A multi-resolution SPH method for fluid-structure interactions

•Different spatial-temporal resolution for fluid and solid structure.•Position-based Verlet time integration scheme.•Time-averaged velocity and acceleration to enhance structure-fluid force matching. In this paper, we present a multi-resolution smoothed particle hydrodynamics (SPH) method for modeli...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of computational physics Jg. 429; S. 110028
Hauptverfasser: Zhang, Chi, Rezavand, Massoud, Hu, Xiangyu
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Cambridge Elsevier Inc 15.03.2021
Elsevier Science Ltd
Schlagworte:
ISSN:0021-9991, 1090-2716
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Different spatial-temporal resolution for fluid and solid structure.•Position-based Verlet time integration scheme.•Time-averaged velocity and acceleration to enhance structure-fluid force matching. In this paper, we present a multi-resolution smoothed particle hydrodynamics (SPH) method for modeling fluid-structure interaction (FSI) problems. By introducing different smoothing lengths and time steps, the spatial-temporal discretization is applied with different resolutions for fluid and structure. To ensure momentum conservation at the fluid-structure coupling, a position-based Verlet time integration scheme is introduced. Furthermore, the time-averaged velocity and acceleration of solid particles are introduced to enhance force matching in the fluid and solid equations. A set of numerical examples including several bio-mechanical problems are considered to demonstrate the efficiency, accuracy and robustness of the present method. An open-source code for all the examples is also provided.
AbstractList •Different spatial-temporal resolution for fluid and solid structure.•Position-based Verlet time integration scheme.•Time-averaged velocity and acceleration to enhance structure-fluid force matching. In this paper, we present a multi-resolution smoothed particle hydrodynamics (SPH) method for modeling fluid-structure interaction (FSI) problems. By introducing different smoothing lengths and time steps, the spatial-temporal discretization is applied with different resolutions for fluid and structure. To ensure momentum conservation at the fluid-structure coupling, a position-based Verlet time integration scheme is introduced. Furthermore, the time-averaged velocity and acceleration of solid particles are introduced to enhance force matching in the fluid and solid equations. A set of numerical examples including several bio-mechanical problems are considered to demonstrate the efficiency, accuracy and robustness of the present method. An open-source code for all the examples is also provided.
In this paper, we present a multi-resolution smoothed particle hydrodynamics (SPH) method for modeling fluid-structure interaction (FSI) problems. By introducing different smoothing lengths and time steps, the spatial-temporal discretization is applied with different resolutions for fluid and structure. To ensure momentum conservation at the fluid-structure coupling, a position-based Verlet time integration scheme is introduced. Furthermore, the time-averaged velocity and acceleration of solid particles are introduced to enhance force matching in the fluid and solid equations. A set of numerical examples including several bio-mechanical problems are considered to demonstrate the efficiency, accuracy and robustness of the present method. An open-source code for all the examples is also provided.
ArticleNumber 110028
Author Zhang, Chi
Rezavand, Massoud
Hu, Xiangyu
Author_xml – sequence: 1
  givenname: Chi
  surname: Zhang
  fullname: Zhang, Chi
  email: c.zhang@tum.de
– sequence: 2
  givenname: Massoud
  orcidid: 0000-0001-8669-5664
  surname: Rezavand
  fullname: Rezavand, Massoud
  email: massoud.rezavand@tum.de
– sequence: 3
  givenname: Xiangyu
  orcidid: 0000-0003-0932-6659
  surname: Hu
  fullname: Hu, Xiangyu
  email: xiangyu.hu@tum.de
BookMark eNp9kNFKwzAUhoNMcJs-gHcFrztPkiZtEIQx1AkDBfU6dGmCKV0zk1Tw7U2pV17sKpzwf-fwfws0612vEbrGsMKA-W27atVxRYCkGQOQ6gzNMQjISYn5DM3TF86FEPgCLUJoAaBiRTVH9-vsMHTR5l4H1w3Ruj57e91mBx0_XZMZ5zPTDbbJQ_SDioPXme2j9rUao-ESnZu6C_rq712ij8eH98023708PW_Wu1xRwmJOMBe0IgWvmBINFZRVptlzRZtCF5RxUReMU7LHWJVG0HIPwAyluoAGDAhNl-hm2nv07mvQIcrWDb5PJyVhgAlPfUhK4SmlvAvBayOP3h5q_yMxyFGTbGXSJEdNctKUmPIfo2ysx3LR17Y7Sd5NpE7Fv632Miire6Ub67WKsnH2BP0LE6-B4g
CitedBy_id crossref_primary_10_1007_s00158_023_03655_0
crossref_primary_10_1007_s00707_022_03459_1
crossref_primary_10_1007_s11071_023_08641_1
crossref_primary_10_1016_j_oceaneng_2025_120818
