.2025.108746_bib4) 2022; 24
Xu (10.1016/j.compbiolchem.2025.108746_bib46) 2025; 53
Barkley (10.1016/j.compbiolchem.2025.108746_bib3) 2022; 54
Fan (10.1016/j.compbiolchem.2025.108746_bib13) 2023; 20
Cui (10.1016/j.compbiolchem.2025.108746_bib8) 2024; 19
Cui (10.1016/j.compbiolchem.2025.108746_bib9) 2021; 22
Ababneh (10.1016/j.compbiolchem.2025.108746_bib1) 2025; 15
Hong (10.1016/j.compbiolchem.2025.108746_bib17) 2020; 36
Wei (10.1016/j.compbiolchem.2025.108746_bib40) 2017; 83
Macedo (10.1016/j.compbiolchem.2025.108746_bib27) 2017; 17
Wei (10.1016/j.compbiolchem.2025.108746_bib39) 2017; 83
Yu (10.1016/j.compbiolchem.2025.108746_bib49) 2012; 16
Dao (10.1016/j.compbiolchem.2025.108746_bib11) 2025
Zhu (10.1016/j.compbiolchem.2025.108746_bib59) 2023; 21
Li (10.1016/j.compbiolchem.2025.108746_bib22) 2024; 31
Liberzon (10.1016/j.compbiolchem.2025.108746_bib24) 2011; 27
Zhang (10.1016/j.compbiolchem.2025.108746_bib51) 2024; 12
Dong (10.1016/j.compbiolchem.2025.108746_bib12) 2022; 13
Tian (10.1016/j.compbiolchem.2025.108746_bib33) 2023; 41
Zhang (10.1016/j.compbiolchem.2025.108746_bib53) 2025; 35
Huang (10.1016/j.compbiolchem.2025.108746_bib19) 2024; 22
Xu (10.1016/j.compbiolchem.2025.108746_bib47) 2021; 54
Abdel-Rahman (10.1016/j.compbiolchem.2025.108746_bib2) 2015; 93
Prakash (10.1016/j.compbiolchem.2025.108746_bib31) 2024; 14
Guo (10.1016/j.compbiolchem.2025.108746_bib15) 2024; 11
Yang (10.1016/j.compbiolchem.2025.108746_bib48) 2022; 86
Cui (10.1016/j.compbiolchem.2025.108746_bib5) 2024; 2024
Zhang (10.1016/j.compbiolchem.2025.108746_bib52) 2024; 12
Wei (10.1016/j.compbiolchem.2025.108746_bib38) 2014; 11
Zhao (10.1016/j.compbiolchem.2025.108746_bib56) 2022; 23
Gavish (10.1016/j.compbiolchem.2025.108746_bib14) 2023; 618
Cui (10.1016/j.compbiolchem.2025.108746_bib7) 2025; 238
Wu (10.1016/j.compbiolchem.2025.108746_bib41) 2021; 53
10.1016/j.compbiolchem.2025.108746_bib30
References_xml – volume: 24
  year: 2022
  ident: bib4
  article-title: Benchmarking cell-type clustering methods for spatially resolved transcriptomics data
  publication-title: Brief. Bioinforma.
– volume: 31
  year: 2024
  ident: bib22
  article-title: A review of advances in mitochondrial research in cancer
  publication-title: Cancer Control
– year: 2024
  ident: bib26
  article-title: Geometric deep learning for drug discovery
  publication-title: Expert Syst. Appl.
– volume: 15
  start-page: 1517
  year: 2025
  end-page: 1539
  ident: bib1
  article-title: Immune evasion and resistance in breast cancer
  publication-title: Am. J. Cancer Res.
– volume: 21
  start-page: 294
  year: 2023
  ident: bib59
  article-title: Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding wasserstein distance
  publication-title: BMC Biol.
– volume: 54
  start-page: 1192
  year: 2022
  end-page: 1201
  ident: bib3
  article-title: Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment
  publication-title: Nat. Genet.
– year: 2025
  ident: bib50
  article-title: Colorectal liver metastasis pathomics model (CLMPM): integrating single cell and spatial transcriptome analysis with pathomics for predicting liver metastasis in colorectal cancer," (in eng)
  publication-title: Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc.
