Artificial neural networks in structural dynamics: A new modular radial basis function approach vs. convolutional and feedforward topologies

The aim of the present study is to develop a series of artificial neural networks (ANN) and to determine, by comparison to experiments, which type of neural network is able to predict the measured structural deformations most accurately. For this approach, three different ANNs are proposed. Firstly,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer methods in applied mechanics and engineering Ročník 364; s. 112989
Hlavní autori: Stoffel, Marcus, Gulakala, Rutwik, Bamer, Franz, Markert, Bernd
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Amsterdam Elsevier B.V 01.06.2020
Elsevier BV
Predmet:
ISSN:0045-7825, 1879-2138
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The aim of the present study is to develop a series of artificial neural networks (ANN) and to determine, by comparison to experiments, which type of neural network is able to predict the measured structural deformations most accurately. For this approach, three different ANNs are proposed. Firstly, the classical form of an ANN in the form of a feedforward neural network (FFNN). In the second approach a new modular radial basis function neural network (RBFNN) is proposed and the third network consists of a deep convolutional neural network (DCNN). By means of comparative calculations between neural network enhanced numerical predictions and measurements, the applicability of each type of network is studied. •Three types of artificial neural networks are proposed for structural dynamics.•All calculated results are verified by means of shock tube experiments.•A new modular radial basis function network is developed.•The convolutional neural networks capture the loading and deformation history.
AbstractList The aim of the present study is to develop a series of artificial neural networks (ANN) and to determine, by comparison to experiments, which type of neural network is able to predict the measured structural deformations most accurately. For this approach, three different ANNs are proposed. Firstly, the classical form of an ANN in the form of a feedforward neural network (FFNN). In the second approach a new modular radial basis function neural network (RBFNN) is proposed and the third network consists of a deep convolutional neural network (DCNN). By means of comparative calculations between neural network enhanced numerical predictions and measurements, the applicability of each type of network is studied.
The aim of the present study is to develop a series of artificial neural networks (ANN) and to determine, by comparison to experiments, which type of neural network is able to predict the measured structural deformations most accurately. For this approach, three different ANNs are proposed. Firstly, the classical form of an ANN in the form of a feedforward neural network (FFNN). In the second approach a new modular radial basis function neural network (RBFNN) is proposed and the third network consists of a deep convolutional neural network (DCNN). By means of comparative calculations between neural network enhanced numerical predictions and measurements, the applicability of each type of network is studied. •Three types of artificial neural networks are proposed for structural dynamics.•All calculated results are verified by means of shock tube experiments.•A new modular radial basis function network is developed.•The convolutional neural networks capture the loading and deformation history.
ArticleNumber 112989
Author Markert, Bernd
Stoffel, Marcus
Gulakala, Rutwik
Bamer, Franz
Author_xml – sequence: 1
  givenname: Marcus
  orcidid: 0000-0001-8756-2310
  surname: Stoffel
  fullname: Stoffel, Marcus
  email: stoffel@iam.rwth-aachen.de
– sequence: 2
  givenname: Rutwik
  surname: Gulakala
  fullname: Gulakala, Rutwik
– sequence: 3
  givenname: Franz
  orcidid: 0000-0002-8587-6591
  surname: Bamer
  fullname: Bamer, Franz
– sequence: 4
  givenname: Bernd
  surname: Markert
  fullname: Markert, Bernd