crossref_primary_10_1016_j_enganabound_2025_106239
crossref_primary_10_1016_j_taml_2025_100592
crossref_primary_10_1016_j_cpc_2024_109429
crossref_primary_10_1016_j_apor_2024_103885
crossref_primary_10_1007_s10409_022_22185_x
crossref_primary_10_1088_1873_7005_ace37b
crossref_primary_10_1007_s40571_023_00643_5
crossref_primary_10_1007_s00466_024_02552_7
crossref_primary_10_1007_s40571_024_00892_y
crossref_primary_10_1016_j_euromechflu_2022_04_005
crossref_primary_10_1016_j_jcp_2022_111105
crossref_primary_10_1016_j_marstruc_2023_103531
crossref_primary_10_1007_s40571_022_00519_0
crossref_primary_10_1016_j_apm_2024_115661
crossref_primary_10_1007_s40571_022_00498_2
crossref_primary_10_1007_s10409_022_22053_x
crossref_primary_10_1016_j_cma_2024_117179
crossref_primary_10_1007_s11831_025_10346_0
crossref_primary_10_1007_s40571_023_00576_z
crossref_primary_10_1016_j_oceaneng_2024_118041
crossref_primary_10_1016_j_camwa_2022_08_017
crossref_primary_10_1016_j_compgeo_2023_106052
crossref_primary_10_1016_j_jfluidstructs_2021_103369
crossref_primary_10_1016_j_oceaneng_2025_122673
crossref_primary_10_1016_j_oceaneng_2024_118512
crossref_primary_10_1016_j_compstruc_2022_106847
crossref_primary_10_1016_j_cma_2022_115788
crossref_primary_10_1016_j_jcp_2023_112322
crossref_primary_10_1016_j_jcp_2024_113113
crossref_primary_10_1016_j_enganabound_2025_106179
crossref_primary_10_1063_5_0228318
crossref_primary_10_1002_nme_7657
crossref_primary_10_1016_j_apor_2024_104121
crossref_primary_10_1016_j_jcp_2024_113072
crossref_primary_10_1016_j_apor_2021_102775
crossref_primary_10_1016_j_enganabound_2025_106173
crossref_primary_10_1016_j_apor_2021_102774
crossref_primary_10_1007_s40571_024_00721_2
crossref_primary_10_1016_j_compgeo_2024_106284
crossref_primary_10_1016_j_compfluid_2021_105140
crossref_primary_10_1016_j_cma_2021_114169
crossref_primary_10_1016_j_jcp_2022_111762
crossref_primary_10_1016_j_compstruc_2025_107862
crossref_primary_10_1016_j_jcp_2023_112339
crossref_primary_10_3389_fenvs_2022_889526
crossref_primary_10_1016_j_jcp_2023_112233
crossref_primary_10_1016_j_ijmultiphaseflow_2025_105256
crossref_primary_10_1016_j_cma_2025_118147
crossref_primary_10_1016_j_oceaneng_2024_117017
crossref_primary_10_1007_s12601_024_00188_5
crossref_primary_10_1016_j_apor_2021_102822
crossref_primary_10_1007_s11831_023_10013_2
crossref_primary_10_3390_en15020502
crossref_primary_10_1016_j_cpc_2023_108744
crossref_primary_10_1016_j_enganabound_2021_10_023
crossref_primary_10_1063_5_0264218
crossref_primary_10_1002_nag_3901
crossref_primary_10_32604_cmes_2024_052923
crossref_primary_10_1016_j_jcp_2025_114203
crossref_primary_10_1016_j_oceaneng_2022_110779
crossref_primary_10_1016_j_euromechflu_2023_11_005
crossref_primary_10_1007_s11433_023_2168_0
crossref_primary_10_1016_j_cma_2023_115885
crossref_primary_10_1016_j_apor_2025_104706
crossref_primary_10_1016_j_camwa_2025_07_038
crossref_primary_10_3390_jmse13091637
crossref_primary_10_1016_j_jcp_2025_113969
crossref_primary_10_3390_jmse11081483
crossref_primary_10_1007_s42241_022_0042_3
crossref_primary_10_1016_j_cma_2023_115915
crossref_primary_10_1007_s10409_022_22126_x
crossref_primary_10_1007_s42241_024_0042_6
crossref_primary_10_1016_j_oceaneng_2021_109540
crossref_primary_10_1016_j_enganabound_2024_106043
crossref_primary_10_1063_5_0223930
crossref_primary_10_1063_5_0226924
crossref_primary_10_1016_j_oceaneng_2022_113110
crossref_primary_10_1016_j_cma_2024_117255
crossref_primary_10_1016_j_cma_2023_115895
crossref_primary_10_1016_j_cma_2023_116500
crossref_primary_10_1016_j_euromechflu_2022_03_011
crossref_primary_10_1016_j_cma_2022_115356
crossref_primary_10_1016_j_cma_2024_117015
crossref_primary_10_1016_j_oceaneng_2022_112026
crossref_primary_10_1063_5_0253589
crossref_primary_10_1016_j_apor_2025_104498
crossref_primary_10_1016_j_enganabound_2023_09_023
crossref_primary_10_1016_j_cpc_2025_109615
crossref_primary_10_1016_j_oceaneng_2024_118001
crossref_primary_10_1007_s00366_024_01986_0
crossref_primary_10_1016_j_enganabound_2024_105876
crossref_primary_10_1088_1742_6596_2865_1_012024
crossref_primary_10_1016_j_jfluidstructs_2025_104295
crossref_primary_10_1016_j_cma_2025_117948
crossref_primary_10_3389_fenvs_2022_1024488
crossref_primary_10_1016_j_jcp_2024_113039
crossref_primary_10_1016_j_jcp_2025_113951
crossref_primary_10_1016_j_cpc_2025_109683
crossref_primary_10_1007_s42241_022_0052_1
crossref_primary_10_1016_j_apor_2021_102734
crossref_primary_10_1016_j_cma_2024_117484
crossref_primary_10_1016_j_cpc_2022_108507
crossref_primary_10_1016_j_apor_2021_102856
crossref_primary_10_3390_biology10030185