– year: 2023
  ident: bib45
  article-title: Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
  publication-title: Cell Rep. Methods
– volume: 35
  start-page: 1794
  year: 2025
  end-page: 1808
  ident: bib53
  article-title: A novel Multi-Slice framework for precision 3D spatial domain reconstruction and disease pathology analysis
  publication-title: Genome Res.
– volume: 83
  start-page: 82
  year: 2017
  end-page: 90
  ident: bib39
  article-title: A novel hierarchical selective ensemble classifier with bioinformatics application
  publication-title: Artif. Intell. Med.
– volume: 41
  start-page: 773
  year: 2023
  end-page: 782
  ident: bib33
  article-title: The expanding vistas of spatial transcriptomics
  publication-title: Nat. Biotechnol.
– volume: 238
  start-page: 84
  year: 2025
  end-page: 94
  ident: bib7
  article-title: OmniClust: a versatile clustering toolkit for single-cell and spatial transcriptomics data
  publication-title: Methods
– volume: 23
  year: 2022
  ident: bib56
  article-title: A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data
  publication-title: Brief. Bioinforma. Artic.
– volume: 39
  start-page: 1375
  year: 2021
  end-page: 1384
  ident: bib55
  article-title: Spatial transcriptomics at subspot resolution with BayesSpace
  publication-title: Nat. Biotechnol.
– volume: 19
  start-page: 765
  year: 2024
  end-page: 776
  ident: bib8
  article-title: Identification of spatial domains, spatially variable genes, and genetic association studies of alzheimer disease with an Autoencoder-based fuzzy clustering algorithm
  publication-title: Curr. Bioinforma.
– volume: 2022
  year: 2022
  ident: bib60
  article-title: ConST: an interpretable multi-modal contrastive learning framework for spatial transcriptomics
  publication-title: bioRxiv
– volume: 16
  start-page: 284
  year: 2012
  end-page: 287
  ident: bib49
  article-title: Clusterprofiler: an r package for comparing biological themes among gene clusters
  publication-title: OMICS A J. Integr. Biol.
– volume: 13
  start-page: 1739
  year: 2022
  ident: bib12
  article-title: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder
  publication-title: Nat. Commun.
– volume: 255
  year: 2024
  ident: bib42
  article-title: Detecting key genes relative expression orderings as biomarkers for machine learning-based intelligent screening and analysis of type 2 diabetes mellitus
  publication-title: Expert Syst. Appl.
– volume: 54
  year: 2021
  ident: bib47
  article-title: Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting
  publication-title: Cell Prolif.
– volume: 14
  start-page: 7930
  year: 2023
  ident: bib58
  article-title: Spatial transcriptomics deconvolution at single-cell resolution using redeconve
  publication-title: Nat. Commun.
– volume: 12
  start-page: 1130
  year: 2022
  ident: bib54
  article-title: Detecting Fear-Memory-Related genes from neuronal scRNA-seq data by diverse distributions and bhattacharyya distance
  publication-title: Biomolecules
– volume: 11
  start-page: 2306329
  year: 2024
  ident: bib15
  article-title: Highly accurate estimation of cell type abundance in bulk tissues based on Single-Cell reference and domain adaptive matching
  publication-title: Adv. Sci.
– volume: 83
  start-page: 67
  year: 2017
  end-page: 74
  ident: bib40
  article-title: Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier
  publication-title: Artif. Intell. Med.
– year: 2025
  ident: bib43
  article-title: scRiskCell: a single-cell framework for quantifying pancreatic islet risk cells and unravelling their dynamic transcriptional and molecular adaptation in the progression of type 2 diabetes
  publication-title: iMeta
– volume: 11
  year: 2020
  ident: bib29
  article-title: MIF-Dependent control of tumor immunity
  publication-title: Front Immunol.
– volume: 34
  start-page: 1036
  year: 2024
  end-page: 1051
  ident: bib57
  article-title: A gene regulatory network-aware graph learning method for cell identity annotation in single-cell RNA-seq data
  publication-title: Genome Res.