BookMark eNp9kM9O5DAMxiPESgwsD8AtEufOJmnTpstphNg_EhKX5Rx5khQy20kGJ50R77APTcrsiQO-WLa_n2V_5-Q0xOAIueJsyRlvv22WZgtLwUSpuehVf0IWXHV9JXitTsmCsUZWnRLyjJyntGElFBcL8m-F2Q_eeBhpcBO-p3yI-DdRH2jKOJn83ravAbbepO90VSQHuo12GgEpgp3hNSSf6DAFk30MFHY7jGCe6T4tqYlhH8dpHhQlBEsH5-wQ8QBoaY67OMYn79JX8mWAMbnL__mCPP64-3P7q7p_-Pn7dnVfmVrIXAlTN1ZJEEo20kgmHW_XtWrbVtad7NvO9o2wjbUNA2EdDHJtm5oZkAP0aybrC3J93FtufJlcynoTJyy3JS2aWgkhWNcWVXdUGYwpoRu08RnmJzKCHzVnerZeb3SxXs_W66P1heQfyB36LeDrp8zNkXHl8b13qJPxLhhnPTqTtY3-E_oNzlOgkw
CitedBy_id crossref_primary_10_1016_j_probengmech_2023_103570
crossref_primary_10_1016_j_ast_2023_108109
crossref_primary_10_1016_j_engappai_2022_105559
crossref_primary_10_1016_j_cma_2023_116293
crossref_primary_10_1016_j_mechrescom_2024_104347
crossref_primary_10_1016_j_cmpb_2022_107262
crossref_primary_10_1016_j_ijmecsci_2022_107920
crossref_primary_10_1016_j_cnsns_2023_107592
crossref_primary_10_1038_s41598_023_29186_8
crossref_primary_10_1007_s42452_020_3111_7
crossref_primary_10_1016_j_cma_2022_115831
crossref_primary_10_1016_j_apsusc_2021_150802
crossref_primary_10_1002_eqe_3432
crossref_primary_10_1016_j_jsv_2024_118773
crossref_primary_10_1109_JSEN_2023_3331026
crossref_primary_10_1080_15366367_2023_2246112
crossref_primary_10_1177_14759217251351533
crossref_primary_10_1016_j_mtcomm_2025_113183
crossref_primary_10_23947_2949_1835_2024_3_3_40_48
crossref_primary_10_1016_j_istruc_2020_10_048
crossref_primary_10_1016_j_enganabound_2025_106384
crossref_primary_10_1111_mice_13015
crossref_primary_10_1016_j_cma_2022_115509
crossref_primary_10_1016_j_mtcomm_2024_109950
crossref_primary_10_1016_j_cma_2022_115668
crossref_primary_10_1080_15397734_2021_1972309
crossref_primary_10_1016_j_bspc_2024_106791
crossref_primary_10_1007_s00466_023_02317_8
crossref_primary_10_1007_s00466_021_02104_3
crossref_primary_10_1016_j_cmpb_2021_106279
crossref_primary_10_3389_fbuil_2021_679488
crossref_primary_10_1016_j_istruc_2021_09_008
crossref_primary_10_1002_nme_6809
crossref_primary_10_1007_s00158_022_03359_x
crossref_primary_10_1038_s41598_022_23692_x
crossref_primary_10_1016_j_ijmecsci_2021_106972
crossref_primary_10_1016_j_ymssp_2023_110543
crossref_primary_10_1007_s13042_024_02415_w
crossref_primary_10_1007_s41939_023_00169_6
crossref_primary_10_1016_j_cma_2024_117038
crossref_primary_10_3390_rs14102430
crossref_primary_10_1016_j_cma_2024_117111
crossref_primary_10_1016_j_aei_2024_102869
crossref_primary_10_3390_app12020581
crossref_primary_10_1016_j_compstruc_2020_106425
crossref_primary_10_1007_s11831_023_10009_y
crossref_primary_10_1016_j_cma_2024_116812
crossref_primary_10_1016_j_cma_2021_114218
crossref_primary_10_3390_polym13111768
Cites_doi 10.1016/j.cma.2008.12.036
10.1016/j.neunet.2014.09.003
10.1016/j.jrmge.2014.04.008
10.1016/j.jmapro.2017.08.009
10.1016/j.strusafe.2018.02.005
10.1016/j.cma.2008.02.026
10.1061/(ASCE)0887-3801(2001)15:4(299)
10.1016/j.compstruc.2004.05.014
10.1016/j.asoc.2008.03.016
10.1016/j.mcm.2011.07.010
10.1016/S0045-7949(01)00083-9
10.1016/j.dt.2014.12.001
10.1016/j.advengsoft.2009.12.003
10.1155/2013/574914
10.1016/j.camwa.2014.03.020
10.2478/v10006-012-0034-5
10.1016/j.tws.2018.06.035
10.1016/S0045-7825(01)00314-0
10.1113/jphysiol.1968.sp008455
10.1007/s11063-017-9718-z
10.12989/gae.2009.1.1.053
10.1016/j.cma.2018.10.046
10.1016/j.neucom.2019.05.005
10.1016/j.ijsolstr.2004.05.060
10.1016/j.strusafe.2014.09.002
10.1038/s42256-019-0089-1
10.1109/CVPR.2016.90
10.1016/j.jnucmat.2018.02.027
10.1109/72.392253
10.1016/j.tust.2011.11.002
10.1016/j.proeng.2011.07.390
10.1016/j.ijsolstr.2005.05.055
10.3846/13923730.2014.890663
10.1016/j.engstruct.2017.09.016
10.1016/j.engappai.2017.01.013
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright Elsevier BV Jun 1, 2020
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright Elsevier BV Jun 1, 2020
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2020.112989
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2020_112989
S0045782520301730
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c325t-2c34d85a28545c505e16b386665375967d942d4dd40a2deaf5bd430ca5fa9b053
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000527574600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Mon Jul 14 10:05:26 EDT 2025
Sat Nov 29 07:31:02 EST 2025
Tue Nov 18 22:06:37 EST 2025