crossref_primary_10_1016_j_cma_2022_114728
crossref_primary_10_1007_s10409_022_22248_x
crossref_primary_10_1007_s42241_023_0025_z
crossref_primary_10_1007_s40571_023_00591_0
crossref_primary_10_1016_j_apm_2024_06_010
crossref_primary_10_1016_j_cma_2022_115659
crossref_primary_10_1016_j_compgeo_2025_107139
crossref_primary_10_1016_j_apor_2021_102906
crossref_primary_10_1016_j_cma_2022_114680
crossref_primary_10_1017_S1446181123000160
crossref_primary_10_1016_j_jcp_2023_112270
crossref_primary_10_1016_j_cma_2024_117110
crossref_primary_10_1016_j_jmps_2024_105783
crossref_primary_10_1016_j_oceaneng_2024_119061
crossref_primary_10_1063_5_0216702
crossref_primary_10_1016_j_cmpb_2024_108034
crossref_primary_10_1080_19942060_2022_2026820
crossref_primary_10_1080_17445302_2024_2317040
crossref_primary_10_1016_j_cpc_2021_108066
crossref_primary_10_1016_j_compgeo_2025_107247
crossref_primary_10_1016_j_jcp_2023_112303
crossref_primary_10_1007_s42241_021_0031_y
Cites_doi 10.1016/j.cma.2018.10.049
10.1016/j.jtbi.2016.08.025
10.1002/fld.891
10.1086/313100
10.1061/(ASCE)WW.1943-5460.0000247
10.1038/35048530
10.13182/NSE96-A24205
10.1093/mnras/181.3.375
10.1016/j.jcp.2019.04.038
10.1016/j.jcp.2015.04.044
10.1007/s42241-018-0006-9
10.1016/j.jcp.2013.10.047
10.1016/j.jcp.2012.05.005
10.1016/j.cpc.2018.05.012
10.1016/j.cma.2012.12.014
10.1002/fld.2528
10.1016/j.simpa.2020.100033
10.1016/j.enganabound.2019.03.033
10.1016/j.cma.2019.07.024
10.1016/j.oceaneng.2019.02.072
10.1016/j.oceaneng.2012.06.031
10.1016/0045-7825(92)90060-W
10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
10.1007/s11433-018-9357-0
10.1017/S0962492902000077
10.1016/S1001-6058(13)60412-6
10.1016/0307-904X(92)90035-2
10.1016/j.cma.2009.04.001
10.1142/S021987621846009X
10.1016/j.jcp.2014.05.040
10.1161/ATVBAHA.110.209049
10.1016/j.jcp.2017.01.027
10.1006/jcph.1997.5776
10.2514/1.J051621
10.1016/j.jcp.2017.02.016
10.1006/jtbi.1997.0564
10.1016/j.compstruc.2007.01.002
10.1006/jcph.1994.1034
10.5957/JOSR.09180082
10.1016/j.apor.2018.10.020
10.1016/j.jcp.2007.07.002
10.1016/j.jcp.2019.109092
10.1016/j.jcp.2019.109135
10.1086/112164
10.1016/j.jfluidstructs.2019.02.002
10.1016/j.cpc.2017.04.005
ContentType Journal Article
Copyright 2020 Elsevier Inc.
Copyright Elsevier Science Ltd. Mar 15, 2021
Copyright_xml – notice: 2020 Elsevier Inc.
– notice: Copyright Elsevier Science Ltd. Mar 15, 2021
DBID AAYXX
CITATION
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
DOI 10.1016/j.jcp.2020.110028
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1090-2716
ExternalDocumentID 10_1016_j_jcp_2020_110028
S0021999120308020
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
6OB
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DM4
DU5
EBS
EFBJH
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SPD
SSQ
SSV
SSZ
T5K
TN5
UPT
YQT
ZMT
ZU3
~02
~G-
29K
6TJ
8WZ
9DU
A6W
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADFGL
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BBWZM
CAG
CITATION
COF
D-I
EFKBS
EJD
FGOYB
G-2
HME
HMV
HZ~
NDZJH
R2-
SBC
SEW
SHN
SPG
T9H
UQL
WUQ
ZY4
~HD
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c325t-21693824685c9d39358fdb6c3d4e43569a45632b11c7f937b005f33e40d0f09e3
ISICitedReferencesCount 151
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618824400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0021-9991
IngestDate Sun Nov 09 05:49:35 EST 2025
Sat Nov 29 03:10:30 EST 2025
Tue Nov 18 22:14:29 EST 2025
Fri Feb 23 02:43:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multiple time steps
Smoothed particle hydrodynamics
Multi-resolution
Fluid-elastic structure interaction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-21693824685c9d39358fdb6c3d4e43569a45632b11c7f937b005f33e40d0f09e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8669-5664
0000-0003-0932-6659
PQID 2501260082
PQPubID 2047462
ParticipantIDs proquest_journals_2501260082
crossref_primary_10_1016_j_jcp_2020_110028
crossref_citationtrail_10_1016_j_jcp_2020_110028
elsevier_sciencedirect_doi_10_1016_j_jcp_2020_110028
PublicationCentury 2000
PublicationDate 2021-03-15
PublicationDateYYYYMMDD 2021-03-15
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-15
  day: 15
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Journal of computational physics
PublicationYear 2021
Publisher Elsevier Inc
Elsevier Science Ltd
Publisher_xml – name: Elsevier Inc
– name: Elsevier Science Ltd
References Bhardwaj, Mittal (br0440) 2012; 50
Oñate, Idelsohn, Zienkiewicz, Taylor (br0030) 1996; 39
Tezduyar, Behr, Mittal, Liou (br0010) 1992; 94
Yang, Jones, McCue (br0250) 2012; 55