– volume: 2024
  year: 2024
  ident: bib5
  article-title: DenoiseST: a dual-channel unsupervised deep learning-based denoising method to identify spatial domains and functionally variable genes in spatial transcriptomics
  publication-title: bioRxiv
– volume: 16
  start-page: 1
  year: 2025
  end-page: 16
  ident: bib32
  article-title: A self-conformation-aware pre-training framework for molecular property prediction with substructure interpretability
  publication-title: Nat. Commun.
– volume: 36
  start-page: 9005
  year: 2025
  end-page: 9017
  ident: bib35
  article-title: GRACE: unveiling gene regulatory networks with causal mechanistic graph neural networks in Single-Cell RNA-Sequencing data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 86
  start-page: 251
  year: 2022
  end-page: 261
  ident: bib48
  article-title: The impact of VEGF on cancer metastasis and systemic disease
  publication-title: Semin. Cancer Biol.
– volume: 618
  start-page: 598
  year: 2023
  end-page: 606
  ident: bib14
  article-title: Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours
  publication-title: Nature
– volume: 26
  year: 2025
  ident: bib6
  article-title: DiffusionST: a deep generative diffusion model-based framework for enhancing spatial transcriptomics data quality and identifying spatial domains
  publication-title: Brief. Bioinforma.
– volume: 18
  start-page: 1342
  year: 2021
  end-page: 1351
  ident: bib18
  article-title: SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
  publication-title: Nat. Methods
– volume: 12
  start-page: 96
  year: 2024
  ident: bib52
  article-title: Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment
  publication-title: Biomark. Res.
– volume: 67
  year: 2024
  ident: bib36
  article-title: SBSM-Pro: support bio-sequence machine for proteins
  publication-title: Sci. ChinaInf. Sci.
– year: 2024
  ident: bib23
  article-title: Interpretable spatial gradient analysis for spatial transcriptomics data
  publication-title: bioRxiv
– year: 2025
  ident: bib11
  article-title: RepliChrom: interpretable machine learning predicts cancer-associated enhancer-promoter interactions using DNA replication timing
  publication-title: iMeta
– volume: 44
  start-page: 131
  year: 2025
  ident: bib20
  article-title: Reprogramming the breast tumor immune microenvironment: cold-to-hot transition for enhanced immunotherapy
  publication-title: J. Exp. Clin. Cancer Res.
– volume: 50
  year: 2022
  ident: bib44
  article-title: DeepST: identifying spatial domains in spatial transcriptomics by deep learning
  publication-title: Nucleic Acids Res.
– reference: Y. Cui, W. Zhang, X. Zeng, Y. Yang, S.-J. Park, and K. Nakai, Computational analysis of the functional impact of MHC-II-expressing triple-negative breast cancer," (in English), Frontiers in Immunology, Original Research vol. Volume 15 - 2024c, 2024-November-27 2024, doi:
– volume: 27
  start-page: 1739
  year: 2011
  end-page: 1740
  ident: bib24
  article-title: Molecular signatures database (MSigDB) 3.0
  publication-title: Bioinformatics
– volume: 51
  start-page: 3017
  year: 2023
  end-page: 3029
  ident: bib34
  article-title: DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis
  publication-title: Nucleic Acids Res.
– volume: 14
  start-page: 1375
  year: 2024
  end-page: 1388
  ident: bib31
  article-title: The interplay between extracellular matrix remodeling and cancer therapeutics
  publication-title: Cancer Discov.
– volume: 22
  year: 2021
  ident: bib9
  article-title: Consensus clustering of single-cell RNA-seq data by enhancing network affinity
  publication-title: Brief. Bioinforma.
– volume: 36
  start-page: 1037
  year: 2020
  end-page: 1043
  ident: bib17
  article-title: Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism
  publication-title: Bioinformatics
– volume: 74
  start-page: 714
  year: 2025
  end-page: 727
  ident: bib21
  article-title: Spatial dissection of tumour microenvironments in gastric cancers reveals the immunosuppressive crosstalk between <em>CCL2+</em> fibroblasts and <em>STAT3</em>-activated macrophages
  publication-title: Gut
– volume: 233
  start-page: 52
  year: 2025
  end-page: 60
  ident: bib16
  article-title: Robust feature learning using contractive autoencoders for multi-omics clustering in cancer subtyping
  publication-title: Methods
– reference: C. Pang, J. Qiao, X. Zeng, Q. Zou, and L. Wei, n.d. Deep generative models in de novo drug molecule generation," Journal of Chemical Information and Modeling.
