Visibility testing and counting
•Given a set of n disjoint line segments and a segment s, we consider 2 problems.•Visibility testing problem is to check whether a given point p is visible to s.•Visibility counting problem is to count the number of segments visible from p.•We give a new randomized algorithm for VTP and an approxima...
Uložené v:
| Vydané v: | Information processing letters Ročník 115; číslo 9; s. 649 - 654 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Amsterdam
Elsevier B.V
01.09.2015
Elsevier Sequoia S.A |
| Predmet: | |
| ISSN: | 0020-0190, 1872-6119 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Shrnutí: | •Given a set of n disjoint line segments and a segment s, we consider 2 problems.•Visibility testing problem is to check whether a given point p is visible to s.•Visibility counting problem is to count the number of segments visible from p.•We give a new randomized algorithm for VTP and an approximation algorithm for VCP.•We present our experimental results.
For a set of n disjoint line segments S in R2, the visibility testing problem (VTP) is to test whether the query point p sees a query segment s∈S. For this configuration, the visibility counting problem (VCP) is to preprocess S such that the number of visible segments in S from any query point p can be computed quickly. In this paper, we solve VTP in expected logarithmic query time using quadratic preprocessing time and space. Moreover, we propose a (1+δ)-approximation algorithm for VCP using at most quadratic preprocessing time and space. The query time of this method is Oϵ(1δ2n) where Oϵ(f(n))=O(f(n)nϵ) and ϵ>0 is an arbitrary constant number. |
|---|---|
| Bibliografia: | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 |
| ISSN: | 0020-0190 1872-6119 |
| DOI: | 10.1016/j.ipl.2015.03.009 |