Loudon, Tordesillas (br0500) 1998; 191
Vacondio, Rogers, Stansby, Mignosa, Feldman (br0310) 2013; 256
Khayyer, Tsuruta, Shimizu, Gotoh (br0230) 2019; 82
Liu, Zhang (br0180) 2019; 62
Huang, Shin, Sung (br0470) 2007; 226
Monaghan (br0360) 1994; 110
Morris, Fox, Zhu (br0370) 1997; 136
Zhang, Xiang, Wang, Hu, Adams (br0110) 2019; 392
Ogden (br0380) 1997
Zhang, Long, Chang, Liu (br0190) 2019; 356
Gingold, Monaghan (br0050) 1977; 181
Mishra, Rajamani (br0080) 1992; 16
Zhang, Wan (br0260) 2019; 16
Han, Hu (br0170) 2018; 30
Omidvar, Stansby, Rogers (br0330) 2012; 68
Fourey, Hermange, Le Touzé, Oger (br0420) 2017; 217
Tian, Dai, Luo, Doyle, Rousseau (br0450) 2014; 258
Curatolo, Teresi (br0480) 2016; 409
Chen, Zhang, Wan (br0270) 2019
Rafiee, Thiagarajan (br0200) 2009; 198
Wang, Xu, Yang (br0150) 2019; 178
Zhang, Rezavand, Hu (br0410) 2020; 404
Bian, Li, Karniadakis (br0340) 2015; 297
Lucy (br0040) 1977; 82
Oger, Guilcher, Jacquin, Brosset, Deuff, Le Touzé (br0130) 2009
Zhang, Hu, Adams (br0060) 2017; 335
Rezavand, Zhang, Hu (br0100) 2020; 402
Peskin (br0020) 2002; 11
Zhang, Hu, Adams (br0090) 2017; 337
Zhan, Peng, Zhang, Wu (br0160) 2019; 86
Zhang, Childress, Libchaber, Shelley (br0490) 2000; 408
Vignjevic, Reveles, Campbell (br0390) 2006; 4
Barcarolo, Le Touzé, Oger, De Vuyst (br0290) 2014; 273
van Langevelde, Šrámek, Rosendaal (br0460) 2010; 30
Liu, Shao, Li (br0140) 2013; 25
Zhang, Rezavand, Zhu, Yu, Wu, Zhang, Zhang, Wang, Hu (br0350) 2020
Turek, Hron (br0430) 2006
Hu, Guo, Hu, Negrut, Xu, Pan (br0320) 2019; 347
Ren, Jin, Gao, Wang, Xu (br0240) 2013; 140
Antoci, Gallati, Sibilla (br0120) 2007; 85
Lastiwka, Quinlan, Basa (br0300) 2005; 47
Khayyer, Gotoh, Falahaty, Shimizu (br0210) 2018; 232
Sun, Le Touzé, Zhang (br0220) 2019; 104
Owen, Villumsen, Shapiro, Martel (br0280) 1998; 116
Koshizuka, Oka (br0070) 1996; 123
Adami, Hu, Adams (br0400) 2012; 231
Tian (10.1016/j.jcp.2020.110028_br0450) 2014; 258
Zhang (10.1016/j.jcp.2020.110028_br0190) 2019; 356
Mishra (10.1016/j.jcp.2020.110028_br0080) 1992; 16
Chen (10.1016/j.jcp.2020.110028_br0270) 2019
Zhang (10.1016/j.jcp.2020.110028_br0110) 2019; 392
Lastiwka (10.1016/j.jcp.2020.110028_br0300) 2005; 47
Ogden (10.1016/j.jcp.2020.110028_br0380) 1997
Lucy (10.1016/j.jcp.2020.110028_br0040) 1977; 82
Omidvar (10.1016/j.jcp.2020.110028_br0330) 2012; 68
Oger (10.1016/j.jcp.2020.110028_br0130) 2009
Barcarolo (10.1016/j.jcp.2020.110028_br0290) 2014; 273
Wang (10.1016/j.jcp.2020.110028_br0150) 2019; 178
Zhang (10.1016/j.jcp.2020.110028_br0410) 2020; 404
Adami (10.1016/j.jcp.2020.110028_br0400) 2012; 231
Oñate (10.1016/j.jcp.2020.110028_br0030) 1996; 39
Khayyer (10.1016/j.jcp.2020.110028_br0210) 2018; 232
Sun (10.1016/j.jcp.2020.110028_br0220) 2019; 104
Peskin (10.1016/j.jcp.2020.110028_br0020) 2002; 11
Rezavand (10.1016/j.jcp.2020.110028_br0100) 2020; 402
Koshizuka (10.1016/j.jcp.2020.110028_br0070) 1996; 123
Zhang (10.1016/j.jcp.2020.110028_br0350) 2020
Khayyer (10.1016/j.jcp.2020.110028_br0230) 2019; 82
Tezduyar (10.1016/j.jcp.2020.110028_br0010) 1992; 94
Zhan (10.1016/j.jcp.2020.110028_br0160) 2019; 86
Bian (10.1016/j.jcp.2020.110028_br0340) 2015; 297
Yang (10.1016/j.jcp.2020.110028_br0250) 2012; 55
Zhang (10.1016/j.jcp.2020.110028_br0260) 2019; 16
van Langevelde (10.1016/j.jcp.2020.110028_br0460) 2010; 30
Liu (10.1016/j.jcp.2020.110028_br0140) 2013; 25
Gingold (10.1016/j.jcp.2020.110028_br0050) 1977; 181
Bhardwaj (10.1016/j.jcp.2020.110028_br0440) 2012; 50
Monaghan (10.1016/j.jcp.2020.110028_br0360) 1994; 110
Owen (10.1016/j.jcp.2020.110028_br0280) 1998; 116
Han (10.1016/j.jcp.2020.110028_br0170) 2018; 30
Huang (10.1016/j.jcp.2020.110028_br0470) 2007; 226
Vacondio (10.1016/j.jcp.2020.110028_br0310) 2013; 256
Morris (10.1016/j.jcp.2020.110028_br0370) 1997; 136
Liu (10.1016/j.jcp.2020.110028_br0180) 2019; 62
Turek (10.1016/j.jcp.2020.110028_br0430) 2006
Antoci (10.1016/j.jcp.2020.110028_br0120) 2007; 85
Hu (10.1016/j.jcp.2020.110028_br0320) 2019; 347
Zhang (10.1016/j.jcp.2020.110028_br0090) 2017; 337
Rafiee (10.1016/j.jcp.2020.110028_br0200) 2009; 198
Zhang (10.1016/j.jcp.2020.110028_br0060) 2017; 335
Vignjevic (10.1016/j.jcp.2020.110028_br0390) 2006; 4
Zhang (10.1016/j.jcp.2020.110028_br0490) 2000; 408
Loudon (10.1016/j.jcp.2020.110028_br0500) 1998; 191
Ren (10.1016/j.jcp.2020.110028_br0240) 2013; 140
Curatolo (10.1016/j.jcp.2020.110028_br0480) 2016; 409
Fourey (10.1016/j.jcp.2020.110028_br0420) 2017; 217
References_xml – volume: 55
  start-page: 136
  year: 2012
  end-page: 147
  ident: br0250
  article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model
  publication-title: Ocean Eng.