– reference: .
– volume: 17
  start-page: 1
  year: 2017
  ident: bib27
  article-title: Gastric cancer and angiogenesis: is VEGF a useful biomarker to assess progression and remission?
  publication-title: J. Gastric Cancer
– year: 2020
  ident: bib37
  article-title: Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework
  publication-title: Brief. Bioinforma.
– volume: 11
  start-page: 192
  year: 2014
  end-page: 201
  ident: bib38
  article-title: Improved and promising identification of human MicroRNAs by incorporating a High-Quality negative set
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinforma.
– volume: 20
  start-page: 1179
  year: 2023
  end-page: 1182
  ident: bib13
  article-title: Expansion spatial transcriptomics
  publication-title: Nat. Methods
– volume: 22
  start-page: 290
  year: 2024
  ident: bib19
  article-title: Accurate RNA velocity estimation based on multibatch network reveals complex lineage in batch scRNA-seq data
  publication-title: BMC Biol.
– volume: 93
  start-page: 18
  year: 2015
  end-page: 27
  ident: bib2
  article-title: Targeting vascular endothelial growth factor (VEGF) pathway in gastric cancer: preclinical and clinical aspects
  publication-title: Crit. Rev. Oncol. Hematol.
– volume: 23
  start-page: 261
  year: 2024
  ident: bib25
  article-title: Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer
  publication-title: Mol. Cancer
– volume: 12
  start-page: 96
  year: 2024
  ident: bib51
  article-title: Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment
  publication-title: Biomark. Res.
– volume: 15
  start-page: 1483834
  year: 2024
  ident: bib28
  article-title: The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions
  publication-title: Front Immunol.
– volume: 53
  start-page: 1334
  year: 2021
  end-page: 1347
  ident: bib41
  article-title: A single-cell and spatially resolved Atlas of human breast cancers
  publication-title: Nat. Genet.
– volume: 53
  start-page: gkaf138
  year: 2025
  ident: bib46
  article-title: Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data
  publication-title: Nucleic Acids Res.
– volume: 15
  start-page: 1517
  issue: 4
  year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib1
  article-title: Immune evasion and resistance in breast cancer
  publication-title: Am. J. Cancer Res.
  doi: 10.62347/PNGT6996
– volume: 27
  start-page: 1739
  issue: 12
  year: 2011
  ident: 10.1016/j.compbiolchem.2025.108746_bib24
  article-title: Molecular signatures database (MSigDB) 3.0
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr260
– volume: 23
  start-page: 261
  issue: 1
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib25
  article-title: Metabolic reprogramming and therapeutic resistance in primary and metastatic breast cancer
  publication-title: Mol. Cancer
  doi: 10.1186/s12943-024-02165-x
– volume: 16
  start-page: 1
  issue: 1
  year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib32
  article-title: A self-conformation-aware pre-training framework for molecular property prediction with substructure interpretability
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-025-59634-0
– volume: 22
  issue: 6
  year: 2021
  ident: 10.1016/j.compbiolchem.2025.108746_bib9
  article-title: Consensus clustering of single-cell RNA-seq data by enhancing network affinity
  publication-title: Brief. Bioinforma.
  doi: 10.1093/bib/bbab236
– volume: 44
  start-page: 131
  issue: 1
  year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib20
  article-title: Reprogramming the breast tumor immune microenvironment: cold-to-hot transition for enhanced immunotherapy
  publication-title: J. Exp. Clin. Cancer Res.
  doi: 10.1186/s13046-025-03394-8
– volume: 51
  start-page: 3017
  issue: 7
  year: 2023
  ident: 10.1016/j.compbiolchem.2025.108746_bib34
  article-title: DeepBIO: an automated and interpretable deep-learning platform for high-throughput biological sequence prediction, functional annotation and visualization analysis
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkad055
– volume: 67
  issue: 11
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib36
  article-title: SBSM-Pro: support bio-sequence machine for proteins
  publication-title: Sci. ChinaInf. Sci.
