Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization
Abstract Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualizati...
Saved in:
| Published in: | Briefings in bioinformatics Vol. 23; no. 4 |
|---|---|
| Main Authors: | , , , , , , , , , , , , , , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Oxford
Oxford University Press
18.07.2022
Oxford Publishing Limited (England) |
| Subjects: | |
| ISSN: | 1467-5463, 1477-4054, 1477-4054 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Abstract
Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualization of biomedical data, particularly high-quality and publication-ready graphics that allow easy scaling and updatability according to user demands. Therefore, we propose a community-driven modern web service, Hiplot (https://hiplot.org), with concise and top-quality data visualization applications for the life sciences and biomedical fields. This web service permits users to conveniently and interactively complete a few specialized visualization tasks that previously could only be conducted by senior bioinformatics or biostatistics researchers. It covers most of the daily demands of biomedical researchers with its equipped 240+ biomedical data visualization functions, involving basic statistics, multi-omics, regression, clustering, dimensional reduction, meta-analysis, survival analysis, risk modelling, etc. Moreover, to improve the efficiency in use and development of plugins, we introduced some core advantages on the client-/server-side of the website, such as spreadsheet-based data importing, cross-platform command-line controller (Hctl), multi-user plumber workers, JavaScript Object Notation-based plugin system, easy data/parameters, results and errors reproduction and real-time updates mode. Meanwhile, using demo/real data sets and benchmark tests, we explored statistical parameters, cancer genomic landscapes, disease risk factors and the performance of website based on selected native plugins. The statistics of visits and user numbers could further reflect the potential impact of this web service on relevant fields. Thus, researchers devoted to life and data sciences would benefit from this emerging and free web service. |
|---|---|
| AbstractList | Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualization of biomedical data, particularly high-quality and publication-ready graphics that allow easy scaling and updatability according to user demands. Therefore, we propose a community-driven modern web service, Hiplot (https://hiplot.org), with concise and top-quality data visualization applications for the life sciences and biomedical fields. This web service permits users to conveniently and interactively complete a few specialized visualization tasks that previously could only be conducted by senior bioinformatics or biostatistics researchers. It covers most of the daily demands of biomedical researchers with its equipped 240+ biomedical data visualization functions, involving basic statistics, multi-omics, regression, clustering, dimensional reduction, meta-analysis, survival analysis, risk modelling, etc. Moreover, to improve the efficiency in use and development of plugins, we introduced some core advantages on the client-/server-side of the website, such as spreadsheet-based data importing, cross-platform command-line controller (Hctl), multi-user plumber workers, JavaScript Object Notation-based plugin system, easy data/parameters, results and errors reproduction and real-time updates mode. Meanwhile, using demo/real data sets and benchmark tests, we explored statistical parameters, cancer genomic landscapes, disease risk factors and the performance of website based on selected native plugins. The statistics of visits and user numbers could further reflect the potential impact of this web service on relevant fields. Thus, researchers devoted to life and data sciences would benefit from this emerging and free web service.Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualization of biomedical data, particularly high-quality and publication-ready graphics that allow easy scaling and updatability according to user demands. Therefore, we propose a community-driven modern web service, Hiplot (https://hiplot.org), with concise and top-quality data visualization applications for the life sciences and biomedical fields. This web service permits users to conveniently and interactively complete a few specialized visualization tasks that previously could only be conducted by senior bioinformatics or biostatistics researchers. It covers most of the daily demands of biomedical researchers with its equipped 240+ biomedical data visualization functions, involving basic statistics, multi-omics, regression, clustering, dimensional reduction, meta-analysis, survival analysis, risk modelling, etc. Moreover, to improve the efficiency in use and development of plugins, we introduced some core advantages on the client-/server-side of the website, such as spreadsheet-based data importing, cross-platform command-line controller (Hctl), multi-user plumber workers, JavaScript Object Notation-based plugin system, easy data/parameters, results and errors reproduction and real-time updates mode. Meanwhile, using demo/real data sets and benchmark tests, we explored statistical parameters, cancer genomic landscapes, disease risk factors and the performance of website based on selected native plugins. The statistics of visits and user numbers could further reflect the potential impact of this web service on relevant fields. Thus, researchers devoted to life and data sciences would benefit from this emerging and free web service. Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualization of biomedical data, particularly high-quality and publication-ready graphics that allow easy scaling and updatability according to user demands. Therefore, we propose a community-driven modern web service, Hiplot (https://hiplot.org), with concise and top-quality data visualization applications for the life sciences and biomedical fields. This web service permits users to conveniently and interactively complete a few specialized visualization tasks that previously could only be conducted by senior bioinformatics or biostatistics researchers. It covers most of the daily demands of biomedical researchers with its equipped 240+ biomedical data visualization functions, involving basic statistics, multi-omics, regression, clustering, dimensional reduction, meta-analysis, survival analysis, risk modelling, etc. Moreover, to improve the efficiency in use and development of plugins, we introduced some core advantages on the client-/server-side of the website, such as spreadsheet-based data importing, cross-platform command-line controller (Hctl), multi-user plumber workers, JavaScript Object Notation-based plugin system, easy data/parameters, results and errors reproduction and real-time updates mode. Meanwhile, using demo/real data sets and benchmark tests, we explored statistical parameters, cancer genomic landscapes, disease risk factors and the performance of website based on selected native plugins. The statistics of visits and user numbers could further reflect the potential impact of this web service on relevant fields. Thus, researchers devoted to life and data sciences would benefit from this emerging and free web service. Abstract Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and visualization-based data mining techniques. However, the scientific community still lacks an easy-to-use web service for the comprehensive visualization of biomedical data, particularly high-quality and publication-ready graphics that allow easy scaling and updatability according to user demands. Therefore, we propose a community-driven modern web service, Hiplot (https://hiplot.org), with concise and top-quality data visualization applications for the life sciences and biomedical fields. This web service permits users to conveniently and interactively complete a few specialized visualization tasks that previously could only be conducted by senior bioinformatics or biostatistics researchers. It covers most of the daily demands of biomedical researchers with its equipped 240+ biomedical data visualization functions, involving basic statistics, multi-omics, regression, clustering, dimensional reduction, meta-analysis, survival analysis, risk modelling, etc. Moreover, to improve the efficiency in use and development of plugins, we introduced some core advantages on the client-/server-side of the website, such as spreadsheet-based data importing, cross-platform command-line controller (Hctl), multi-user plumber workers, JavaScript Object Notation-based plugin system, easy data/parameters, results and errors reproduction and real-time updates mode. Meanwhile, using demo/real data sets and benchmark tests, we explored statistical parameters, cancer genomic landscapes, disease risk factors and the performance of website based on selected native plugins. The statistics of visits and user numbers could further reflect the potential impact of this web service on relevant fields. Thus, researchers devoted to life and data sciences would benefit from this emerging and free web service. |