– volume: 16
  year: 2019
  ident: br0260
  article-title: MPS-FEM coupled method for fluid–structure interaction in 3d dam-break flows
  publication-title: Int. J. Comput. Methods
– volume: 94
  start-page: 353
  year: 1992
  end-page: 371
  ident: br0010
  article-title: A new strategy for finite element computations involving moving boundaries and interfaces
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 30
  start-page: 2075
  year: 2010
  end-page: 2080
  ident: br0460
  article-title: The effect of aging on venous valves
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 181
  start-page: 375
  year: 1977
  end-page: 389
  ident: br0050
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
– year: 1997
  ident: br0380
  article-title: Non-linear elastic deformations
– volume: 232
  start-page: 139
  year: 2018
  end-page: 164
  ident: br0210
  article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions
  publication-title: Comput. Phys. Commun.
– volume: 82
  start-page: 1013
  year: 1977
  end-page: 1024
  ident: br0040
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
– year: 2020
  ident: br0350
  article-title: SPHinXsys: An open-source meshless, multi-resolution and multi-physics library
  publication-title: Softw. Impacts
– volume: 68
  start-page: 686
  year: 2012
  end-page: 705
  ident: br0330
  article-title: Wave body interaction in 2d using smoothed particle hydrodynamics (SPH) with variable particle mass
  publication-title: Int. J. Numer. Methods Fluids
– volume: 178
  start-page: 233
  year: 2019
  end-page: 245
  ident: br0150
  article-title: SPH scheme for simulating the water entry of an elastomer
  publication-title: Ocean Eng.
– volume: 136
  start-page: 214
  year: 1997
  end-page: 226
  ident: br0370
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
– volume: 198
  start-page: 2785
  year: 2009
  end-page: 2795
  ident: br0200
  article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 217
  start-page: 66
  year: 2017
  end-page: 81
  ident: br0420
  article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods
  publication-title: Comput. Phys. Commun.
– volume: 30
  start-page: 62
  year: 2018
  end-page: 69
  ident: br0170
  article-title: SPH modeling of fluid-structure interaction
  publication-title: J. Hydrodyn.
– volume: 62
  year: 2019
  ident: br0180
  article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions
  publication-title: Sci. China, Phys. Mech. Astron.
– year: 2019
  ident: br0270
  article-title: Numerical study of 3-d liquid sloshing in an elastic tank by MPS-FEM coupled method
  publication-title: J. Ship Res.
– volume: 123
  start-page: 421
  year: 1996
  end-page: 434
  ident: br0070
  article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid
  publication-title: Nucl. Sci. Eng.
– volume: 16
  start-page: 598
  year: 1992
  end-page: 604
  ident: br0080
  article-title: The discrete element method for the simulation of ball mills
  publication-title: Appl. Math. Model.
– volume: 226
  start-page: 2206
  year: 2007
  end-page: 2228
  ident: br0470
  article-title: Simulation of flexible filaments in a uniform flow by the immersed boundary method
  publication-title: J. Comput. Phys.
– volume: 4
  start-page: 181
  year: 2006
  ident: br0390
  article-title: SPH in a total Lagrangian formalism
  publication-title: CMC-Tech Science Press
– volume: 47
  start-page: 1403
  year: 2005
  end-page: 1409
  ident: br0300
  article-title: Adaptive particle distribution for smoothed particle hydrodynamics
  publication-title: Int. J. Numer. Methods Fluids
– volume: 273
  start-page: 640
  year: 2014
  end-page: 657
  ident: br0290
  article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method
  publication-title: J. Comput. Phys.
– volume: 86
  start-page: 329
  year: 2019
  end-page: 353
  ident: br0160
  article-title: A stabilized TL–WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction
  publication-title: J. Fluids Struct.
– volume: 404
  year: 2020
  ident: br0410
  article-title: Dual-criteria time stepping for weakly compressible smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 11
  start-page: 479
  year: 2002
  end-page: 517
  ident: br0020
  article-title: The immersed boundary method
  publication-title: Acta Numer.
– volume: 335
  start-page: 605
  year: 2017
  end-page: 620
  ident: br0060
  article-title: A weakly compressible SPH method based on a low-dissipation Riemann solver
  publication-title: J. Comput. Phys.
– volume: 140
  year: 2013
  ident: br0240
  article-title: Sph-dem modeling of the hydraulic stability of 2d blocks on a slope
  publication-title: J. Waterw. Port Coast. Ocean Eng.
– volume: 50
  start-page: 1638
  year: 2012
  end-page: 1642
  ident: br0440
  article-title: Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation
  publication-title: AIAA J.
– start-page: 371
  year: 2006
  end-page: 385
  ident: br0430
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
  publication-title: Fluid-structure Interaction
– volume: 191
  start-page: 63
  year: 1998
  end-page: 78
  ident: br0500
  article-title: The use of the dimensionless womersley number to characterize the unsteady nature of internal flow
  publication-title: J. Theor. Biol.
– volume: 356
  start-page: 261
  year: 2019
  end-page: 293
  ident: br0190
  article-title: A smoothed particle element method (SPEM) for modeling fluid–structure interaction problems with large fluid deformations
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 85
  start-page: 879
  year: 2007
  end-page: 890
  ident: br0120
  article-title: Numerical simulation of fluid–structure interaction by SPH
  publication-title: Comput. Struct.