– volume: 83
  start-page: 82
  year: 2017
  ident: 10.1016/j.compbiolchem.2025.108746_bib39
  article-title: A novel hierarchical selective ensemble classifier with bioinformatics application
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.02.005
– volume: 2022
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108746_bib60
  article-title: ConST: an interpretable multi-modal contrastive learning framework for spatial transcriptomics
  publication-title: bioRxiv
– volume: 21
  start-page: 294
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiolchem.2025.108746_bib59
  article-title: Identifying disease-related microbes based on multi-scale variational graph autoencoder embedding wasserstein distance
  publication-title: BMC Biol.
  doi: 10.1186/s12915-023-01796-8
– volume: 34
  start-page: 1036
  issue: 7
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib57
  article-title: A gene regulatory network-aware graph learning method for cell identity annotation in single-cell RNA-seq data
  publication-title: Genome Res.
  doi: 10.1101/gr.278439.123
– volume: 36
  start-page: 9005
  issue: 5
  year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib35
  article-title: GRACE: unveiling gene regulatory networks with causal mechanistic graph neural networks in Single-Cell RNA-Sequencing data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2024.3412753
– volume: 17
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.compbiolchem.2025.108746_bib27
  article-title: Gastric cancer and angiogenesis: is VEGF a useful biomarker to assess progression and remission?
  publication-title: J. Gastric Cancer
  doi: 10.5230/jgc.2017.17.e1
– volume: 86
  start-page: 251
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108746_bib48
  article-title: The impact of VEGF on cancer metastasis and systemic disease
  publication-title: Semin. Cancer Biol.
  doi: 10.1016/j.semcancer.2022.03.011
– volume: 26
  issue: 4
  year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib6
  article-title: DiffusionST: a deep generative diffusion model-based framework for enhancing spatial transcriptomics data quality and identifying spatial domains
  publication-title: Brief. Bioinforma.
– volume: 53
  start-page: 1334
  issue: 9
  year: 2021
  ident: 10.1016/j.compbiolchem.2025.108746_bib41
  article-title: A single-cell and spatially resolved Atlas of human breast cancers
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-021-00911-1
– volume: 74
  start-page: 714
  issue: 5
  year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib21
  article-title: Spatial dissection of tumour microenvironments in gastric cancers reveals the immunosuppressive crosstalk between CCL2+ fibroblasts and STAT3-activated macrophages
  publication-title: Gut
  doi: 10.1136/gutjnl-2024-332901
– volume: 54
  start-page: 1192
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108746_bib3
  article-title: Cancer cell states recur across tumor types and form specific interactions with the tumor microenvironment
  publication-title: Nat. Genet.
  doi: 10.1038/s41588-022-01141-9
– volume: 11
  year: 2020
  ident: 10.1016/j.compbiolchem.2025.108746_bib29
  article-title: MIF-Dependent control of tumor immunity
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2020.609948
– volume: 2024
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib5
  article-title: DenoiseST: a dual-channel unsupervised deep learning-based denoising method to identify spatial domains and functionally variable genes in spatial transcriptomics
  publication-title: bioRxiv
– volume: 18
  start-page: 1342
  issue: 11
  year: 2021
  ident: 10.1016/j.compbiolchem.2025.108746_bib18
  article-title: SpaGCN: integrating gene expression, spatial location and histology to identify spatial domains and spatially variable genes by graph convolutional network
  publication-title: Nat. Methods
  doi: 10.1038/s41592-021-01255-8
– volume: 23
  issue: 2
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108746_bib56
  article-title: A hybrid deep learning framework for gene regulatory network inference from single-cell transcriptomic data
  publication-title: Brief. Bioinforma. Artic.