| Author | Wang, Shixiang Duan, Songqi Yang, Zengzeng Wang, Wei Zeng, Jianming Si, Chenchen Wang, Mingjie Miao, Benben Xu, Houshi Cheng, Wenyan Wu, Renxie Chen, Zhu Zeng, Hailuan Shen, Yang Zhao, Fei Lou, Jiacheng Li, Jianfeng Bao, Zhiwei Liu, Xue-Song Chen, Saijuan Dong, Wei |
| Author_xml | – sequence: 1 givenname: Jianfeng orcidid: 0000-0003-2349-208X surname: Li fullname: Li, Jianfeng email: liuxs@shanghaitech.edu.cn – sequence: 2 givenname: Benben orcidid: 0000-0002-7307-1331 surname: Miao fullname: Miao, Benben email: benben.miao@outlook.com – sequence: 3 givenname: Shixiang orcidid: 0000-0001-9855-7357 surname: Wang fullname: Wang, Shixiang email: wangshx@shanghaitech.edu.cn – sequence: 4 givenname: Wei surname: Dong fullname: Dong, Wei email: dongw26@mail2.sysu.edu.cn – sequence: 5 givenname: Houshi surname: Xu fullname: Xu, Houshi email: houshi@sjtu.edu.cn – sequence: 6 givenname: Chenchen surname: Si fullname: Si, Chenchen email: sichenchencn@126.com – sequence: 7 givenname: Wei surname: Wang fullname: Wang, Wei email: wangweiocean@163.com – sequence: 8 givenname: Songqi orcidid: 0000-0002-0822-5883 surname: Duan fullname: Duan, Songqi email: songqi.duan@outlook.com – sequence: 9 givenname: Jiacheng surname: Lou fullname: Lou, Jiacheng email: loujiacheng1986@foxmail.com – sequence: 10 givenname: Zhiwei surname: Bao fullname: Bao, Zhiwei email: zwbao1996@zju.edu.cn – sequence: 11 givenname: Hailuan surname: Zeng fullname: Zeng, Hailuan email: happyhellen0524@foxmail.com – sequence: 12 givenname: Zengzeng surname: Yang fullname: Yang, Zengzeng email: yang_shen@sjtu.edu.cn – sequence: 13 givenname: Wenyan surname: Cheng fullname: Cheng, Wenyan email: cheng_wenyan@126.com – sequence: 14 givenname: Fei surname: Zhao fullname: Zhao, Fei email: zhaofei920810@gmail.com – sequence: 15 givenname: Jianming surname: Zeng fullname: Zeng, Jianming email: jmzeng1314@163.com – sequence: 16 givenname: Xue-Song surname: Liu fullname: Liu, Xue-Song email: liuxs@shanghaitech.edu.cn – sequence: 17 givenname: Renxie orcidid: 0000-0002-4922-1707 surname: Wu fullname: Wu, Renxie email: wurx@gdou.edu.cn – sequence: 18 givenname: Yang surname: Shen fullname: Shen, Yang email: yang_shen@sjtu.edu.cn – sequence: 19 givenname: Zhu surname: Chen fullname: Chen, Zhu email: zchen@stn.sh.cn – sequence: 20 givenname: Saijuan surname: Chen fullname: Chen, Saijuan email: zchen@stn.sh.cn – sequence: 21 givenname: Mingjie surname: Wang fullname: Wang, Mingjie email: wmj12847@rjh.com.cn |
| BookMark | eNp90UtLAzEQB_AgFWyrJ79AQBBBVvPY3XS9SfEFghc9L3lMNGW7WZNspX5617angp7y4DfDDP8JGrW-BYROKbmipOLXyqlrpaRmJT1AY5oLkeWkyEe_91JkRV7yIzSJcUEII2JGx6h7dF3j0w2WWPtlF-AD2uhWgGVrMMi4zpLP-gj4CxSOEFZOA7Y-YOV9TK59x12vGqdlcr7NAkizxsr5JZjhr8FGJolXLvaycd8bc4wOrWwinOzOKXq7v3udP2bPLw9P89vnTHNWpIxJSk1BhAWrxMwSaq3lphRUKAuVsYwRq0VRalspYzQtpSotm4kKrB3eik_RxbZvF_xnDzHVSxc1NI1swfexZuWsIJxzlg_0bI8ufB_aYbpBVVVRMU7IoOhW6eBjDGBr7dJmpRSka2pK6t8M6iGDepfBUHO5V9MFt5Rh_Yc-32rfd__CH8DOm90 |
| CitedBy_id | crossref_primary_10_1016_j_neulet_2023_137538 crossref_primary_10_1016_j_cpt_2025_05_002 crossref_primary_10_1038_s41598_022_20362_w crossref_primary_10_1002_imt2_175 crossref_primary_10_1111_tpj_16920 crossref_primary_10_1186_s12877_025_05829_5 crossref_primary_10_1007_s10620_025_09185_7 crossref_primary_10_1016_j_lfs_2024_122527 crossref_primary_10_1128_msystems_00237_23 crossref_primary_10_1002_med4_34 crossref_primary_10_1016_j_bbadis_2024_167214 crossref_primary_10_1038_s42003_025_07925_z crossref_primary_10_3389_fonc_2022_1055376 crossref_primary_10_1128_msystems_00842_23 crossref_primary_10_3390_ani15030387 crossref_primary_10_1002_advs_202417163 crossref_primary_10_1007_s11274_025_04380_0 crossref_primary_10_1002_imt2_70045 crossref_primary_10_3390_ijms232415701 crossref_primary_10_1017_S0031182025100231 crossref_primary_10_1093_plphys_kiae353 crossref_primary_10_1016_j_bcp_2025_117088 crossref_primary_10_1016_j_ijbiomac_2023_125725 crossref_primary_10_3390_plants11223031 crossref_primary_10_1098_rsob_240402 crossref_primary_10_1038_s41598_025_97950_z crossref_primary_10_3389_fphar_2023_1078205 crossref_primary_10_1007_s00428_025_04156_9 