– volume: 409
  start-page: 18
  year: 2016
  end-page: 26
  ident: br0480
  article-title: Modeling and simulation of fish swimming with active muscles
  publication-title: J. Theor. Biol.
– volume: 82
  start-page: 397
  year: 2019
  end-page: 414
  ident: br0230
  article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering
  publication-title: Appl. Ocean Res.
– volume: 256
  start-page: 132
  year: 2013
  end-page: 148
  ident: br0310
  article-title: Variable resolution for SPH: a dynamic particle coalescing and splitting scheme
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 392
  start-page: 1
  year: 2019
  end-page: 18
  ident: br0110
  article-title: A weakly compressible SPH method with WENO reconstruction
  publication-title: J. Comput. Phys.
– volume: 347
  start-page: 402
  year: 2019
  end-page: 424
  ident: br0320
  article-title: A consistent spatially adaptive smoothed particle hydrodynamics method for fluid–structure interactions
  publication-title: Comput. Methods Appl. Mech. Eng.
– volume: 231
  start-page: 7057
  year: 2012
  end-page: 7075
  ident: br0400
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 39
  start-page: 3839
  year: 1996
  end-page: 3866
  ident: br0030
  article-title: A finite point method in computational mechanics. applications to convective transport and fluid flow
  publication-title: Int. J. Numer. Methods Biomed. Eng.
– volume: 258
  start-page: 451
  year: 2014
  end-page: 469
  ident: br0450
  article-title: Fluid–structure interaction involving large deformations: 3d simulations and applications to biological systems
  publication-title: J. Comput. Phys.
– year: 2009
  ident: br0130
  article-title: Simulations of hydro-elastic impacts using a parallel SPH model
  publication-title: The Nineteenth International Offshore and Polar Engineering Conference
– volume: 25
  start-page: 673
  year: 2013
  end-page: 682
  ident: br0140
  article-title: Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method
  publication-title: J. Hydrodyn.
– volume: 116
  start-page: 155
  year: 1998
  ident: br0280
  article-title: Adaptive smoothed particle hydrodynamics: Methodology. II
  publication-title: Astrophys. J. Suppl. Ser.
– volume: 297
  start-page: 132
  year: 2015
  end-page: 155
  ident: br0340
  article-title: Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition
  publication-title: J. Comput. Phys.
– volume: 337
  start-page: 216
  year: 2017
  end-page: 232
  ident: br0090
  article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
– volume: 402
  year: 2020
  ident: br0100
  article-title: A weakly compressible SPH method for violent multi-phase flows with high density ratio
  publication-title: J. Comput. Phys.
– volume: 110
  start-page: 399
  year: 1994
  end-page: 406
  ident: br0360
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
– volume: 408
  start-page: 835
  year: 2000
  ident: br0490
  article-title: Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind
  publication-title: Nature
– volume: 104
  start-page: 240
  year: 2019
  end-page: 258
  ident: br0220
  article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR
  publication-title: Eng. Anal. Bound. Elem.
– volume: 347
  start-page: 402
  year: 2019
  ident: 10.1016/j.jcp.2020.110028_br0320
  article-title: A consistent spatially adaptive smoothed particle hydrodynamics method for fluid–structure interactions
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2018.10.049
– volume: 4
  start-page: 181
  issue: 3
  year: 2006
  ident: 10.1016/j.jcp.2020.110028_br0390
  article-title: SPH in a total Lagrangian formalism
  publication-title: CMC-Tech Science Press
– volume: 409
  start-page: 18
  year: 2016
  ident: 10.1016/j.jcp.2020.110028_br0480
  article-title: Modeling and simulation of fish swimming with active muscles
  publication-title: J. Theor. Biol.
  doi: 10.1016/j.jtbi.2016.08.025
– volume: 47
  start-page: 1403
  issue: 10–11
  year: 2005
  ident: 10.1016/j.jcp.2020.110028_br0300
  article-title: Adaptive particle distribution for smoothed particle hydrodynamics
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.891
– volume: 116
  start-page: 155
  issue: 2
  year: 1998
  ident: 10.1016/j.jcp.2020.110028_br0280
  article-title: Adaptive smoothed particle hydrodynamics: Methodology. II
  publication-title: Astrophys. J. Suppl. Ser.
  doi: 10.1086/313100
– volume: 140
  issue: 6
  year: 2013
  ident: 10.1016/j.jcp.2020.110028_br0240
  article-title: Sph-dem modeling of the hydraulic stability of 2d blocks on a slope
  publication-title: J. Waterw. Port Coast. Ocean Eng.
  doi: 10.1061/(ASCE)WW.1943-5460.0000247
– volume: 408
  start-page: 835
  issue: 6814
  year: 2000
  ident: 10.1016/j.jcp.2020.110028_br0490
  article-title: Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind
  publication-title: Nature
  doi: 10.1038/35048530
– volume: 123
  start-page: 421
  issue: 3
  year: 1996
  ident: 10.1016/j.jcp.2020.110028_br0070
  article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid
  publication-title: Nucl. Sci. Eng.
  doi: 10.13182/NSE96-A24205
– volume: 181
  start-page: 375
  issue: 3
  year: 1977
  ident: 10.1016/j.jcp.2020.110028_br0050
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. R. Astron. Soc.