– volume: 14
  start-page: 7930
  issue: 1
  year: 2023
  ident: 10.1016/j.compbiolchem.2025.108746_bib58
  article-title: Spatial transcriptomics deconvolution at single-cell resolution using redeconve
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-43600-9
– volume: 54
  issue: 10
  year: 2021
  ident: 10.1016/j.compbiolchem.2025.108746_bib47
  article-title: Role of the CCL2-CCR2 signalling axis in cancer: mechanisms and therapeutic targeting
  publication-title: Cell Prolif.
  doi: 10.1111/cpr.13115
– volume: 36
  start-page: 1037
  issue: 4
  year: 2020
  ident: 10.1016/j.compbiolchem.2025.108746_bib17
  article-title: Identifying enhancer-promoter interactions with neural network based on pre-trained DNA vectors and attention mechanism
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btz694
– volume: 35
  start-page: 1794
  year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib53
  article-title: A novel Multi-Slice framework for precision 3D spatial domain reconstruction and disease pathology analysis
  publication-title: Genome Res.
  doi: 10.1101/gr.280281.124
– year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib50
  article-title: Colorectal liver metastasis pathomics model (CLMPM): integrating single cell and spatial transcriptome analysis with pathomics for predicting liver metastasis in colorectal cancer," (in eng)
  publication-title: Mod. Pathol. Off. J. U. S. Can. Acad. Pathol. Inc.
– volume: 83
  start-page: 67
  year: 2017
  ident: 10.1016/j.compbiolchem.2025.108746_bib40
  article-title: Improved prediction of protein-protein interactions using novel negative samples, features, and an ensemble classifier
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2017.03.001
– volume: 31
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib22
  article-title: A review of advances in mitochondrial research in cancer
  publication-title: Cancer Control
  doi: 10.1177/10732748241299072
– volume: 53
  start-page: gkaf138
  issue: 5
  year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib46
  article-title: Deep learning-based cell-specific gene regulatory networks inferred from single-cell multiome data
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkaf138
– year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib26
  article-title: Geometric deep learning for drug discovery
  publication-title: Expert Syst. Appl.
– volume: 14
  start-page: 1375
  issue: 8
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib31
  article-title: The interplay between extracellular matrix remodeling and cancer therapeutics
  publication-title: Cancer Discov.
  doi: 10.1158/2159-8290.CD-24-0002
– volume: 19
  start-page: 765
  issue: 8
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib8
  article-title: Identification of spatial domains, spatially variable genes, and genetic association studies of alzheimer disease with an Autoencoder-based fuzzy clustering algorithm
  publication-title: Curr. Bioinforma.
  doi: 10.2174/0115748936278884240102094058
– volume: 255
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib42
  article-title: Detecting key genes relative expression orderings as biomarkers for machine learning-based intelligent screening and analysis of type 2 diabetes mellitus
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124702
– year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib43
  article-title: scRiskCell: a single-cell framework for quantifying pancreatic islet risk cells and unravelling their dynamic transcriptional and molecular adaptation in the progression of type 2 diabetes
  publication-title: iMeta
  doi: 10.1002/imt2.70060
– volume: 238
  start-page: 84
  year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib7
  article-title: OmniClust: a versatile clustering toolkit for single-cell and spatial transcriptomics data
  publication-title: Methods
  doi: 10.1016/j.ymeth.2025.03.007
– year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib11
  article-title: RepliChrom: interpretable machine learning predicts cancer-associated enhancer-promoter interactions using DNA replication timing
  publication-title: iMeta
  doi: 10.1002/imt2.70052
– year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib23
  article-title: Interpretable spatial gradient analysis for spatial transcriptomics data
  publication-title: bioRxiv
– volume: 20
  start-page: 1179
  issue: 8
  year: 2023
  ident: 10.1016/j.compbiolchem.2025.108746_bib13
  article-title: Expansion spatial transcriptomics
  publication-title: Nat. Methods
  doi: 10.1038/s41592-023-01911-1
– ident: 10.1016/j.compbiolchem.2025.108746_bib10
  doi: 10.3389/fimmu.2024.1497251
– volume: 50
  issue: 22
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108746_bib44
  article-title: DeepST: identifying spatial domains in spatial transcriptomics by deep learning
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkac901
– ident: 10.1016/j.compbiolchem.2025.108746_bib30
– volume: 39
  start-page: 1375
  issue: 11
  year: 2021
  ident: 10.1016/j.compbiolchem.2025.108746_bib55
  article-title: Spatial transcriptomics at subspot resolution with BayesSpace
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-021-00935-2
– volume: 11
  start-page: 2306329
  issue: 7
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib15
  article-title: Highly accurate estimation of cell type abundance in bulk tissues based on Single-Cell reference and domain adaptive matching
  publication-title: Adv. Sci.
  doi: 10.1002/advs.202306329
– volume: 16
  start-page: 284
  issue: 5
  year: 2012
  ident: 10.1016/j.compbiolchem.2025.108746_bib49
  article-title: Clusterprofiler: an r package for comparing biological themes among gene clusters
  publication-title: OMICS A J. Integr. Biol.
  doi: 10.1089/omi.2011.0118
– volume: 22
  start-page: 290
  issue: 1
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib19
  article-title: Accurate RNA velocity estimation based on multibatch network reveals complex lineage in batch scRNA-seq data
  publication-title: BMC Biol.
  doi: 10.1186/s12915-024-02085-8
– volume: 93
  start-page: 18
  issue: 1
  year: 2015
  ident: 10.1016/j.compbiolchem.2025.108746_bib2
  article-title: Targeting vascular endothelial growth factor (VEGF) pathway in gastric cancer: preclinical and clinical aspects
  publication-title: Crit. Rev. Oncol. Hematol.
  doi: 10.1016/j.critrevonc.2014.05.012
– volume: 13
  start-page: 1739
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108746_bib12
  article-title: Deciphering spatial domains from spatially resolved transcriptomics with an adaptive graph attention auto-encoder
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-022-29439-6
– volume: 618
  start-page: 598
  issue: 7965
  year: 2023
  ident: 10.1016/j.compbiolchem.2025.108746_bib14
  article-title: Hallmarks of transcriptional intratumour heterogeneity across a thousand tumours
  publication-title: Nature
  doi: 10.1038/s41586-023-06130-4
– volume: 233
  start-page: 52
  year: 2025
  ident: 10.1016/j.compbiolchem.2025.108746_bib16
  article-title: Robust feature learning using contractive autoencoders for multi-omics clustering in cancer subtyping
  publication-title: Methods
  doi: 10.1016/j.ymeth.2024.11.013
– volume: 41
  start-page: 773
  issue: 6
  year: 2023
  ident: 10.1016/j.compbiolchem.2025.108746_bib33
  article-title: The expanding vistas of spatial transcriptomics
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-022-01448-2
– year: 2020
  ident: 10.1016/j.compbiolchem.2025.108746_bib37
  article-title: Computational prediction and interpretation of cell-specific replication origin sites from multiple eukaryotes by exploiting stacking framework
  publication-title: Brief. Bioinforma.
– volume: 12
  start-page: 96
  issue: 1
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib51
  article-title: Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment
  publication-title: Biomark. Res.
  doi: 10.1186/s40364-024-00646-1
– volume: 15
  start-page: 1483834
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib28
  article-title: The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions
  publication-title: Front Immunol.
  doi: 10.3389/fimmu.2024.1483834
– volume: 12
  start-page: 1130
  issue: 8
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108746_bib54
  article-title: Detecting Fear-Memory-Related genes from neuronal scRNA-seq data by diverse distributions and bhattacharyya distance
  publication-title: Biomolecules
  doi: 10.3390/biom12081130
– year: 2023
  ident: 10.1016/j.compbiolchem.2025.108746_bib45
  article-title: Graph embedding and Gaussian mixture variational autoencoder network for end-to-end analysis of single-cell RNA sequencing data
  publication-title: Cell Rep. Methods
– volume: 12
  start-page: 96
  issue: 1
  year: 2024
  ident: 10.1016/j.compbiolchem.2025.108746_bib52
  article-title: Metabolic reprogramming and immune evasion: the interplay in the tumor microenvironment
  publication-title: Biomark. Res.
  doi: 10.1186/s40364-024-00646-1
– volume: 11
  start-page: 192
  issue: 1
  year: 2014
  ident: 10.1016/j.compbiolchem.2025.108746_bib38
  article-title: Improved and promising identification of human MicroRNAs by incorporating a High-Quality negative set
  publication-title: IEEE/ACM Trans. Comput. Biol. Bioinforma.
  doi: 10.1109/TCBB.2013.146
– volume: 24
  issue: 1
  year: 2022
  ident: 10.1016/j.compbiolchem.2025.108746_bib4
  article-title: Benchmarking cell-type clustering methods for spatially resolved transcriptomics data
  publication-title: Brief. Bioinforma.
  doi: 10.1093/bib/bbac475
SSID ssj0023005
Score 2.4140432
Snippet In recent years, the rapid advancement of spatial transcriptomics technologies has led to the public availability of a large and diverse collection of datasets...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Publisher
StartPage 108746
SubjectTerms Breast cancer
Diffusion Consistency Loss
Gastric cancer
Graph Convolutional Variational Autoencoders
Spatial transcriptomics
Title DiffuScope: A diffusion-regularized autoencoder for spatial transcriptomic clustering
URI https://dx.doi.org/10.1016/j.compbiolchem.2025.108746
https://www.ncbi.nlm.nih.gov/pubmed/41167001
https://www.proquest.com/docview/3267378310
Volume 120
WOSCitedRecordID wos001609201800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1476-928X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0023005
  issn: 1476-9271
  databaseCode: AIEXJ
  dateStart: 20030201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5ttzx6QVAKLI8qSNyqoMSO4xiJw6oUAYeqglZsT1EetrpVya52k6ogfjweO86mKiuVA5cochQnmW8ynhnPA-CNtot5JqLcV2HEtIGSUz9XeeZLRSPcGEpEoUyzCX54mEwm4mgw-O1yYS4veFUlV1di_l-h1mMabEyd_Qe4u0n1gD7XoOujhl0fbwX8h6lSzTdMNrFZ59gCpUGfmL8wfecX019aycyaeoY1LLGUBEYaLjGy2gSe67XLSBJMV94rLhqspODWN1fSwLSCcG7Efh2nwvWP6zw3Z7YtdtOJ_1Ob2u6mNOHZZug0Ww19b93YX5sz2Y62rgnSRTPjymLFacRjXxDTPHglb0nQY6yjeo_0BGgYJNz6JG_IdutmOEdo5vhl-EXawCfs7c2bNIHnPwzAEW40Be6trlXWdpc2YJNwJpIhbI4_H0y-dAY7lvJ3hWpNTOC6R2_BPTfZOv1mnf1i9Jjjh_CgNUC8sWWcRzCQ1TbctS1Jf27D_X2H4GM4WbHSO2_s_ZWRvB4jeZqRvJaRvOuM5K0YaQdOPh4c73_y2zYcfkEJq32iuAgpi2IhcI-dq0SGImMij6TkOS1jUZKsZEXOCMfaRkVQxoHMYkV5QQpW0icwrGaVfAZeHMVxyaIyzvQPWyqaJyHHRnek1GcilyOgjnjp3FZbSV0Y4nnap36K1E8t9Ufw3tE5bfVGqw-mmnVudf9rB06qKYw7ZlklZ80y1bYNpxx78Y3gqUWtey8H-PO1V17A1uqveAnDetHIV3CnuKyny8UubPBJstuy3B_ZM6LZ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DiffuScope%3A+A+diffusion-regularized+autoencoder+for+spatial+transcriptomic+clustering&rft.jtitle=Computational+biology+and+chemistry&rft.au=Shi%2C+Hua&rft.au=Yi%2C+Ding&rft.au=Cui%2C+Yang&rft.au=Wang%2C+Ruheng&rft.date=2026-02-01&rft.eissn=1476-928X&rft.volume=120&rft.issue=Pt+2&rft.spage=108746&rft_id=info:doi/10.1016%2Fj.compbiolchem.2025.108746&rft_id=info%3Apmid%2F41167001&rft.externalDocID=41167001
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1476-9271&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1476-9271&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1476-9271&client=summon