crossref_primary_10_1016_j_heliyon_2023_e23830 crossref_primary_10_1093_treephys_tpae066 crossref_primary_10_1093_procel_pwaf003 crossref_primary_10_1186_s41065_025_00427_2 crossref_primary_10_3390_ijms26167791 crossref_primary_10_1186_s12870_025_06543_5 crossref_primary_10_1007_s10735_024_10258_6 crossref_primary_10_3389_fimmu_2024_1460422 crossref_primary_10_3389_fonc_2025_1542740 crossref_primary_10_1093_hr_uhad195 crossref_primary_10_1002_imm3_70005 crossref_primary_10_3390_horticulturae8121159 crossref_primary_10_1038_s41419_022_05372_w crossref_primary_10_1016_j_ygeno_2025_110986 crossref_primary_10_1186_s13073_025_01515_8 crossref_primary_10_3390_ijms241411783 crossref_primary_10_1038_s41598_025_96456_y crossref_primary_10_1016_j_intimp_2024_114008 crossref_primary_10_1177_1721727X231223578 crossref_primary_10_1021_acs_jafc_4c10815 crossref_primary_10_1016_j_compbiomed_2024_108206 crossref_primary_10_1038_s41586_023_06983_9 crossref_primary_10_3389_fgene_2024_1380828 crossref_primary_10_1016_j_trim_2025_102224 crossref_primary_10_1155_2023_5652276 crossref_primary_10_1186_s40249_023_01085_0 crossref_primary_10_1038_s41419_025_07345_1 crossref_primary_10_3390_ijms26062757 crossref_primary_10_1155_2024_6908968 crossref_primary_10_3389_fendo_2022_995972 crossref_primary_10_1016_j_gene_2023_147187 crossref_primary_10_4103_ETMJ_ETMJ_D_25_00027 crossref_primary_10_1016_j_csbj_2024_11_005 crossref_primary_10_1016_j_scitotenv_2025_178626 crossref_primary_10_32604_cmc_2023_039062 crossref_primary_10_1093_jacamr_dlaf017 crossref_primary_10_1073_pnas_2319679121 crossref_primary_10_1093_bib_bbaf220 crossref_primary_10_3390_ijms24076511 crossref_primary_10_3390_ijms252212062 crossref_primary_10_1038_s42003_023_04564_0 crossref_primary_10_3390_ijms24108599 crossref_primary_10_1007_s43657_025_00223_y crossref_primary_10_3390_ijms26125693 crossref_primary_10_1016_j_cbi_2022_110171 crossref_primary_10_1016_j_intimp_2024_113421 crossref_primary_10_1128_aem_01559_22 crossref_primary_10_3390_vetsci10020107 crossref_primary_10_1007_s10238_025_01780_2 crossref_primary_10_1038_s41598_025_98038_4 crossref_primary_10_1186_s12870_024_05306_y crossref_primary_10_1002_mco2_315 crossref_primary_10_1002_nep3_70015 crossref_primary_10_3389_fchem_2025_1638785 crossref_primary_10_1007_s00122_023_04429_4 crossref_primary_10_3390_cancers14174226 crossref_primary_10_3390_ijms242015362 crossref_primary_10_3390_cimb46110770 crossref_primary_10_2174_0113816128293601240523063527 crossref_primary_10_3389_fimmu_2023_1124443 crossref_primary_10_1016_j_ijbiomac_2025_146177 crossref_primary_10_1080_07853890_2023_2264325 crossref_primary_10_1099_mgen_0_001107 crossref_primary_10_1016_j_intimp_2024_113810 crossref_primary_10_1096_fj_202302523R crossref_primary_10_1016_j_gmg_2025_100065 crossref_primary_10_3389_fphar_2022_1010785 crossref_primary_10_1016_j_scitotenv_2024_177980 crossref_primary_10_3389_fonc_2025_1604609 crossref_primary_10_3390_horticulturae9030380 crossref_primary_10_1002_ijc_34617 crossref_primary_10_1002_imt2_137 crossref_primary_10_3389_fimmu_2023_1136146 crossref_primary_10_1210_endocr_bqaf081 crossref_primary_10_1128_msystems_00884_24 crossref_primary_10_1016_j_trim_2024_102082 crossref_primary_10_1073_pnas_2211429119 crossref_primary_10_3390_biomedicines13051035 crossref_primary_10_1016_j_bbamcr_2024_119736 crossref_primary_10_1016_j_bbrc_2024_149790 crossref_primary_10_1080_0886022X_2023_2257801 crossref_primary_10_1038_s41420_022_01269_x crossref_primary_10_1186_s12967_025_06080_7 crossref_primary_10_1016_j_cellsig_2025_111927 crossref_primary_10_1016_j_foodchem_2024_141705 crossref_primary_10_1093_ijnp_pyaf012 crossref_primary_10_1128_spectrum_01210_22 crossref_primary_10_1007_s11427_024_2701_2 crossref_primary_10_3390_ijms25179383 crossref_primary_10_1080_0886022X_2025_2532856 crossref_primary_10_3390_microorganisms12122529 crossref_primary_10_1016_j_phymed_2024_156011 crossref_primary_10_1002_pdi3_91 crossref_primary_10_1093_hr_uhad273 crossref_primary_10_1007_s00210_025_04430_2 crossref_primary_10_1016_j_aei_2024_102565 crossref_primary_10_1155_2023_5524200 crossref_primary_10_1007_s10495_024_01960_7 crossref_primary_10_1016_j_jhazmat_2023_131125 crossref_primary_10_3389_fnagi_2022_1056312 crossref_primary_10_3389_fmars_2023_1232211 crossref_primary_10_1016_j_jprot_2024_105263 crossref_primary_10_1038_s41467_025_58490_2 crossref_primary_10_1042_CS20230818 crossref_primary_10_3390_biom14010120 