  doi: 10.1093/mnras/181.3.375
– volume: 392
  start-page: 1
  year: 2019
  ident: 10.1016/j.jcp.2020.110028_br0110
  article-title: A weakly compressible SPH method with WENO reconstruction
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.04.038
– volume: 297
  start-page: 132
  year: 2015
  ident: 10.1016/j.jcp.2020.110028_br0340
  article-title: Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2015.04.044
– volume: 30
  start-page: 62
  issue: 1
  year: 2018
  ident: 10.1016/j.jcp.2020.110028_br0170
  article-title: SPH modeling of fluid-structure interaction
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-018-0006-9
– volume: 258
  start-page: 451
  year: 2014
  ident: 10.1016/j.jcp.2020.110028_br0450
  article-title: Fluid–structure interaction involving large deformations: 3d simulations and applications to biological systems
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2013.10.047
– volume: 231
  start-page: 7057
  issue: 21
  year: 2012
  ident: 10.1016/j.jcp.2020.110028_br0400
  article-title: A generalized wall boundary condition for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2012.05.005
– volume: 232
  start-page: 139
  year: 2018
  ident: 10.1016/j.jcp.2020.110028_br0210
  article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2018.05.012
– volume: 256
  start-page: 132
  year: 2013
  ident: 10.1016/j.jcp.2020.110028_br0310
  article-title: Variable resolution for SPH: a dynamic particle coalescing and splitting scheme
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2012.12.014
– volume: 68
  start-page: 686
  issue: 6
  year: 2012
  ident: 10.1016/j.jcp.2020.110028_br0330
  article-title: Wave body interaction in 2d using smoothed particle hydrodynamics (SPH) with variable particle mass
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.2528
– year: 2020
  ident: 10.1016/j.jcp.2020.110028_br0350
  article-title: SPHinXsys: An open-source meshless, multi-resolution and multi-physics library
  publication-title: Softw. Impacts
  doi: 10.1016/j.simpa.2020.100033
– volume: 104
  start-page: 240
  year: 2019
  ident: 10.1016/j.jcp.2020.110028_br0220
  article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2019.03.033
– volume: 356
  start-page: 261
  year: 2019
  ident: 10.1016/j.jcp.2020.110028_br0190
  article-title: A smoothed particle element method (SPEM) for modeling fluid–structure interaction problems with large fluid deformations
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2019.07.024
– volume: 178
  start-page: 233
  year: 2019
  ident: 10.1016/j.jcp.2020.110028_br0150
  article-title: SPH scheme for simulating the water entry of an elastomer
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2019.02.072
– volume: 55
  start-page: 136
  year: 2012
  ident: 10.1016/j.jcp.2020.110028_br0250
  article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.06.031
– volume: 94
  start-page: 353
  issue: 3
  year: 1992
  ident: 10.1016/j.jcp.2020.110028_br0010
  article-title: A new strategy for finite element computations involving moving boundaries and interfaces
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/0045-7825(92)90060-W
– volume: 39
  start-page: 3839
  issue: 22
  year: 1996
  ident: 10.1016/j.jcp.2020.110028_br0030
  article-title: A finite point method in computational mechanics. applications to convective transport and fluid flow
  publication-title: Int. J. Numer. Methods Biomed. Eng.
  doi: 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R
– volume: 62
  issue: 8
  year: 2019
  ident: 10.1016/j.jcp.2020.110028_br0180
  article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions
  publication-title: Sci. China, Phys. Mech. Astron.
  doi: 10.1007/s11433-018-9357-0
– volume: 11
  start-page: 479
  year: 2002
  ident: 10.1016/j.jcp.2020.110028_br0020
  article-title: The immersed boundary method
  publication-title: Acta Numer.
  doi: 10.1017/S0962492902000077
– volume: 25
  start-page: 673
  issue: 5
  year: 2013
  ident: 10.1016/j.jcp.2020.110028_br0140
  article-title: Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method
  publication-title: J. Hydrodyn.
  doi: 10.1016/S1001-6058(13)60412-6
– volume: 16
  start-page: 598
  issue: 11
  year: 1992
  ident: 10.1016/j.jcp.2020.110028_br0080
  article-title: The discrete element method for the simulation of ball mills
  publication-title: Appl. Math. Model.
  doi: 10.1016/0307-904X(92)90035-2
– volume: 198
  start-page: 2785
  issue: 33–36
  year: 2009
  ident: 10.1016/j.jcp.2020.110028_br0200
  article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2009.04.001
– volume: 16
  issue: 02
  year: 2019
  ident: 10.1016/j.jcp.2020.110028_br0260
  article-title: MPS-FEM coupled method for fluid–structure interaction in 3d dam-break flows
  publication-title: Int. J. Comput. Methods
  doi: 10.1142/S021987621846009X
– volume: 273
  start-page: 640
  year: 2014
  ident: 10.1016/j.jcp.2020.110028_br0290
  article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2014.05.040
– year: 1997
  ident: 10.1016/j.jcp.2020.110028_br0380
– volume: 30
  start-page: 2075
  issue: 10
  year: 2010
  ident: 10.1016/j.jcp.2020.110028_br0460
  article-title: The effect of aging on venous valves
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.110.209049
– volume: 335
  start-page: 605
  year: 2017
  ident: 10.1016/j.jcp.2020.110028_br0060
  article-title: A weakly compressible SPH method based on a low-dissipation Riemann solver
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.01.027
– volume: 136
  start-page: 214
  issue: 1
  year: 1997
  ident: 10.1016/j.jcp.2020.110028_br0370
  article-title: Modeling low Reynolds number incompressible flows using SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1997.5776
– volume: 50
  start-page: 1638
  issue: 7
  year: 2012
  ident: 10.1016/j.jcp.2020.110028_br0440
  article-title: Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation
  publication-title: AIAA J.
  doi: 10.2514/1.J051621
– volume: 337
  start-page: 216
  year: 2017
  ident: 10.1016/j.jcp.2020.110028_br0090
  article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2017.02.016
– volume: 191
  start-page: 63
  issue: 1
  year: 1998
  ident: 10.1016/j.jcp.2020.110028_br0500
  article-title: The use of the dimensionless womersley number to characterize the unsteady nature of internal flow
  publication-title: J. Theor. Biol.