Fri Feb 23 02:48:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Radial basis functions
74K20
Structural mechanics
74-05
Artificial neural network
Shock tube experiments
Convolutional networks
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-2c34d85a28545c505e16b386665375967d942d4dd40a2deaf5bd430ca5fa9b053
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-8587-6591
0000-0001-8756-2310
PQID 2438222076
PQPubID 2045269
ParticipantIDs proquest_journals_2438222076
crossref_citationtrail_10_1016_j_cma_2020_112989
crossref_primary_10_1016_j_cma_2020_112989
elsevier_sciencedirect_doi_10_1016_j_cma_2020_112989
PublicationCentury 2000
PublicationDate 2020-06-01
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: 2020-06-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2020
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Jaderberg, Vedaldi, Zisserman (b46) 2014
Schmidhuber (b36) 2015; 61
Mohammadi, Rahmannejad (b22) 2010; 35
Stoffel (b37) 2004; 41
Zainuddin, Pauline (b41) 2007; 1
Engelbrecht (b42) 2007
Chen, Chen (b11) 1995; 6
Mandal, Sivaprasad, Venugopal, Murthy (b13) 2009; 9
Lu, AbouRizk, Hermann (b16) 2001; 15
Vallabhaneni, Maity (b27) 2011; 14
Wang, Li, Lin, Rao, Nie, Song, Qiu, Li, Yan, Strachan, Ge, McDonald, Wu, Hu, Wu, Williams, Xia, Yang (b33) 2019; 1
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
Cheng, Li (b6) 2008; 197
Stoffel, Bamer, Markert (b40) 2018; 131
Capuno, Rimoli (b9) 2019; 345
Waszczyszyn, Ziemiański (b4) 2001; 79
Lefik, Boso, Schrefler (b10) 2009; 198
Chojaczyk, Teixeira, Luìs, Cardosa, Soares (b2) 2015; 52
Deng (b19) 2006; 43
Hubel, Wiesel (b34) 1968; 195
Zhao, Ren, Zhao, Pan, Guo (b7) 2017; 30
Bettebghor, Leroy (b25) 2014; 67
Liu, Xu, Wu (b3) 2001; 191
Tahir, Mandal (b5) 2017; 152
Wu, Jahanshahi (b32) 2019; 145
Javadi, Rezania (b14) 2009; 1
Chandra, Gupta, Ong, Goh (b44) 2018; 47
Nielsen (b45) 2015
Shao, Qian (b31) 2019; 355
Ojha, Abraham, Snášel (b39) 2017; 60
Ulasyar, Zad, Zohaib, Hussain (b29) 2017
Aydin, Kisi (b30) 2015; 21
Mehrota, Mohan, Chen (b43) 1997
Hassanvand, Moradi, Fattahi, Zargar, Kamari (b23) 2018; 3
Kiliç, Bülent, Hartomacioğlu (b38) 2015; 11
Kaunda (b17) 2014; 6
Ajmani, Kamthania, Hoda (b12) 2008
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (b48) 2014; 15
Zhang, Zhang (b18) 2004; 82
Mathew, Parfitt, Wilford, Riddle, Alamaniotis, Chroneos, Fitzpatrick (b8) 2018; 502
Fath, Madanifar, Abbasi (b24) 2018
Shojaeefard, Akbari, Tahani, Farhani (b15) 2013; 2013, ID 574914
Pomares, Rojas, Awad, Valenzuela (b28) 2012; 55
Pinar, Paydas, Seckin, Akilli, Sahin, Cobaner, Kocaman, Atakan Atar (b21) 2010; 41
Li, Gong, Gu, Gao, Jing, Su (b26) 2018; 73
Huk (b47) 2012; 22
Shakiba, Parson, Chen (b1) 2016; 9
Mahdevari, Torabi (b20) 2012; 28
Schmidhuber (10.1016/j.cma.2020.112989_b36) 2015; 61
Huk (10.1016/j.cma.2020.112989_b47) 2012; 22
Pinar (10.1016/j.cma.2020.112989_b21) 2010; 41
Hassanvand (10.1016/j.cma.2020.112989_b23) 2018; 3
Ajmani (10.1016/j.cma.2020.112989_b12) 2008
Shojaeefard (10.1016/j.cma.2020.112989_b15) 2013; 2013, ID 574914
Lu (10.1016/j.cma.2020.112989_b16) 2001; 15
Chen (10.1016/j.cma.2020.112989_b11) 1995; 6
Zainuddin (10.1016/j.cma.2020.112989_b41) 2007; 1
Bettebghor (10.1016/j.cma.2020.112989_b25) 2014; 67
Vallabhaneni (10.1016/j.cma.2020.112989_b27) 2011; 14
Li (10.1016/j.cma.2020.112989_b26) 2018; 73
Mohammadi (10.1016/j.cma.2020.112989_b22) 2010; 35
Nielsen (10.1016/j.cma.2020.112989_b45) 2015
Chojaczyk (10.1016/j.cma.2020.112989_b2) 2015; 52
Tahir (10.1016/j.cma.2020.112989_b5) 2017; 152
Capuno (10.1016/j.cma.2020.112989_b9) 2019; 345
Ojha (10.1016/j.cma.2020.112989_b39) 2017; 60
Kiliç (10.1016/j.cma.2020.112989_b38) 2015; 11
Zhang (10.1016/j.cma.2020.112989_b18) 2004; 82
Fath (10.1016/j.cma.2020.112989_b24) 2018
Wu (10.1016/j.cma.2020.112989_b32) 2019; 145
Ulasyar (10.1016/j.cma.2020.112989_b29) 2017
Zhao (10.1016/j.cma.2020.112989_b7) 2017; 30
Kaunda (10.1016/j.cma.2020.112989_b17) 2014; 6
Deng (10.1016/j.cma.2020.112989_b19) 2006; 43
Aydin (10.1016/j.cma.2020.112989_b30) 2015; 21
Shao (10.1016/j.cma.2020.112989_b31) 2019; 355
Mandal (10.1016/j.cma.2020.112989_b13) 2009; 9
Pomares (10.1016/j.cma.2020.112989_b28) 2012; 55
Jaderberg (10.1016/j.cma.2020.112989_b46) 2014
Waszczyszyn (10.1016/j.cma.2020.112989_b4) 2001; 79
Hubel (10.1016/j.cma.2020.112989_b34) 1968; 195
Engelbrecht (10.1016/j.cma.2020.112989_b42) 2007
Mehrota (10.1016/j.cma.2020.112989_b43) 1997
Liu (10.1016/j.cma.2020.112989_b3) 2001; 191
Stoffel (10.1016/j.cma.2020.112989_b40) 2018; 131
Javadi (10.1016/j.cma.2020.112989_b14) 2009; 1
Stoffel (10.1016/j.cma.2020.112989_b37) 2004; 41
Chandra (10.1016/j.cma.2020.112989_b44) 2018; 47
Shakiba (10.1016/j.cma.2020.112989_b1) 2016; 9
Wang (10.1016/j.cma.2020.112989_b33) 2019; 1
Srivastava (10.1016/j.cma.2020.112989_b48) 2014; 15
Cheng (10.1016/j.cma.2020.112989_b6) 2008; 197
Mathew (10.1016/j.cma.2020.112989_b8) 2018; 502
Mahdevari (10.1016/j.cma.2020.112989_b20) 2012; 28
Lefik (10.1016/j.cma.2020.112989_b10) 2009; 198
10.1016/j.cma.2020.112989_b35
References_xml – year: 2007
  ident: b42
  article-title: Computational Intelligence, An Introduction
– volume: 1
  start-page: 173
  year: 2007
  end-page: 178
  ident: b41
  article-title: Function approximation using artificial neural networks
  publication-title: Int. J. Syst. Appl. Eng. Dev.
– volume: 22
  start-page: 449
  year: 2012
  end-page: 459
  ident: b47
  article-title: Backpropagation generalized delta rule for the selective attention sigma-if artificial neural network
  publication-title: Int. J. Appl. Math. Comput. Sci.
– volume: 152
  start-page: 843
  year: 2017
  end-page: 855
  ident: b5
  article-title: Artificial neural networks prediction of buckling load of thin cylindrical shells under axial compression
  publication-title: Eng. Struct.
– volume: 145
  start-page: 1
  year: 2019
  end-page: 25
  ident: b32
  article-title: Deep convolutional neural networks for structural dynamic response estimation and system identification
  publication-title: J. Eng. Mech.
– volume: 2013, ID 574914
  start-page: 1
  year: 2013
  end-page: 7
  ident: b15
  article-title: Sensitivity analysis of the artificial neural network outputs in friction stir lap joining of aluminium to brass
  publication-title: Adv. Mater. Sci. Eng.
– volume: 3
  start-page: 336
  year: 2018
  end-page: 345
  ident: b23
  article-title: Estimation of rock uniaxial compressive strength for an iranian carbonate oil reservoir: Modeling vs. artificial neural network application
  publication-title: Pet. Res.
– volume: 41
  start-page: 6813
  year: 2004
  end-page: 6830
  ident: b37
  article-title: Evolution of plastic zones in dynamically loaded plates using different elastic-viscoplastic laws
  publication-title: Int. J. Solids Struct.
– volume: 28
  start-page: 218
  year: 2012
  end-page: 228
  ident: b20
  article-title: Prediction of tunnel convergence using artificial neural networks
  publication-title: Tunn. Undergr. Space Technol.
– volume: 131
  start-page: 102
  year: 2018
  end-page: 106
  ident: b40
  article-title: Artificial neural networks and intelligent finite elements in non-linear structural mechanics
  publication-title: Thin-Walled Struct.
– volume: 79
  start-page: 2261
  year: 2001
  end-page: 2276
  ident: b4
  article-title: Neural networks in mechanics of structures and materials - new results and prospects of applications
  publication-title: Comput. Struct.
– volume: 15
  start-page: 299
  year: 2001
  end-page: 308
  ident: b16
  article-title: Sensitivity analysis of neural networks in spool fabrication productivity studies
  publication-title: J. Comput. Civ. Eng.
– volume: 1
  start-page: 53
  year: 2009
  end-page: 74
  ident: b14
  article-title: Applications of artificial intelligence and data mining techniques in soil modeling
  publication-title: Geomech. Eng.
– year: 1997
  ident: b43
  article-title: Elements of Artificial Neural Networks
– year: 2008
  ident: b12
  article-title: A comparative study on constructive and non- constructive supervised learning algorithms for artificial neural networks
  publication-title: Proceedings of the 2nd National Conference, Bharati Vidyapeeth’s Institute of Computer Applications and Management
– volume: 11
  start-page: 110
  year: 2015
  end-page: 122
  ident: b38
  article-title: Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools
  publication-title: Def. Technol.