crossref_primary_10_1016_j_cmet_2023_03_013 crossref_primary_10_1186_s13059_025_03669_5 crossref_primary_10_12998_wjcc_v11_i23_5504 crossref_primary_10_3389_fphar_2025_1551531 crossref_primary_10_1186_s13046_024_03070_3 crossref_primary_10_1016_j_gene_2024_148711 crossref_primary_10_1016_j_omtn_2023_102075 crossref_primary_10_1002_advs_202301428 crossref_primary_10_1097_MD_0000000000036118 crossref_primary_10_1016_j_intimp_2023_110324 crossref_primary_10_2147_JIR_S486412 crossref_primary_10_1002_1878_0261_70022 crossref_primary_10_1186_s12864_023_09499_8 crossref_primary_10_3390_ijms251910404 crossref_primary_10_1007_s13365_025_01268_5 crossref_primary_10_1016_j_jid_2025_04_006 crossref_primary_10_3390_insects15060455 crossref_primary_10_1016_j_catena_2024_108604 crossref_primary_10_3390_cimb46080473 crossref_primary_10_1038_s41598_024_63470_5 crossref_primary_10_3389_fpls_2023_1130047 crossref_primary_10_1016_j_cpb_2025_100477 crossref_primary_10_1016_j_bone_2024_117269 crossref_primary_10_1016_j_envres_2024_120373 crossref_primary_10_3389_fphar_2023_1304996 crossref_primary_10_59717_j_xinn_life_2025_100157 crossref_primary_10_1016_j_trim_2024_102101 crossref_primary_10_1007_s40242_025_5068_y crossref_primary_10_1097_MD_0000000000039352 crossref_primary_10_1007_s13258_024_01591_x crossref_primary_10_1016_j_trim_2024_102066 crossref_primary_10_1096_fj_202402165RR crossref_primary_10_1186_s12864_023_09635_4 crossref_primary_10_1073_pnas_2319366121 crossref_primary_10_1016_j_molp_2024_04_012 crossref_primary_10_1002_jor_25994 crossref_primary_10_1002_arch_21963 crossref_primary_10_1097_MD_0000000000038705 crossref_primary_10_1186_s40104_025_01156_2 crossref_primary_10_1016_j_heliyon_2024_e28405 crossref_primary_10_3389_fimmu_2024_1456392 crossref_primary_10_3390_cells11193130 crossref_primary_10_1016_j_bbrc_2025_152507 crossref_primary_10_1002_ptr_8315 crossref_primary_10_1016_j_biocel_2024_106537 crossref_primary_10_1186_s12864_024_10074_y crossref_primary_10_1016_j_jia_2024_03_027 |
| Cites_doi | 10.1093/bioinformatics/btab561 10.1093/nar/gkaa1146 10.1038/nmeth.3337 10.1101/gr.250357.119 10.1158/0008-5472.CAN-17-0307 10.1038/nature19949 10.1093/nar/gkaa434 10.7554/eLife.26476 10.1002/imt2.5 10.1093/bioinformatics/btw313 10.1186/s13059-016-1070-5 10.1038/nmeth.1436 10.1038/nbt.4233 10.1158/2159-8290.CD-12-0095 10.1038/s41587-020-0546-8 10.1038/nbt.3820 10.1186/s12859-020-03577-4 10.1093/bioinformatics/btz363 10.1146/annurev-biodatasci-080917-013424 10.1186/s13073-019-0638-6 10.1038/ng.3466 10.1073/pnas.1814397115 10.1186/s13059-016-1114-x 10.1002/0471142727.mb1910s89 10.1038/nmeth.1422 10.1186/s13059-017-1349-1 10.1016/j.ccell.2020.12.011 10.1016/j.ccell.2020.09.002 10.1136/bmj.j573 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com 2022 – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com – notice: The Author(s) 2022. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com. |
| CorporateAuthor | Hiplot Consortium |
| CorporateAuthor_xml | – name: Hiplot Consortium |
| DBID | AAYXX CITATION 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
| DOI | 10.1093/bib/bbac261 |
| DatabaseName | CrossRef Biotechnology Research Abstracts Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection ProQuest Health & Medical Complete (Alumni) Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef Genetics Abstracts Biotechnology Research Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Health & Medical Complete (Alumni) Engineering Research Database Advanced Technologies Database with Aerospace Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic CrossRef Genetics Abstracts |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1477-4054 |
| ExternalDocumentID | 10_1093_bib_bbac261 10.1093/bib/bbac261 |
| GroupedDBID | --- -E4 .2P .I3 0R~ 1TH 23N 2WC 36B 4.4 48X 53G 5GY 5VS 6J9 70D 8VB AAGQS AAHBH AAIJN AAIMJ AAJKP AAJQQ AAMDB AAMVS AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP AAVLN ABDBF ABEJV ABEUO ABGNP ABIXL ABNKS ABPQP ABPTD ABQLI ABQTQ ABWST ABXVV ABXZS ABZBJ ACGFO ACGFS ACGOD ACIWK ACPRK ACUFI ACUHS ACUXJ ACYTK ADBBV ADEYI ADFTL ADGKP ADGZP ADHKW ADHZD ADOCK ADPDF ADQBN ADRDM ADRTK ADVEK ADYVW ADZTZ ADZXQ AECKG AEGPL AEGXH AEJOX AEKKA AEKSI AELWJ AEMDU AEMOZ AENEX AENZO AEPUE AETBJ AEWNT AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHQJS AHXPO AIAGR AIJHB AJEEA AJEUX AKHUL AKVCP AKWXX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APWMN ARIXL AXUDD AYOIW AZVOD BAWUL BAYMD BEYMZ BHONS BQDIO BQUQU BSWAC BTQHN C1A C45 CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD DU5 D~K E3Z EAD EAP EAS EBA EBC EBD EBR EBS EBU EE~ EJD EMB EMK EMOBN EST ESX F5P F9B FHSFR FLIZI FLUFQ FOEOM FQBLK GAUVT GJXCC GROUPED_DOAJ GX1 H13 H5~ HAR HW0 HZ~ IOX J21 JXSIZ K1G KBUDW KOP KSI KSN M-Z M49 MK~ ML0 N9A NGC NLBLG NMDNZ NOMLY NU- O0~ O9- OAWHX ODMLO OJQWA OK1 OVD OVEED P2P PAFKI PEELM PQQKQ Q1. Q5Y QWB RD5 RPM RUSNO RW1 RXO SV3 TEORI TH9 TJP TLC TOX TR2 TUS W8F WOQ X7H YAYTL YKOAZ YXANX ZKX ZL0 ~91 77I AAYXX AHGBF CITATION ROX 7QO 7SC 8FD FR3 JQ2 K9. L7M L~C L~D P64 RC3 7X8 |
| ID | FETCH-LOGICAL-c325t-2a11d507fefb78f01fff3d6717bfe9df220fc756cf9bddc16ab6f2879effddcb3 |
| IEDL.DBID | TOX |
| ISICitedReferencesCount | 203 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000820659000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1467-5463 1477-4054 |
| IngestDate | Wed Oct 01 14:59:09 EDT 2025 Sun Nov 30 04:04:39 EST 2025 Tue Nov 18 22:38:52 EST 2025 Sat Nov 29 05:43:31 EST 2025 Wed Apr 02 07:01:35 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | translational medicine data visualization web service data mining risk models |
| Language | English |
| License | This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model) https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c325t-2a11d507fefb78f01fff3d6717bfe9df220fc756cf9bddc16ab6f2879effddcb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0001-9855-7357 0000-0002-7307-1331 0000-0003-2349-208X 0000-0002-4922-1707 0000-0002-0822-5883 |
| PQID | 2699592300 |
| PQPubID | 26846 |
| ParticipantIDs | proquest_miscellaneous_2685033324 proquest_journals_2699592300 crossref_citationtrail_10_1093_bib_bbac261 crossref_primary_10_1093_bib_bbac261 oup_primary_10_1093_bib_bbac261 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-07-18 |
| PublicationDateYYYYMMDD | 2022-07-18 |
| PublicationDate_xml | – month: 07 year: 2022 text: 2022-07-18 day: 18 |
| PublicationDecade | 2020 |
| PublicationPlace | Oxford |
| PublicationPlace_xml | – name: Oxford |
| PublicationTitle | Briefings in bioinformatics |
| PublicationYear | 2022 |
| Publisher | Oxford University Press Oxford Publishing Limited (England) |
| Publisher_xml | – name: Oxford University Press – name: Oxford Publishing Limited (England) |
| References | x-spreadsheet: a web-based JavaScript (canvas) spreadsheet (2022071906190765100_ref19) Becht (2022071906190765100_ref31) 2016; 17 Blankenberg (2022071906190765100_ref14) 2010; 89 Jalili (2022071906190765100_ref11) 2020; 48 Nielsen (2022071906190765100_ref4) 2010; 7 Edmonson (2022071906190765100_ref9) 2019; 29 Goldman (2022071906190765100_ref22) 2020; 38 Zhou (2022071906190765100_ref17) 2021; 39 Wang (2022071906190765100_ref33) Murphy (2022071906190765100_ref20) Gu (2022071906190765100_ref2) 2016; 32 Zhou (2022071906190765100_ref12) 2016; 48 Di Tommaso (2022071906190765100_ref10) 2017; 35 Cerami (2022071906190765100_ref16) 2012; 2 Gehlenborg (2022071906190765100_ref5) 2010; 7 Wainberg (2022071906190765100_ref3) 2018; 36 Canisius (2022071906190765100_ref24) 2016; 17 Yousif (2022071906190765100_ref15) 2020; 21 Wang (2022071906190765100_ref13) 2022; 38 Chen (2022071906190765100_ref18) 2022; 1 Aran (2022071906190765100_ref30) 2017; 18 Sturm (2022071906190765100_ref26) 2019; 35 Racle (2022071906190765100_ref32) 2017; 6 Li (2022071906190765100_ref29) 2017; 77 O'Donoghue (2022071906190765100_ref1) 2018; 1 Gu (2022071906190765100_ref25) 2021; 49 Finotello (2022071906190765100_ref28) 2019; 11 Newman (2022071906190765100_ref27) 2015; 12 Wu (2022071906190765100_ref21) 2021; 2 Lee (2022071906190765100_ref8) 2020; 48 Li (2022071906190765100_ref23) 2018; 115 Aebersold (2022071906190765100_ref6) 2016; 537 Li (2022071906190765100_ref7) 2021; 39 Fisher (2022071906190765100_ref34) 2017; 356 |
| References_xml | – volume: 38 start-page: 527 year: 2022 ident: 2022071906190765100_ref13 article-title: UCSCXenaShiny: an R/CRAN package for interactive analysis of UCSC Xena data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btab561 – volume: 49 start-page: e15 year: 2021 ident: 2022071906190765100_ref25 article-title: Cola: an R/Bioconductor package for consensus partitioning through a general framework publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa1146 – volume: 12 start-page: 453 year: 2015 ident: 2022071906190765100_ref27 article-title: Robust enumeration of cell subsets from tissue expression profiles publication-title: Nat Methods doi: 10.1038/nmeth.3337 – volume: 29 start-page: 1555 year: 2019 ident: 2022071906190765100_ref9 article-title: Pediatric cancer variant pathogenicity information exchange (PeCanPIE): a cloud-based platform for curating and classifying germline variants publication-title: Genome Res doi: 10.1101/gr.250357.119 – ident: 2022071906190765100_ref19 – volume: 2 start-page: 100141 year: 2021 ident: 2022071906190765100_ref21 article-title: clusterProfiler 4.0: a universal enrichment tool for interpreting omics data publication-title: Innovation (N Y) – volume: 77 start-page: e108 year: 2017 ident: 2022071906190765100_ref29 article-title: TIMER: a web server for comprehensive analysis of tumor-infiltrating immune cells publication-title: Cancer Res doi: 10.1158/0008-5472.CAN-17-0307 – volume: 537 start-page: 347 year: 2016 ident: 2022071906190765100_ref6 article-title: Mass-spectrometric exploration of proteome structure and function publication-title: Nature doi: 10.1038/nature19949 – volume: 48 start-page: W395 year: 2020 ident: 2022071906190765100_ref11 article-title: The Galaxy platform for accessible, reproducible and collaborative biomedical analyses: 2020 update publication-title: Nucleic Acids Res doi: 10.1093/nar/gkaa434 – volume: 6 start-page: e26476 year: 2017 ident: 2022071906190765100_ref32 article-title: Simultaneous enumeration of cancer and immune cell types from bulk tumor gene expression data publication-title: Elife doi: 10.7554/eLife.26476 – volume: 1 year: 2022 ident: 2022071906190765100_ref18 article-title: ImageGP: an easy-to-use data visualization web server for scientific researchers publication-title: iMeta doi: 10.1002/imt2.5 – volume: 32 start-page: 2847 year: 2016 ident: 2022071906190765100_ref2 article-title: Complex heatmaps reveal patterns and correlations in multidimensional genomic data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btw313 – volume: 17 start-page: 218 year: 2016 ident: 2022071906190765100_ref31 article-title: Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression publication-title: Genome Biol doi: 10.1186/s13059-016-1070-5 – volume: 7 start-page: S56 year: 2010 ident: 2022071906190765100_ref5 article-title: Visualization of omics data for systems biology publication-title: Nat Methods doi: 10.1038/nmeth.1436 – ident: 2022071906190765100_ref33 article-title: Ezcox: an R/CRAN package for cox model batch processing and visualization – volume: 36 start-page: 829 year: 2018 ident: 2022071906190765100_ref3 article-title: Deep learning in biomedicine publication-title: Nat Biotechnol doi: 10.1038/nbt.4233 – volume: 2 start-page: 401 year: 2012 ident: 2022071906190765100_ref16 article-title: The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data publication-title: Cancer Discov doi: 10.1158/2159-8290.CD-12-0095 – volume: 38 start-page: 675 year: 2020 ident: 2022071906190765100_ref22 article-title: Visualizing and interpreting cancer genomics data via the Xena platform publication-title: Nat Biotechnol doi: 10.1038/s41587-020-0546-8 – volume: 35 start-page: 316 year: 2017 ident: 2022071906190765100_ref10 article-title: Nextflow enables reproducible computational workflows publication-title: Nat Biotechnol doi: 10.1038/nbt.3820 – volume: 21 start-page: 267 year: 2020 ident: 2022071906190765100_ref15 article-title: NASQAR: a web-based platform for high-throughput sequencing data analysis and visualization publication-title: BMC Bioinform doi: 10.1186/s12859-020-03577-4 – volume: 35 start-page: i436 year: 2019 ident: 2022071906190765100_ref26 article-title: Comprehensive evaluation of transcriptome-based cell-type quantification methods for immuno-oncology publication-title: Bioinformatics doi: 10.1093/bioinformatics/btz363 – volume: 1 start-page: 275 issue: 1 year: 2018 ident: 2022071906190765100_ref1 article-title: Visualization of biomedical data publication-title: Annu Rev of Biomed Data Sci doi: 10.1146/annurev-biodatasci-080917-013424 – volume: 11 start-page: 34 year: 2019 ident: 2022071906190765100_ref28 article-title: Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data publication-title: Genome Med doi: 10.1186/s13073-019-0638-6 – volume: 48 start-page: D756 year: 2020 ident: 2022071906190765100_ref8 article-title: UCSC genome browser enters 20th year publication-title: Nucleic Acids Res – volume: 48 start-page: 4 year: 2016 ident: 2022071906190765100_ref12 article-title: Exploring genomic alteration in pediatric cancer using ProteinPaint publication-title: Nat Genet doi: 10.1038/ng.3466 – volume: 115 start-page: E11711 year: 2018 ident: 2022071906190765100_ref23 article-title: Transcriptional landscape of B cell precursor acute lymphoblastic leukemia based on an international study of 1,223 cases publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1814397115 – volume: 17 start-page: 261 year: 2016 ident: 2022071906190765100_ref24 article-title: A novel independence test for somatic alterations in cancer shows that biology drives mutual exclusivity but chance explains most co-occurrence publication-title: Genome Biol doi: 10.1186/s13059-016-1114-x – volume: 89 start-page: Unit 19.10.1 year: 2010 ident: 2022071906190765100_ref14 article-title: Galaxy: a web-based genome analysis tool for experimentalists publication-title: Curr Protoc Mol Biol doi: 10.1002/0471142727.mb1910s89 – volume: 7 start-page: S5 year: 2010 ident: 2022071906190765100_ref4 article-title: Visualizing genomes: techniques and challenges publication-title: Nat Methods doi: 10.1038/nmeth.1422 – volume: 18 start-page: 220 year: 2017 ident: 2022071906190765100_ref30 article-title: xCell: digitally portraying the tissue cellular heterogeneity landscape publication-title: Genome Biol doi: 10.1186/s13059-017-1349-1 – volume: 39 start-page: 83 year: 2021 ident: 2022071906190765100_ref17 article-title: Exploration of coding and non-coding variants in cancer using GenomePaint publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.12.011 – volume-title: AGFusion: Annotate and Visualize Gene Fusions ident: 2022071906190765100_ref20 – volume: 39 start-page: 3 year: 2021 ident: 2022071906190765100_ref7 article-title: Next-generation analytics for omics data publication-title: Cancer Cell doi: 10.1016/j.ccell.2020.09.002 – volume: 356 start-page: j573 year: 2017 ident: 2022071906190765100_ref34 article-title: Meta-analytical methods to identify who benefits most from treatments: daft, deluded, or deft approach? publication-title: BMJ doi: 10.1136/bmj.j573 |
| SSID | ssj0020781 |
| Score | 2.6793592 |
| Snippet | Abstract
Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and... Complex biomedical data generated during clinical, omics and mechanism-based experiments have increasingly been exploited through cloud- and... |
| SourceID | proquest crossref oup |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Bioinformatics Biomedical data Clustering Data mining Data transfer (computers) Data visualization Dimensional analysis Health risks Medical research Parameters Risk analysis Risk factors Scientific visualization Statistical analysis Survival analysis Visualization Web services Websites |
| Title | Hiplot: a comprehensive and easy-to-use web service for boosting publication-ready biomedical data visualization |
| URI | https://www.proquest.com/docview/2699592300 https://www.proquest.com/docview/2685033324 |
| Volume | 23 |
| WOSCitedRecordID | wos000820659000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1477-4054 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020781 issn: 1467-5463 databaseCode: TOX dateStart: 20000101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF5UFLz4FuujruBJWJpXk403EcWDVA8KvYWd3R0sSFqaVOi_d7abVpSiHkMmJOzsznyTmW-GsUtJmEInuRVoEhRJV4YiJ0cqEshDhJi0jjOi8GPW68l-P39uCmSrJSn8PO7AADoASkezKCfsSjeo4OWpv4irXL8aTyLKhOvu3tDwfjz7zfF8I7PNre_Mpdxv__djdthWAxr5jdfyLlux5R7b8GMkp_ts9DAYvQ_ra664qxAf2zdflc5VabhV1VTUQzGpLCeTyStvHDiBVU4Iu3Jlz3z09fNOEIo0U-5p-U6D3BWR8o9B5eiXnrR5wF7v715uH0QzSUHoOOrWIlJhaAj5oUXIJAYhIsYmpVAO0OYGoyhAnXVTjTkYo8NUQYoUS-UWka4hPmRr5bC0R4yHQJg8A4pEIpsEEEtrA9CQgcq0BmVa7Gq-zIVu2oy7aRfvhU93xwUtYdEsYYtdLoRHvrvGcrFz0tfvEqdzXRbNIayKKHXN1CjGClrsYnGbjo_LiajSDidORrpELsHK4z9fcsI2I0d-cG015Slbq8cTe8bW9Uc9qMZttpr1ZXu2Mz8BbfLjXg |
| linkProvider | Oxford University Press |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hiplot%3A+a+comprehensive+and+easy-to-use+web+service+for+boosting+publication-ready+biomedical+data+visualization&rft.jtitle=Briefings+in+bioinformatics&rft.au=Li%2C+Jianfeng&rft.au=Miao%2C+Benben&rft.au=Wang%2C+Shixiang&rft.au=Dong%2C+Wei&rft.date=2022-07-18&rft.pub=Oxford+Publishing+Limited+%28England%29&rft.issn=1467-5463&rft.eissn=1477-4054&rft.volume=23&rft.issue=4&rft_id=info:doi/10.1093%2Fbib%2Fbbac261&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1467-5463&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1467-5463&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1467-5463&client=summon |