  doi: 10.1006/jtbi.1997.0564
– volume: 85
  start-page: 879
  issue: 11–14
  year: 2007
  ident: 10.1016/j.jcp.2020.110028_br0120
  article-title: Numerical simulation of fluid–structure interaction by SPH
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2007.01.002
– volume: 110
  start-page: 399
  issue: 2
  year: 1994
  ident: 10.1016/j.jcp.2020.110028_br0360
  article-title: Simulating free surface flows with SPH
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1994.1034
– year: 2019
  ident: 10.1016/j.jcp.2020.110028_br0270
  article-title: Numerical study of 3-d liquid sloshing in an elastic tank by MPS-FEM coupled method
  publication-title: J. Ship Res.
  doi: 10.5957/JOSR.09180082
– volume: 82
  start-page: 397
  year: 2019
  ident: 10.1016/j.jcp.2020.110028_br0230
  article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering
  publication-title: Appl. Ocean Res.
  doi: 10.1016/j.apor.2018.10.020
– volume: 226
  start-page: 2206
  issue: 2
  year: 2007
  ident: 10.1016/j.jcp.2020.110028_br0470
  article-title: Simulation of flexible filaments in a uniform flow by the immersed boundary method
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2007.07.002
– volume: 402
  year: 2020
  ident: 10.1016/j.jcp.2020.110028_br0100
  article-title: A weakly compressible SPH method for violent multi-phase flows with high density ratio
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109092
– year: 2009
  ident: 10.1016/j.jcp.2020.110028_br0130
  article-title: Simulations of hydro-elastic impacts using a parallel SPH model
– volume: 404
  year: 2020
  ident: 10.1016/j.jcp.2020.110028_br0410
  article-title: Dual-criteria time stepping for weakly compressible smoothed particle hydrodynamics
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2019.109135
– volume: 82
  start-page: 1013
  year: 1977
  ident: 10.1016/j.jcp.2020.110028_br0040
  article-title: A numerical approach to the testing of the fission hypothesis
  publication-title: Astron. J.
  doi: 10.1086/112164
– volume: 86
  start-page: 329
  year: 2019
  ident: 10.1016/j.jcp.2020.110028_br0160
  article-title: A stabilized TL–WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction
  publication-title: J. Fluids Struct.
  doi: 10.1016/j.jfluidstructs.2019.02.002
– volume: 217
  start-page: 66
  year: 2017
  ident: 10.1016/j.jcp.2020.110028_br0420
  article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods
  publication-title: Comput. Phys. Commun.
  doi: 10.1016/j.cpc.2017.04.005
– start-page: 371
  year: 2006
  ident: 10.1016/j.jcp.2020.110028_br0430
  article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow
SSID ssj0008548
Score 2.676393
Snippet •Different spatial-temporal resolution for fluid and solid structure.•Position-based Verlet time integration scheme.•Time-averaged velocity and acceleration to...
In this paper, we present a multi-resolution smoothed particle hydrodynamics (SPH) method for modeling fluid-structure interaction (FSI) problems. By...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110028
SubjectTerms Acceleration
Computational fluid dynamics
Computational physics
Fluid flow
Fluid-elastic structure interaction
Fluid-structure interaction
Multi-resolution
Multiple time steps
Robustness (mathematics)
Smooth particle hydrodynamics
Smoothed particle hydrodynamics
Source code
Time integration
Title A multi-resolution SPH method for fluid-structure interactions
URI https://dx.doi.org/10.1016/j.jcp.2020.110028
https://www.proquest.com/docview/2501260082
Volume 429
WOSCitedRecordID wos000618824400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1090-2716
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0008548
  issn: 0021-9991
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxwxEA_t2Ye-9LuoVdmHPrVEckl2N3kpHKJooSLUwr2Fzce2d8gqrifWv76TneyqV5S20JflCPvF_OaS305mfkPI-0paD8w2p6UvJJU-Z1SFUFLndFEKWYXKYrOJ8vBQTaf6KPW7b7t2AmXTqKsrffZfoYYxADuWzv4F3MNNYQB-A-hwBNjh-EfATzBJkMJ3dHrOx69H-6lVdJdVWJ8sZp6icmzcP4iSEedY4NDeQ1Zd1_yhDxxiOGRg40PQeefHbNjACdfVZUqa_AIE_XThbzwoDk7BL7__XNyOOvAu7QrrLjEU1pfD3MnWxHwPje23tgPOqEwzykssqOynXIlRjt-mb4wkzLfnLkqJ8q5IgaXi8buq2HGTOSoojHkU3IFTH5MVXuZajcjK5GB3-nlYjlUucTlO79ZvbXdJfksPuo-cLC3THfc4fkGeJRyyCYL9kjwKzSvyPH1AZGl6bl-TT5NsGfsMsM8Q-wywz5awz25j_4Z829s93tmnqUEGdYLnF5RHJR3FZaFyp32nZVd7WzjhZQAaXOgK6LHgdjx2ZQ08NE65tRBBMs9qpoN4S0bNaRNWSZY7q3hdATv0StqS2doGYYVS1jItXL1GWG8Z45J6fGxicmL6NMG5AWOaaEyDxlwjH4ZLzlA65aGTZW9uk7gfcjoDvvHQZRs9NCb9B1sDrH4c-y4ovv5vd31Hnt74_AYZASZhkzxxlxez9nwrOdgvqjKF2g
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-resolution+SPH+method+for+fluid-structure+interactions&rft.jtitle=Journal+of+computational+physics&rft.au=Zhang%2C+Chi&rft.au=Rezavand%2C+Massoud&rft.au=Hu%2C+Xiangyu&rft.date=2021-03-15&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=429&rft_id=info:doi/10.1016%2Fj.jcp.2020.110028&rft.externalDocID=S0021999120308020
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon