On Krein's formula in indefinite metric spaces

In this paper we extend some of the recent results in connection with the Krein resolvent formula which provides a complete description of all canonical resolvents and utilizes Weyl–Titchmarsh functions in the spaces with indefinite metrics. We show that coefficients in Krein's formula can be e...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Linear algebra and its applications Jg. 389; S. 305 - 322
Hauptverfasser: Belyi, Sergey, Tsekanovskii, Eduard
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Elsevier Inc 15.09.2004
Elsevier Science
Schlagworte:
ISSN:0024-3795, 1873-1856
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we extend some of the recent results in connection with the Krein resolvent formula which provides a complete description of all canonical resolvents and utilizes Weyl–Titchmarsh functions in the spaces with indefinite metrics. We show that coefficients in Krein's formula can be expressed in terms of analogues of the von Neumann parametrization formulas in the indefinite case. We consider properties of Weyl–Titchmarsh functions and show that two Weyl–Titchmarsh functions corresponding to π-self-adjoint extensions of a densely defined π-symmetric operator are connected via linear-fractional transformation with the coefficients presented in terms of von Neumann's parameters.
ISSN:0024-3795
1873-1856
DOI:10.1016/j.laa.2004.04.002