– volume: 67
  start-page: 1816
  year: 2014
  end-page: 1836
  ident: b25
  article-title: Overlapping radial basis function interpolants for spectrally accurate approximation of functions of eigenvalues with application to buckling of composite plates
  publication-title: Comput. Math. Appl.
– volume: 21
  start-page: 591
  year: 2015
  end-page: 604
  ident: b30
  article-title: Damage diagnosis in beam-like structures by artificial neural networks
  publication-title: J. Civ. Eng. Manage.
– volume: 191
  start-page: 989
  year: 2001
  end-page: 1012
  ident: b3
  article-title: Total solution for structural mechanics problems
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 82
  start-page: 2333
  year: 2004
  end-page: 2339
  ident: b18
  article-title: Rbf neural networks for the prediction of building interference effects
  publication-title: Comput. Struct.
– volume: 195
  start-page: 215
  year: 1968
  end-page: 243
  ident: b34
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J. Physiol.
– volume: 41
  start-page: 627
  year: 2010
  end-page: 635
  ident: b21
  article-title: Artificial neural network approaches for prediction of backwater through arched bridge constrictions
  publication-title: Adv. Eng. Softw.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: b48
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 52
  start-page: 78
  year: 2015
  end-page: 89
  ident: b2
  article-title: Review and application of artificial neural networks models in reliability analysis of steel structures
  publication-title: Struct. Saf.
– volume: 55
  start-page: 286
  year: 2012
  end-page: 302
  ident: b28
  article-title: An enhanced clustering function approximation technique for a radial basis function neural network
  publication-title: Math. Comput. Modelling
– volume: 60
  start-page: 97
  year: 2017
  end-page: 116
  ident: b39
  article-title: Metaheuristic design of feedforward naural networks: A review of two decades of research
  publication-title: Eng. Appl. Artif. Intell.
– volume: 198
  start-page: 1785
  year: 2009
  end-page: 1804
  ident: b10
  article-title: Artificial neural networks in numerical modeling of composites
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 30
  start-page: 63
  year: 2017
  end-page: 74
  ident: b7
  article-title: Effect of welding parameters on tensile strength of ultrasonic spot welded joints of aluminum to steel – By experimentation and artificial neural network
  publication-title: J. Manuf. Process.
– volume: 197
  start-page: 3742
  year: 2008
  end-page: 3750
  ident: b6
  article-title: Reliability analysis of structures using artificial neural network based genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 35
  start-page: 205
  year: 2010
  end-page: 217
  ident: b22
  article-title: The estimation of rock mass deformation modulus using regression and artificial neural networks analysis
  publication-title: Arabic J. Sci. Eng.
– volume: 6
  start-page: 911
  year: 1995
  end-page: 917
  ident: b11
  article-title: Universal approximation to non-linear operators by neural networks with arbitrary activation functions and its application to dynamical systems
  publication-title: IEEE Trans. Neural Netw.
– volume: 14
  start-page: 3104
  year: 2011
  end-page: 3110
  ident: b27
  article-title: Application of radial basis neural network on damage assessment of structures
  publication-title: Procedia Eng.
– volume: 61
  start-page: 85
  year: 2015
  end-page: 117
  ident: b36
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
– year: 2015
  ident: b45
  article-title: Neural networks and deep learning
– year: 2014
  ident: b46
  article-title: Speeding up convolutional neural networks with low rank expansions
– volume: 345
  start-page: 363
  year: 2019
  end-page: 381
  ident: b9
  article-title: Smart finite elements: A novel machine learning application
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 9
  start-page: 237
  year: 2009
  end-page: 244
  ident: b13
  article-title: Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type aisi 304l during hot torsion
  publication-title: Appl. Soft Comput.
– volume: 1
  start-page: 434
  year: 2019
  end-page: 442
  ident: b33
  article-title: In situ training of feed-forward and recurrent convolutional memristor networks
  publication-title: Nat. Mach. Intell.
– volume: 6
  start-page: 338
  year: 2014
  end-page: 347
  ident: b17
  article-title: New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength
  publication-title: J. Rock Mech. Geotech. Eng.
– volume: 355
  start-page: 82
  year: 2019
  end-page: 92
  ident: b31
  article-title: Three convolutional neural network models for facial expression recognition in the wild
  publication-title: Neurocomputing
– volume: 47
  start-page: 993
  year: 2018
  end-page: 1009
  ident: b44
  article-title: Evolutionary multi-task learning for modularknowledge representation in neural networks
  publication-title: Neural Process. Lett.
– volume: 73
  start-page: 42
  year: 2018
  end-page: 53
  ident: b26
  article-title: A sequential surrogate method for reliability analysis based on radial basis function
  publication-title: Struct. Saf.
– year: 2018
  ident: b24
  article-title: Implementation of multilayer perceptron (mlp) and radial basis function (rbf) neural networks to predict solution gas-oil ratio of crude oil systems
  publication-title: Petroleum
– start-page: 111
  year: 2017
  end-page: 115
  ident: b29
  article-title: Adaptive radial basis function neural network based tracking control of van der pol oscillator
  publication-title: 2017 International Conference on Communication Technologies (ComTech), Rawalpindi
– volume: 43
  start-page: 3255
  year: 2006
  end-page: 3291
  ident: b19
  article-title: Structural reliability analysis for implicit performance function using radial basis function network
  publication-title: Int. J. Solids Struct.
– volume: 502
  start-page: 311
  year: 2018
  end-page: 322
  ident: b8
  article-title: Reactor pressure vessel embrittlement: Insights from neural network modelling
  publication-title: J. Nucl. Mater.
– volume: 9
  start-page: 1
  year: 2016
  end-page: 13
  ident: b1
  article-title: Modeling the effects of cu content and deformation variables on the hight-temperature flow behavior of dilute al-fe-si alloys using an artificial naural network
  publication-title: Materials
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.
– volume: 198
  start-page: 1785
  year: 2009
  ident: 10.1016/j.cma.2020.112989_b10
  article-title: Artificial neural networks in numerical modeling of composites
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.12.036
– year: 2018
  ident: 10.1016/j.cma.2020.112989_b24
  article-title: Implementation of multilayer perceptron (mlp) and radial basis function (rbf) neural networks to predict solution gas-oil ratio of crude oil systems
  publication-title: Petroleum
– volume: 61
  start-page: 85
  year: 2015
  ident: 10.1016/j.cma.2020.112989_b36
  article-title: Deep learning in neural networks: An overview
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2014.09.003
– volume: 6
  start-page: 338
  year: 2014
  ident: 10.1016/j.cma.2020.112989_b17
  article-title: New artificial neural networks for true triaxial stress state analysis and demonstration of intermediate principal stress effects on intact rock strength
  publication-title: J. Rock Mech. Geotech. Eng.
  doi: 10.1016/j.jrmge.2014.04.008
– volume: 30
  start-page: 63
  year: 2017
  ident: 10.1016/j.cma.2020.112989_b7
  article-title: Effect of welding parameters on tensile strength of ultrasonic spot welded joints of aluminum to steel – By experimentation and artificial neural network
  publication-title: J. Manuf. Process.
  doi: 10.1016/j.jmapro.2017.08.009
– year: 2007
  ident: 10.1016/j.cma.2020.112989_b42
– volume: 73
  start-page: 42
  year: 2018
  ident: 10.1016/j.cma.2020.112989_b26
  article-title: A sequential surrogate method for reliability analysis based on radial basis function
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2018.02.005
– volume: 197
  start-page: 3742
  year: 2008
  ident: 10.1016/j.cma.2020.112989_b6
  article-title: Reliability analysis of structures using artificial neural network based genetic algorithms
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2008.02.026
– volume: 15
  start-page: 299
  issue: 4
  year: 2001
  ident: 10.1016/j.cma.2020.112989_b16
  article-title: Sensitivity analysis of neural networks in spool fabrication productivity studies
  publication-title: J. Comput. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2001)15:4(299)
– year: 2008
  ident: 10.1016/j.cma.2020.112989_b12
  article-title: A comparative study on constructive and non- constructive supervised learning algorithms for artificial neural networks
– volume: 82
  start-page: 2333
  year: 2004
  ident: 10.1016/j.cma.2020.112989_b18
  article-title: Rbf neural networks for the prediction of building interference effects
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2004.05.014
– volume: 9
  start-page: 237
  year: 2009
  ident: 10.1016/j.cma.2020.112989_b13
  article-title: Artificial neural network modeling to evaluate and predict the deformation behavior of stainless steel type aisi 304l during hot torsion
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2008.03.016
– volume: 55
  start-page: 286
  year: 2012
  ident: 10.1016/j.cma.2020.112989_b28
  article-title: An enhanced clustering function approximation technique for a radial basis function neural network
  publication-title: Math. Comput. Modelling
  doi: 10.1016/j.mcm.2011.07.010
– volume: 79
  start-page: 2261
  year: 2001
  ident: 10.1016/j.cma.2020.112989_b4
  article-title: Neural networks in mechanics of structures and materials - new results and prospects of applications
  publication-title: Comput. Struct.
  doi: 10.1016/S0045-7949(01)00083-9
– volume: 11
  start-page: 110
  year: 2015
  ident: 10.1016/j.cma.2020.112989_b38
  article-title: Determination of penetration depth at high velocity impact using finite element method and artificial neural network tools
  publication-title: Def. Technol.
  doi: 10.1016/j.dt.2014.12.001
– volume: 41
  start-page: 627
  year: 2010
  ident: 10.1016/j.cma.2020.112989_b21
  article-title: Artificial neural network approaches for prediction of backwater through arched bridge constrictions
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2009.12.003
– volume: 2013, ID 574914
  start-page: 1
  year: 2013
  ident: 10.1016/j.cma.2020.112989_b15
  article-title: Sensitivity analysis of the artificial neural network outputs in friction stir lap joining of aluminium to brass
  publication-title: Adv. Mater. Sci. Eng.
  doi: 10.1155/2013/574914
– volume: 67
  start-page: 1816
  year: 2014
  ident: 10.1016/j.cma.2020.112989_b25
  article-title: Overlapping radial basis function interpolants for spectrally accurate approximation of functions of eigenvalues with application to buckling of composite plates
  publication-title: Comput. Math. Appl.
  doi: 10.1016/j.camwa.2014.03.020
– year: 2015
  ident: 10.1016/j.cma.2020.112989_b45
– volume: 22
  start-page: 449
  issue: 2
  year: 2012
  ident: 10.1016/j.cma.2020.112989_b47
  article-title: Backpropagation generalized delta rule for the selective attention sigma-if artificial neural network
  publication-title: Int. J. Appl. Math. Comput. Sci.
  doi: 10.2478/v10006-012-0034-5
– year: 1997
  ident: 10.1016/j.cma.2020.112989_b43
– volume: 9
  start-page: 1
  issue: 536
  year: 2016
  ident: 10.1016/j.cma.2020.112989_b1
  article-title: Modeling the effects of cu content and deformation variables on the hight-temperature flow behavior of dilute al-fe-si alloys using an artificial naural network
  publication-title: Materials
– volume: 131
  start-page: 102
  year: 2018
  ident: 10.1016/j.cma.2020.112989_b40
  article-title: Artificial neural networks and intelligent finite elements in non-linear structural mechanics
  publication-title: Thin-Walled Struct.
  doi: 10.1016/j.tws.2018.06.035
– volume: 191
  start-page: 989
  year: 2001
  ident: 10.1016/j.cma.2020.112989_b3
  article-title: Total solution for structural mechanics problems
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(01)00314-0
– volume: 195
  start-page: 215
  year: 1968
  ident: 10.1016/j.cma.2020.112989_b34
  article-title: Receptive fields and functional architecture of monkey striate cortex
  publication-title: J. Physiol.
  doi: 10.1113/jphysiol.1968.sp008455
– volume: 47
  start-page: 993
  year: 2018
  ident: 10.1016/j.cma.2020.112989_b44
  article-title: Evolutionary multi-task learning for modularknowledge representation in neural networks
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-017-9718-z
– volume: 1
  start-page: 53
  issue: 1
  year: 2009
  ident: 10.1016/j.cma.2020.112989_b14
  article-title: Applications of artificial intelligence and data mining techniques in soil modeling
  publication-title: Geomech. Eng.
  doi: 10.12989/gae.2009.1.1.053
– start-page: 111
  year: 2017
  ident: 10.1016/j.cma.2020.112989_b29
  article-title: Adaptive radial basis function neural network based tracking control of van der pol oscillator
– volume: 345
  start-page: 363
  year: 2019
  ident: 10.1016/j.cma.2020.112989_b9
  article-title: Smart finite elements: A novel machine learning application
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2018.10.046
– volume: 355
  start-page: 82
  year: 2019
  ident: 10.1016/j.cma.2020.112989_b31
  article-title: Three convolutional neural network models for facial expression recognition in the wild
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.05.005
– volume: 41
  start-page: 6813
  year: 2004
  ident: 10.1016/j.cma.2020.112989_b37
  article-title: Evolution of plastic zones in dynamically loaded plates using different elastic-viscoplastic laws
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2004.05.060
– volume: 52
  start-page: 78
  issue: A
  year: 2015
  ident: 10.1016/j.cma.2020.112989_b2
  article-title: Review and application of artificial neural networks models in reliability analysis of steel structures
  publication-title: Struct. Saf.
  doi: 10.1016/j.strusafe.2014.09.002
– volume: 1
  start-page: 434
  year: 2019
  ident: 10.1016/j.cma.2020.112989_b33
  article-title: In situ training of feed-forward and recurrent convolutional memristor networks
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-019-0089-1
– ident: 10.1016/j.cma.2020.112989_b35
  doi: 10.1109/CVPR.2016.90
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.cma.2020.112989_b48
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 502
  start-page: 311
  year: 2018
  ident: 10.1016/j.cma.2020.112989_b8
  article-title: Reactor pressure vessel embrittlement: Insights from neural network modelling
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2018.02.027
– year: 2014
  ident: 10.1016/j.cma.2020.112989_b46
– volume: 3
  start-page: 336
  year: 2018
  ident: 10.1016/j.cma.2020.112989_b23
  article-title: Estimation of rock uniaxial compressive strength for an iranian carbonate oil reservoir: Modeling vs. artificial neural network application
  publication-title: Pet. Res.
– volume: 6
  start-page: 911
  issue: 4
  year: 1995
  ident: 10.1016/j.cma.2020.112989_b11
  article-title: Universal approximation to non-linear operators by neural networks with arbitrary activation functions and its application to dynamical systems
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.392253
– volume: 28
  start-page: 218
  year: 2012
  ident: 10.1016/j.cma.2020.112989_b20
  article-title: Prediction of tunnel convergence using artificial neural networks
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2011.11.002
– volume: 14
  start-page: 3104
  year: 2011
  ident: 10.1016/j.cma.2020.112989_b27
  article-title: Application of radial basis neural network on damage assessment of structures
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2011.07.390
– volume: 43
  start-page: 3255
  year: 2006
  ident: 10.1016/j.cma.2020.112989_b19
  article-title: Structural reliability analysis for implicit performance function using radial basis function network
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/j.ijsolstr.2005.05.055
– volume: 21
  start-page: 591
  issue: 5
  year: 2015
  ident: 10.1016/j.cma.2020.112989_b30
  article-title: Damage diagnosis in beam-like structures by artificial neural networks
  publication-title: J. Civ. Eng. Manage.
  doi: 10.3846/13923730.2014.890663
– volume: 152
  start-page: 843
  year: 2017
  ident: 10.1016/j.cma.2020.112989_b5
  article-title: Artificial neural networks prediction of buckling load of thin cylindrical shells under axial compression
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2017.09.016
– volume: 60
  start-page: 97
  year: 2017
  ident: 10.1016/j.cma.2020.112989_b39
  article-title: Metaheuristic design of feedforward naural networks: A review of two decades of research
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2017.01.013
– volume: 1
  start-page: 173
  issue: 49
  year: 2007
  ident: 10.1016/j.cma.2020.112989_b41
  article-title: Function approximation using artificial neural networks
  publication-title: Int. J. Syst. Appl. Eng. Dev.
– volume: 35
  start-page: 205
  issue: 1A
  year: 2010
  ident: 10.1016/j.cma.2020.112989_b22
  article-title: The estimation of rock mass deformation modulus using regression and artificial neural networks analysis
  publication-title: Arabic J. Sci. Eng.
– volume: 145
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.cma.2020.112989_b32
  article-title: Deep convolutional neural networks for structural dynamic response estimation and system identification
  publication-title: J. Eng. Mech.
SSID ssj0000812
Score 2.539454
Snippet The aim of the present study is to develop a series of artificial neural networks (ANN) and to determine, by comparison to experiments, which type of neural...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 112989
SubjectTerms Artificial neural network
Artificial neural networks
Convolutional networks
Modular structures
Neural networks
Numerical prediction
Radial basis function
Radial basis functions
Shock tube experiments
Structural mechanics
Topology
Title Artificial neural networks in structural dynamics: A new modular radial basis function approach vs. convolutional and feedforward topologies
URI https://dx.doi.org/10.1016/j.cma.2020.112989
https://www.proquest.com/docview/2438222076
Volume 364
WOSCitedRecordID wos000527574600015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9MwGLbKxoEd-BggBgP5gDgwZUodO064FdTxoVI4dKg3y0kcqaNkXdJ1E7-B_8Xf4vVXk01QwYFLWrlJmuZ5aj923vd5EXqe8bxPM1oGIEfDgBIaBZmiccBVmsuSKZZlxsR1xMfjZDpNP_d6P30uzGrOqyq5vEwX_xVqaAOwdersP8C9Pik0wHsAHbYAO2z_CvhBbcJ_9Eq4Nqs0LybU20S-Wr9Y01zYYvSNTU4Hea3L4pio1FqadBIY4WbNgR75bDlxZz9-sGoOTbS6-xnObaCEcRAUsI7CBUFrSi_4AEXvhOAqSLiy1eZ6pFPB35ROQfaW0ap1SVwvAS1Py9KGFHwExM7Xc4G3cMlf5dyK4PPlxazNPZKuNIxW59_btffaJyq9VnVVdNc9SNjGZ9nFuHVCzpdu_05ZAJqHdfv3KKadHrr_23HDLmGcHObGi4qYzKrU1ja66tE9_iSOjkcjMRlOJy8WZ4EuX6Yf87taLjfQNuEshe51e_B-OP3QioKkb43r3QX6B-wm1PDat_5JIl0TC0YBTe6i227qggeWcvdQT1W76I6bxmA3SDS7aKfjcXkf_Wj5iC0fsecjnlW45SP2fHyFB7DLBXZsxJaN2LARezZiz0YMbMRX2IiBQbjDRtyy8QE6PhpO3rwLXAmQII8IWwYkj2iRMKnzfFkOal314yxKYM7NIrjPMS9SSgpaFDSUpFDQu2QFjcJcslKmGQwwD9FWdVqpRwhHIMOIjDMidXAA41KFlOdcSgaSVapyD4X-rovc-ePrMi1z4QMhTwQAJTRQwgK1h16uD1lYc5hNO1MPpXDq1qpWASTcdNi-h124XqYRRD--JyTk8ePNHz9Bt9r_zj7aAkzVU3QzXy1nTf3MkfQXOlHWFQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Artificial+neural+networks+in+structural+dynamics%3A+A+new+modular+radial+basis+function+approach+vs.+convolutional+and+feedforward+topologies&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Stoffel%2C+Marcus&rft.au=Gulakala%2C+Rutwik&rft.au=Bamer%2C+Franz&rft.au=Markert%2C+Bernd&rft.date=2020-06-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=364&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2020.112989&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon