A multi-resolution SPH method for fluid-structure interactions
•Different spatial-temporal resolution for fluid and solid structure.•Position-based Verlet time integration scheme.•Time-averaged velocity and acceleration to enhance structure-fluid force matching. In this paper, we present a multi-resolution smoothed particle hydrodynamics (SPH) method for modeli...
Gespeichert in:
| Veröffentlicht in: | Journal of computational physics Jg. 429; S. 110028 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge
Elsevier Inc
15.03.2021
Elsevier Science Ltd |
| Schlagworte: | |
| ISSN: | 0021-9991, 1090-2716 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Different spatial-temporal resolution for fluid and solid structure.•Position-based Verlet time integration scheme.•Time-averaged velocity and acceleration to enhance structure-fluid force matching.
In this paper, we present a multi-resolution smoothed particle hydrodynamics (SPH) method for modeling fluid-structure interaction (FSI) problems. By introducing different smoothing lengths and time steps, the spatial-temporal discretization is applied with different resolutions for fluid and structure. To ensure momentum conservation at the fluid-structure coupling, a position-based Verlet time integration scheme is introduced. Furthermore, the time-averaged velocity and acceleration of solid particles are introduced to enhance force matching in the fluid and solid equations. A set of numerical examples including several bio-mechanical problems are considered to demonstrate the efficiency, accuracy and robustness of the present method. An open-source code for all the examples is also provided. |
|---|---|
| AbstractList | •Different spatial-temporal resolution for fluid and solid structure.•Position-based Verlet time integration scheme.•Time-averaged velocity and acceleration to enhance structure-fluid force matching.
In this paper, we present a multi-resolution smoothed particle hydrodynamics (SPH) method for modeling fluid-structure interaction (FSI) problems. By introducing different smoothing lengths and time steps, the spatial-temporal discretization is applied with different resolutions for fluid and structure. To ensure momentum conservation at the fluid-structure coupling, a position-based Verlet time integration scheme is introduced. Furthermore, the time-averaged velocity and acceleration of solid particles are introduced to enhance force matching in the fluid and solid equations. A set of numerical examples including several bio-mechanical problems are considered to demonstrate the efficiency, accuracy and robustness of the present method. An open-source code for all the examples is also provided. In this paper, we present a multi-resolution smoothed particle hydrodynamics (SPH) method for modeling fluid-structure interaction (FSI) problems. By introducing different smoothing lengths and time steps, the spatial-temporal discretization is applied with different resolutions for fluid and structure. To ensure momentum conservation at the fluid-structure coupling, a position-based Verlet time integration scheme is introduced. Furthermore, the time-averaged velocity and acceleration of solid particles are introduced to enhance force matching in the fluid and solid equations. A set of numerical examples including several bio-mechanical problems are considered to demonstrate the efficiency, accuracy and robustness of the present method. An open-source code for all the examples is also provided. |
| ArticleNumber | 110028 |
| Author | Zhang, Chi Rezavand, Massoud Hu, Xiangyu |
| Author_xml | – sequence: 1 givenname: Chi surname: Zhang fullname: Zhang, Chi email: c.zhang@tum.de – sequence: 2 givenname: Massoud orcidid: 0000-0001-8669-5664 surname: Rezavand fullname: Rezavand, Massoud email: massoud.rezavand@tum.de – sequence: 3 givenname: Xiangyu orcidid: 0000-0003-0932-6659 surname: Hu fullname: Hu, Xiangyu email: xiangyu.hu@tum.de |
| BookMark | eNp9kNFKwzAUhoNMcJs-gHcFrztPkiZtEIQx1AkDBfU6dGmCKV0zk1Tw7U2pV17sKpzwf-fwfws0612vEbrGsMKA-W27atVxRYCkGQOQ6gzNMQjISYn5DM3TF86FEPgCLUJoAaBiRTVH9-vsMHTR5l4H1w3Ruj57e91mBx0_XZMZ5zPTDbbJQ_SDioPXme2j9rUao-ESnZu6C_rq712ij8eH98023708PW_Wu1xRwmJOMBe0IgWvmBINFZRVptlzRZtCF5RxUReMU7LHWJVG0HIPwAyluoAGDAhNl-hm2nv07mvQIcrWDb5PJyVhgAlPfUhK4SmlvAvBayOP3h5q_yMxyFGTbGXSJEdNctKUmPIfo2ysx3LR17Y7Sd5NpE7Fv632Miire6Ub67WKsnH2BP0LE6-B4g |
| CitedBy_id | crossref_primary_10_1007_s00158_023_03655_0 crossref_primary_10_1007_s00707_022_03459_1 crossref_primary_10_1007_s11071_023_08641_1 crossref_primary_10_1016_j_oceaneng_2025_120818 crossref_primary_10_1016_j_enganabound_2025_106239 crossref_primary_10_1016_j_taml_2025_100592 crossref_primary_10_1016_j_cpc_2024_109429 crossref_primary_10_1016_j_apor_2024_103885 crossref_primary_10_1007_s10409_022_22185_x crossref_primary_10_1088_1873_7005_ace37b crossref_primary_10_1007_s40571_023_00643_5 crossref_primary_10_1007_s00466_024_02552_7 crossref_primary_10_1007_s40571_024_00892_y crossref_primary_10_1016_j_euromechflu_2022_04_005 crossref_primary_10_1016_j_jcp_2022_111105 crossref_primary_10_1016_j_marstruc_2023_103531 crossref_primary_10_1007_s40571_022_00519_0 crossref_primary_10_1016_j_apm_2024_115661 crossref_primary_10_1007_s40571_022_00498_2 crossref_primary_10_1007_s10409_022_22053_x crossref_primary_10_1016_j_cma_2024_117179 crossref_primary_10_1007_s11831_025_10346_0 crossref_primary_10_1007_s40571_023_00576_z crossref_primary_10_1016_j_oceaneng_2024_118041 crossref_primary_10_1016_j_camwa_2022_08_017 crossref_primary_10_1016_j_compgeo_2023_106052 crossref_primary_10_1016_j_jfluidstructs_2021_103369 crossref_primary_10_1016_j_oceaneng_2025_122673 crossref_primary_10_1016_j_oceaneng_2024_118512 crossref_primary_10_1016_j_compstruc_2022_106847 crossref_primary_10_1016_j_cma_2022_115788 crossref_primary_10_1016_j_jcp_2023_112322 crossref_primary_10_1016_j_jcp_2024_113113 crossref_primary_10_1016_j_enganabound_2025_106179 crossref_primary_10_1063_5_0228318 crossref_primary_10_1002_nme_7657 crossref_primary_10_1016_j_apor_2024_104121 crossref_primary_10_1016_j_jcp_2024_113072 crossref_primary_10_1016_j_apor_2021_102775 crossref_primary_10_1016_j_enganabound_2025_106173 crossref_primary_10_1016_j_apor_2021_102774 crossref_primary_10_1007_s40571_024_00721_2 crossref_primary_10_1016_j_compgeo_2024_106284 crossref_primary_10_1016_j_compfluid_2021_105140 crossref_primary_10_1016_j_cma_2021_114169 crossref_primary_10_1016_j_jcp_2022_111762 crossref_primary_10_1016_j_compstruc_2025_107862 crossref_primary_10_1016_j_jcp_2023_112339 crossref_primary_10_3389_fenvs_2022_889526 crossref_primary_10_1016_j_jcp_2023_112233 crossref_primary_10_1016_j_ijmultiphaseflow_2025_105256 crossref_primary_10_1016_j_cma_2025_118147 crossref_primary_10_1016_j_oceaneng_2024_117017 crossref_primary_10_1007_s12601_024_00188_5 crossref_primary_10_1016_j_apor_2021_102822 crossref_primary_10_1007_s11831_023_10013_2 crossref_primary_10_3390_en15020502 crossref_primary_10_1016_j_cpc_2023_108744 crossref_primary_10_1016_j_enganabound_2021_10_023 crossref_primary_10_1063_5_0264218 crossref_primary_10_1002_nag_3901 crossref_primary_10_32604_cmes_2024_052923 crossref_primary_10_1016_j_jcp_2025_114203 crossref_primary_10_1016_j_oceaneng_2022_110779 crossref_primary_10_1016_j_euromechflu_2023_11_005 crossref_primary_10_1007_s11433_023_2168_0 crossref_primary_10_1016_j_cma_2023_115885 crossref_primary_10_1016_j_apor_2025_104706 crossref_primary_10_1016_j_camwa_2025_07_038 crossref_primary_10_3390_jmse13091637 crossref_primary_10_1016_j_jcp_2025_113969 crossref_primary_10_3390_jmse11081483 crossref_primary_10_1007_s42241_022_0042_3 crossref_primary_10_1016_j_cma_2023_115915 crossref_primary_10_1007_s10409_022_22126_x crossref_primary_10_1007_s42241_024_0042_6 crossref_primary_10_1016_j_oceaneng_2021_109540 crossref_primary_10_1016_j_enganabound_2024_106043 crossref_primary_10_1063_5_0223930 crossref_primary_10_1063_5_0226924 crossref_primary_10_1016_j_oceaneng_2022_113110 crossref_primary_10_1016_j_cma_2024_117255 crossref_primary_10_1016_j_cma_2023_115895 crossref_primary_10_1016_j_cma_2023_116500 crossref_primary_10_1016_j_euromechflu_2022_03_011 crossref_primary_10_1016_j_cma_2022_115356 crossref_primary_10_1016_j_cma_2024_117015 crossref_primary_10_1016_j_oceaneng_2022_112026 crossref_primary_10_1063_5_0253589 crossref_primary_10_1016_j_apor_2025_104498 crossref_primary_10_1016_j_enganabound_2023_09_023 crossref_primary_10_1016_j_cpc_2025_109615 crossref_primary_10_1016_j_oceaneng_2024_118001 crossref_primary_10_1007_s00366_024_01986_0 crossref_primary_10_1016_j_enganabound_2024_105876 crossref_primary_10_1088_1742_6596_2865_1_012024 crossref_primary_10_1016_j_jfluidstructs_2025_104295 crossref_primary_10_1016_j_cma_2025_117948 crossref_primary_10_3389_fenvs_2022_1024488 crossref_primary_10_1016_j_jcp_2024_113039 crossref_primary_10_1016_j_jcp_2025_113951 crossref_primary_10_1016_j_cpc_2025_109683 crossref_primary_10_1007_s42241_022_0052_1 crossref_primary_10_1016_j_apor_2021_102734 crossref_primary_10_1016_j_cma_2024_117484 crossref_primary_10_1016_j_cpc_2022_108507 crossref_primary_10_1016_j_apor_2021_102856 crossref_primary_10_3390_biology10030185 crossref_primary_10_1016_j_cma_2022_114728 crossref_primary_10_1007_s10409_022_22248_x crossref_primary_10_1007_s42241_023_0025_z crossref_primary_10_1007_s40571_023_00591_0 crossref_primary_10_1016_j_apm_2024_06_010 crossref_primary_10_1016_j_cma_2022_115659 crossref_primary_10_1016_j_compgeo_2025_107139 crossref_primary_10_1016_j_apor_2021_102906 crossref_primary_10_1016_j_cma_2022_114680 crossref_primary_10_1017_S1446181123000160 crossref_primary_10_1016_j_jcp_2023_112270 crossref_primary_10_1016_j_cma_2024_117110 crossref_primary_10_1016_j_jmps_2024_105783 crossref_primary_10_1016_j_oceaneng_2024_119061 crossref_primary_10_1063_5_0216702 crossref_primary_10_1016_j_cmpb_2024_108034 crossref_primary_10_1080_19942060_2022_2026820 crossref_primary_10_1080_17445302_2024_2317040 crossref_primary_10_1016_j_cpc_2021_108066 crossref_primary_10_1016_j_compgeo_2025_107247 crossref_primary_10_1016_j_jcp_2023_112303 crossref_primary_10_1007_s42241_021_0031_y |
| Cites_doi | 10.1016/j.cma.2018.10.049 10.1016/j.jtbi.2016.08.025 10.1002/fld.891 10.1086/313100 10.1061/(ASCE)WW.1943-5460.0000247 10.1038/35048530 10.13182/NSE96-A24205 10.1093/mnras/181.3.375 10.1016/j.jcp.2019.04.038 10.1016/j.jcp.2015.04.044 10.1007/s42241-018-0006-9 10.1016/j.jcp.2013.10.047 10.1016/j.jcp.2012.05.005 10.1016/j.cpc.2018.05.012 10.1016/j.cma.2012.12.014 10.1002/fld.2528 10.1016/j.simpa.2020.100033 10.1016/j.enganabound.2019.03.033 10.1016/j.cma.2019.07.024 10.1016/j.oceaneng.2019.02.072 10.1016/j.oceaneng.2012.06.031 10.1016/0045-7825(92)90060-W 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R 10.1007/s11433-018-9357-0 10.1017/S0962492902000077 10.1016/S1001-6058(13)60412-6 10.1016/0307-904X(92)90035-2 10.1016/j.cma.2009.04.001 10.1142/S021987621846009X 10.1016/j.jcp.2014.05.040 10.1161/ATVBAHA.110.209049 10.1016/j.jcp.2017.01.027 10.1006/jcph.1997.5776 10.2514/1.J051621 10.1016/j.jcp.2017.02.016 10.1006/jtbi.1997.0564 10.1016/j.compstruc.2007.01.002 10.1006/jcph.1994.1034 10.5957/JOSR.09180082 10.1016/j.apor.2018.10.020 10.1016/j.jcp.2007.07.002 10.1016/j.jcp.2019.109092 10.1016/j.jcp.2019.109135 10.1086/112164 10.1016/j.jfluidstructs.2019.02.002 10.1016/j.cpc.2017.04.005 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Inc. Copyright Elsevier Science Ltd. Mar 15, 2021 |
| Copyright_xml | – notice: 2020 Elsevier Inc. – notice: Copyright Elsevier Science Ltd. Mar 15, 2021 |
| DBID | AAYXX CITATION 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| DOI | 10.1016/j.jcp.2020.110028 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1090-2716 |
| ExternalDocumentID | 10_1016_j_jcp_2020_110028 S0021999120308020 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 6OB 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFRF ABJNI ABMAC ABNEU ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACRLP ACZNC ADBBV ADEZE AEBSH AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DM4 DU5 EBS EFBJH EFLBG EO8 EO9 EP2 EP3 F5P FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HLZ HVGLF IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SPD SSQ SSV SSZ T5K TN5 UPT YQT ZMT ZU3 ~02 ~G- 29K 6TJ 8WZ 9DU A6W AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADFGL ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BBWZM CAG CITATION COF D-I EFKBS EJD FGOYB G-2 HME HMV HZ~ NDZJH R2- SBC SEW SHN SPG T9H UQL WUQ ZY4 ~HD 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c325t-21693824685c9d39358fdb6c3d4e43569a45632b11c7f937b005f33e40d0f09e3 |
| ISICitedReferencesCount | 151 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000618824400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0021-9991 |
| IngestDate | Sun Nov 09 05:49:35 EST 2025 Sat Nov 29 03:10:30 EST 2025 Tue Nov 18 22:14:29 EST 2025 Fri Feb 23 02:43:09 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiple time steps Smoothed particle hydrodynamics Multi-resolution Fluid-elastic structure interaction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-21693824685c9d39358fdb6c3d4e43569a45632b11c7f937b005f33e40d0f09e3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-8669-5664 0000-0003-0932-6659 |
| PQID | 2501260082 |
| PQPubID | 2047462 |
| ParticipantIDs | proquest_journals_2501260082 crossref_primary_10_1016_j_jcp_2020_110028 crossref_citationtrail_10_1016_j_jcp_2020_110028 elsevier_sciencedirect_doi_10_1016_j_jcp_2020_110028 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-03-15 |
| PublicationDateYYYYMMDD | 2021-03-15 |
| PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge |
| PublicationPlace_xml | – name: Cambridge |
| PublicationTitle | Journal of computational physics |
| PublicationYear | 2021 |
| Publisher | Elsevier Inc Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier Inc – name: Elsevier Science Ltd |
| References | Bhardwaj, Mittal (br0440) 2012; 50 Oñate, Idelsohn, Zienkiewicz, Taylor (br0030) 1996; 39 Tezduyar, Behr, Mittal, Liou (br0010) 1992; 94 Yang, Jones, McCue (br0250) 2012; 55 Loudon, Tordesillas (br0500) 1998; 191 Vacondio, Rogers, Stansby, Mignosa, Feldman (br0310) 2013; 256 Khayyer, Tsuruta, Shimizu, Gotoh (br0230) 2019; 82 Liu, Zhang (br0180) 2019; 62 Huang, Shin, Sung (br0470) 2007; 226 Monaghan (br0360) 1994; 110 Morris, Fox, Zhu (br0370) 1997; 136 Zhang, Xiang, Wang, Hu, Adams (br0110) 2019; 392 Ogden (br0380) 1997 Zhang, Long, Chang, Liu (br0190) 2019; 356 Gingold, Monaghan (br0050) 1977; 181 Mishra, Rajamani (br0080) 1992; 16 Zhang, Wan (br0260) 2019; 16 Han, Hu (br0170) 2018; 30 Omidvar, Stansby, Rogers (br0330) 2012; 68 Fourey, Hermange, Le Touzé, Oger (br0420) 2017; 217 Tian, Dai, Luo, Doyle, Rousseau (br0450) 2014; 258 Curatolo, Teresi (br0480) 2016; 409 Chen, Zhang, Wan (br0270) 2019 Rafiee, Thiagarajan (br0200) 2009; 198 Wang, Xu, Yang (br0150) 2019; 178 Zhang, Rezavand, Hu (br0410) 2020; 404 Bian, Li, Karniadakis (br0340) 2015; 297 Lucy (br0040) 1977; 82 Oger, Guilcher, Jacquin, Brosset, Deuff, Le Touzé (br0130) 2009 Zhang, Hu, Adams (br0060) 2017; 335 Rezavand, Zhang, Hu (br0100) 2020; 402 Peskin (br0020) 2002; 11 Zhang, Hu, Adams (br0090) 2017; 337 Zhan, Peng, Zhang, Wu (br0160) 2019; 86 Zhang, Childress, Libchaber, Shelley (br0490) 2000; 408 Vignjevic, Reveles, Campbell (br0390) 2006; 4 Barcarolo, Le Touzé, Oger, De Vuyst (br0290) 2014; 273 van Langevelde, Šrámek, Rosendaal (br0460) 2010; 30 Liu, Shao, Li (br0140) 2013; 25 Zhang, Rezavand, Zhu, Yu, Wu, Zhang, Zhang, Wang, Hu (br0350) 2020 Turek, Hron (br0430) 2006 Hu, Guo, Hu, Negrut, Xu, Pan (br0320) 2019; 347 Ren, Jin, Gao, Wang, Xu (br0240) 2013; 140 Antoci, Gallati, Sibilla (br0120) 2007; 85 Lastiwka, Quinlan, Basa (br0300) 2005; 47 Khayyer, Gotoh, Falahaty, Shimizu (br0210) 2018; 232 Sun, Le Touzé, Zhang (br0220) 2019; 104 Owen, Villumsen, Shapiro, Martel (br0280) 1998; 116 Koshizuka, Oka (br0070) 1996; 123 Adami, Hu, Adams (br0400) 2012; 231 Tian (10.1016/j.jcp.2020.110028_br0450) 2014; 258 Zhang (10.1016/j.jcp.2020.110028_br0190) 2019; 356 Mishra (10.1016/j.jcp.2020.110028_br0080) 1992; 16 Chen (10.1016/j.jcp.2020.110028_br0270) 2019 Zhang (10.1016/j.jcp.2020.110028_br0110) 2019; 392 Lastiwka (10.1016/j.jcp.2020.110028_br0300) 2005; 47 Ogden (10.1016/j.jcp.2020.110028_br0380) 1997 Lucy (10.1016/j.jcp.2020.110028_br0040) 1977; 82 Omidvar (10.1016/j.jcp.2020.110028_br0330) 2012; 68 Oger (10.1016/j.jcp.2020.110028_br0130) 2009 Barcarolo (10.1016/j.jcp.2020.110028_br0290) 2014; 273 Wang (10.1016/j.jcp.2020.110028_br0150) 2019; 178 Zhang (10.1016/j.jcp.2020.110028_br0410) 2020; 404 Adami (10.1016/j.jcp.2020.110028_br0400) 2012; 231 Oñate (10.1016/j.jcp.2020.110028_br0030) 1996; 39 Khayyer (10.1016/j.jcp.2020.110028_br0210) 2018; 232 Sun (10.1016/j.jcp.2020.110028_br0220) 2019; 104 Peskin (10.1016/j.jcp.2020.110028_br0020) 2002; 11 Rezavand (10.1016/j.jcp.2020.110028_br0100) 2020; 402 Koshizuka (10.1016/j.jcp.2020.110028_br0070) 1996; 123 Zhang (10.1016/j.jcp.2020.110028_br0350) 2020 Khayyer (10.1016/j.jcp.2020.110028_br0230) 2019; 82 Tezduyar (10.1016/j.jcp.2020.110028_br0010) 1992; 94 Zhan (10.1016/j.jcp.2020.110028_br0160) 2019; 86 Bian (10.1016/j.jcp.2020.110028_br0340) 2015; 297 Yang (10.1016/j.jcp.2020.110028_br0250) 2012; 55 Zhang (10.1016/j.jcp.2020.110028_br0260) 2019; 16 van Langevelde (10.1016/j.jcp.2020.110028_br0460) 2010; 30 Liu (10.1016/j.jcp.2020.110028_br0140) 2013; 25 Gingold (10.1016/j.jcp.2020.110028_br0050) 1977; 181 Bhardwaj (10.1016/j.jcp.2020.110028_br0440) 2012; 50 Monaghan (10.1016/j.jcp.2020.110028_br0360) 1994; 110 Owen (10.1016/j.jcp.2020.110028_br0280) 1998; 116 Han (10.1016/j.jcp.2020.110028_br0170) 2018; 30 Huang (10.1016/j.jcp.2020.110028_br0470) 2007; 226 Vacondio (10.1016/j.jcp.2020.110028_br0310) 2013; 256 Morris (10.1016/j.jcp.2020.110028_br0370) 1997; 136 Liu (10.1016/j.jcp.2020.110028_br0180) 2019; 62 Turek (10.1016/j.jcp.2020.110028_br0430) 2006 Antoci (10.1016/j.jcp.2020.110028_br0120) 2007; 85 Hu (10.1016/j.jcp.2020.110028_br0320) 2019; 347 Zhang (10.1016/j.jcp.2020.110028_br0090) 2017; 337 Rafiee (10.1016/j.jcp.2020.110028_br0200) 2009; 198 Zhang (10.1016/j.jcp.2020.110028_br0060) 2017; 335 Vignjevic (10.1016/j.jcp.2020.110028_br0390) 2006; 4 Zhang (10.1016/j.jcp.2020.110028_br0490) 2000; 408 Loudon (10.1016/j.jcp.2020.110028_br0500) 1998; 191 Ren (10.1016/j.jcp.2020.110028_br0240) 2013; 140 Curatolo (10.1016/j.jcp.2020.110028_br0480) 2016; 409 Fourey (10.1016/j.jcp.2020.110028_br0420) 2017; 217 |
| References_xml | – volume: 55 start-page: 136 year: 2012 end-page: 147 ident: br0250 article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model publication-title: Ocean Eng. – volume: 16 year: 2019 ident: br0260 article-title: MPS-FEM coupled method for fluid–structure interaction in 3d dam-break flows publication-title: Int. J. Comput. Methods – volume: 94 start-page: 353 year: 1992 end-page: 371 ident: br0010 article-title: A new strategy for finite element computations involving moving boundaries and interfaces publication-title: Comput. Methods Appl. Mech. Eng. – volume: 30 start-page: 2075 year: 2010 end-page: 2080 ident: br0460 article-title: The effect of aging on venous valves publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 181 start-page: 375 year: 1977 end-page: 389 ident: br0050 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. – year: 1997 ident: br0380 article-title: Non-linear elastic deformations – volume: 232 start-page: 139 year: 2018 end-page: 164 ident: br0210 article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions publication-title: Comput. Phys. Commun. – volume: 82 start-page: 1013 year: 1977 end-page: 1024 ident: br0040 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron. J. – year: 2020 ident: br0350 article-title: SPHinXsys: An open-source meshless, multi-resolution and multi-physics library publication-title: Softw. Impacts – volume: 68 start-page: 686 year: 2012 end-page: 705 ident: br0330 article-title: Wave body interaction in 2d using smoothed particle hydrodynamics (SPH) with variable particle mass publication-title: Int. J. Numer. Methods Fluids – volume: 178 start-page: 233 year: 2019 end-page: 245 ident: br0150 article-title: SPH scheme for simulating the water entry of an elastomer publication-title: Ocean Eng. – volume: 136 start-page: 214 year: 1997 end-page: 226 ident: br0370 article-title: Modeling low Reynolds number incompressible flows using SPH publication-title: J. Comput. Phys. – volume: 198 start-page: 2785 year: 2009 end-page: 2795 ident: br0200 article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction publication-title: Comput. Methods Appl. Mech. Eng. – volume: 217 start-page: 66 year: 2017 end-page: 81 ident: br0420 article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods publication-title: Comput. Phys. Commun. – volume: 30 start-page: 62 year: 2018 end-page: 69 ident: br0170 article-title: SPH modeling of fluid-structure interaction publication-title: J. Hydrodyn. – volume: 62 year: 2019 ident: br0180 article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions publication-title: Sci. China, Phys. Mech. Astron. – year: 2019 ident: br0270 article-title: Numerical study of 3-d liquid sloshing in an elastic tank by MPS-FEM coupled method publication-title: J. Ship Res. – volume: 123 start-page: 421 year: 1996 end-page: 434 ident: br0070 article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid publication-title: Nucl. Sci. Eng. – volume: 16 start-page: 598 year: 1992 end-page: 604 ident: br0080 article-title: The discrete element method for the simulation of ball mills publication-title: Appl. Math. Model. – volume: 226 start-page: 2206 year: 2007 end-page: 2228 ident: br0470 article-title: Simulation of flexible filaments in a uniform flow by the immersed boundary method publication-title: J. Comput. Phys. – volume: 4 start-page: 181 year: 2006 ident: br0390 article-title: SPH in a total Lagrangian formalism publication-title: CMC-Tech Science Press – volume: 47 start-page: 1403 year: 2005 end-page: 1409 ident: br0300 article-title: Adaptive particle distribution for smoothed particle hydrodynamics publication-title: Int. J. Numer. Methods Fluids – volume: 273 start-page: 640 year: 2014 end-page: 657 ident: br0290 article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method publication-title: J. Comput. Phys. – volume: 86 start-page: 329 year: 2019 end-page: 353 ident: br0160 article-title: A stabilized TL–WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction publication-title: J. Fluids Struct. – volume: 404 year: 2020 ident: br0410 article-title: Dual-criteria time stepping for weakly compressible smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 11 start-page: 479 year: 2002 end-page: 517 ident: br0020 article-title: The immersed boundary method publication-title: Acta Numer. – volume: 335 start-page: 605 year: 2017 end-page: 620 ident: br0060 article-title: A weakly compressible SPH method based on a low-dissipation Riemann solver publication-title: J. Comput. Phys. – volume: 140 year: 2013 ident: br0240 article-title: Sph-dem modeling of the hydraulic stability of 2d blocks on a slope publication-title: J. Waterw. Port Coast. Ocean Eng. – volume: 50 start-page: 1638 year: 2012 end-page: 1642 ident: br0440 article-title: Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation publication-title: AIAA J. – start-page: 371 year: 2006 end-page: 385 ident: br0430 article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow publication-title: Fluid-structure Interaction – volume: 191 start-page: 63 year: 1998 end-page: 78 ident: br0500 article-title: The use of the dimensionless womersley number to characterize the unsteady nature of internal flow publication-title: J. Theor. Biol. – volume: 356 start-page: 261 year: 2019 end-page: 293 ident: br0190 article-title: A smoothed particle element method (SPEM) for modeling fluid–structure interaction problems with large fluid deformations publication-title: Comput. Methods Appl. Mech. Eng. – volume: 85 start-page: 879 year: 2007 end-page: 890 ident: br0120 article-title: Numerical simulation of fluid–structure interaction by SPH publication-title: Comput. Struct. – volume: 409 start-page: 18 year: 2016 end-page: 26 ident: br0480 article-title: Modeling and simulation of fish swimming with active muscles publication-title: J. Theor. Biol. – volume: 82 start-page: 397 year: 2019 end-page: 414 ident: br0230 article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering publication-title: Appl. Ocean Res. – volume: 256 start-page: 132 year: 2013 end-page: 148 ident: br0310 article-title: Variable resolution for SPH: a dynamic particle coalescing and splitting scheme publication-title: Comput. Methods Appl. Mech. Eng. – volume: 392 start-page: 1 year: 2019 end-page: 18 ident: br0110 article-title: A weakly compressible SPH method with WENO reconstruction publication-title: J. Comput. Phys. – volume: 347 start-page: 402 year: 2019 end-page: 424 ident: br0320 article-title: A consistent spatially adaptive smoothed particle hydrodynamics method for fluid–structure interactions publication-title: Comput. Methods Appl. Mech. Eng. – volume: 231 start-page: 7057 year: 2012 end-page: 7075 ident: br0400 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 39 start-page: 3839 year: 1996 end-page: 3866 ident: br0030 article-title: A finite point method in computational mechanics. applications to convective transport and fluid flow publication-title: Int. J. Numer. Methods Biomed. Eng. – volume: 258 start-page: 451 year: 2014 end-page: 469 ident: br0450 article-title: Fluid–structure interaction involving large deformations: 3d simulations and applications to biological systems publication-title: J. Comput. Phys. – year: 2009 ident: br0130 article-title: Simulations of hydro-elastic impacts using a parallel SPH model publication-title: The Nineteenth International Offshore and Polar Engineering Conference – volume: 25 start-page: 673 year: 2013 end-page: 682 ident: br0140 article-title: Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method publication-title: J. Hydrodyn. – volume: 116 start-page: 155 year: 1998 ident: br0280 article-title: Adaptive smoothed particle hydrodynamics: Methodology. II publication-title: Astrophys. J. Suppl. Ser. – volume: 297 start-page: 132 year: 2015 end-page: 155 ident: br0340 article-title: Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition publication-title: J. Comput. Phys. – volume: 337 start-page: 216 year: 2017 end-page: 232 ident: br0090 article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics publication-title: J. Comput. Phys. – volume: 402 year: 2020 ident: br0100 article-title: A weakly compressible SPH method for violent multi-phase flows with high density ratio publication-title: J. Comput. Phys. – volume: 110 start-page: 399 year: 1994 end-page: 406 ident: br0360 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. – volume: 408 start-page: 835 year: 2000 ident: br0490 article-title: Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind publication-title: Nature – volume: 104 start-page: 240 year: 2019 end-page: 258 ident: br0220 article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR publication-title: Eng. Anal. Bound. Elem. – volume: 347 start-page: 402 year: 2019 ident: 10.1016/j.jcp.2020.110028_br0320 article-title: A consistent spatially adaptive smoothed particle hydrodynamics method for fluid–structure interactions publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2018.10.049 – volume: 4 start-page: 181 issue: 3 year: 2006 ident: 10.1016/j.jcp.2020.110028_br0390 article-title: SPH in a total Lagrangian formalism publication-title: CMC-Tech Science Press – volume: 409 start-page: 18 year: 2016 ident: 10.1016/j.jcp.2020.110028_br0480 article-title: Modeling and simulation of fish swimming with active muscles publication-title: J. Theor. Biol. doi: 10.1016/j.jtbi.2016.08.025 – volume: 47 start-page: 1403 issue: 10–11 year: 2005 ident: 10.1016/j.jcp.2020.110028_br0300 article-title: Adaptive particle distribution for smoothed particle hydrodynamics publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.891 – volume: 116 start-page: 155 issue: 2 year: 1998 ident: 10.1016/j.jcp.2020.110028_br0280 article-title: Adaptive smoothed particle hydrodynamics: Methodology. II publication-title: Astrophys. J. Suppl. Ser. doi: 10.1086/313100 – volume: 140 issue: 6 year: 2013 ident: 10.1016/j.jcp.2020.110028_br0240 article-title: Sph-dem modeling of the hydraulic stability of 2d blocks on a slope publication-title: J. Waterw. Port Coast. Ocean Eng. doi: 10.1061/(ASCE)WW.1943-5460.0000247 – volume: 408 start-page: 835 issue: 6814 year: 2000 ident: 10.1016/j.jcp.2020.110028_br0490 article-title: Flexible filaments in a flowing soap film as a model for one-dimensional flags in a two-dimensional wind publication-title: Nature doi: 10.1038/35048530 – volume: 123 start-page: 421 issue: 3 year: 1996 ident: 10.1016/j.jcp.2020.110028_br0070 article-title: Moving-particle semi-implicit method for fragmentation of incompressible fluid publication-title: Nucl. Sci. Eng. doi: 10.13182/NSE96-A24205 – volume: 181 start-page: 375 issue: 3 year: 1977 ident: 10.1016/j.jcp.2020.110028_br0050 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon. Not. R. Astron. Soc. doi: 10.1093/mnras/181.3.375 – volume: 392 start-page: 1 year: 2019 ident: 10.1016/j.jcp.2020.110028_br0110 article-title: A weakly compressible SPH method with WENO reconstruction publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.04.038 – volume: 297 start-page: 132 year: 2015 ident: 10.1016/j.jcp.2020.110028_br0340 article-title: Multi-resolution flow simulations by smoothed particle hydrodynamics via domain decomposition publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2015.04.044 – volume: 30 start-page: 62 issue: 1 year: 2018 ident: 10.1016/j.jcp.2020.110028_br0170 article-title: SPH modeling of fluid-structure interaction publication-title: J. Hydrodyn. doi: 10.1007/s42241-018-0006-9 – volume: 258 start-page: 451 year: 2014 ident: 10.1016/j.jcp.2020.110028_br0450 article-title: Fluid–structure interaction involving large deformations: 3d simulations and applications to biological systems publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2013.10.047 – volume: 231 start-page: 7057 issue: 21 year: 2012 ident: 10.1016/j.jcp.2020.110028_br0400 article-title: A generalized wall boundary condition for smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2012.05.005 – volume: 232 start-page: 139 year: 2018 ident: 10.1016/j.jcp.2020.110028_br0210 article-title: An enhanced ISPH–SPH coupled method for simulation of incompressible fluid–elastic structure interactions publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2018.05.012 – volume: 256 start-page: 132 year: 2013 ident: 10.1016/j.jcp.2020.110028_br0310 article-title: Variable resolution for SPH: a dynamic particle coalescing and splitting scheme publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2012.12.014 – volume: 68 start-page: 686 issue: 6 year: 2012 ident: 10.1016/j.jcp.2020.110028_br0330 article-title: Wave body interaction in 2d using smoothed particle hydrodynamics (SPH) with variable particle mass publication-title: Int. J. Numer. Methods Fluids doi: 10.1002/fld.2528 – year: 2020 ident: 10.1016/j.jcp.2020.110028_br0350 article-title: SPHinXsys: An open-source meshless, multi-resolution and multi-physics library publication-title: Softw. Impacts doi: 10.1016/j.simpa.2020.100033 – volume: 104 start-page: 240 year: 2019 ident: 10.1016/j.jcp.2020.110028_br0220 article-title: Study of a complex fluid-structure dam-breaking benchmark problem using a multi-phase SPH method with APR publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2019.03.033 – volume: 356 start-page: 261 year: 2019 ident: 10.1016/j.jcp.2020.110028_br0190 article-title: A smoothed particle element method (SPEM) for modeling fluid–structure interaction problems with large fluid deformations publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2019.07.024 – volume: 178 start-page: 233 year: 2019 ident: 10.1016/j.jcp.2020.110028_br0150 article-title: SPH scheme for simulating the water entry of an elastomer publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2019.02.072 – volume: 55 start-page: 136 year: 2012 ident: 10.1016/j.jcp.2020.110028_br0250 article-title: Free-surface flow interactions with deformable structures using an SPH–FEM model publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.06.031 – volume: 94 start-page: 353 issue: 3 year: 1992 ident: 10.1016/j.jcp.2020.110028_br0010 article-title: A new strategy for finite element computations involving moving boundaries and interfaces publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/0045-7825(92)90060-W – volume: 39 start-page: 3839 issue: 22 year: 1996 ident: 10.1016/j.jcp.2020.110028_br0030 article-title: A finite point method in computational mechanics. applications to convective transport and fluid flow publication-title: Int. J. Numer. Methods Biomed. Eng. doi: 10.1002/(SICI)1097-0207(19961130)39:22<3839::AID-NME27>3.0.CO;2-R – volume: 62 issue: 8 year: 2019 ident: 10.1016/j.jcp.2020.110028_br0180 article-title: Smoothed particle hydrodynamics (SPH) for modeling fluid-structure interactions publication-title: Sci. China, Phys. Mech. Astron. doi: 10.1007/s11433-018-9357-0 – volume: 11 start-page: 479 year: 2002 ident: 10.1016/j.jcp.2020.110028_br0020 article-title: The immersed boundary method publication-title: Acta Numer. doi: 10.1017/S0962492902000077 – volume: 25 start-page: 673 issue: 5 year: 2013 ident: 10.1016/j.jcp.2020.110028_br0140 article-title: Numerical simulation of hydro-elastic problems with smoothed particle hydrodynamics method publication-title: J. Hydrodyn. doi: 10.1016/S1001-6058(13)60412-6 – volume: 16 start-page: 598 issue: 11 year: 1992 ident: 10.1016/j.jcp.2020.110028_br0080 article-title: The discrete element method for the simulation of ball mills publication-title: Appl. Math. Model. doi: 10.1016/0307-904X(92)90035-2 – volume: 198 start-page: 2785 issue: 33–36 year: 2009 ident: 10.1016/j.jcp.2020.110028_br0200 article-title: An SPH projection method for simulating fluid-hypoelastic structure interaction publication-title: Comput. Methods Appl. Mech. Eng. doi: 10.1016/j.cma.2009.04.001 – volume: 16 issue: 02 year: 2019 ident: 10.1016/j.jcp.2020.110028_br0260 article-title: MPS-FEM coupled method for fluid–structure interaction in 3d dam-break flows publication-title: Int. J. Comput. Methods doi: 10.1142/S021987621846009X – volume: 273 start-page: 640 year: 2014 ident: 10.1016/j.jcp.2020.110028_br0290 article-title: Adaptive particle refinement and derefinement applied to the smoothed particle hydrodynamics method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2014.05.040 – year: 1997 ident: 10.1016/j.jcp.2020.110028_br0380 – volume: 30 start-page: 2075 issue: 10 year: 2010 ident: 10.1016/j.jcp.2020.110028_br0460 article-title: The effect of aging on venous valves publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.110.209049 – volume: 335 start-page: 605 year: 2017 ident: 10.1016/j.jcp.2020.110028_br0060 article-title: A weakly compressible SPH method based on a low-dissipation Riemann solver publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.01.027 – volume: 136 start-page: 214 issue: 1 year: 1997 ident: 10.1016/j.jcp.2020.110028_br0370 article-title: Modeling low Reynolds number incompressible flows using SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1997.5776 – volume: 50 start-page: 1638 issue: 7 year: 2012 ident: 10.1016/j.jcp.2020.110028_br0440 article-title: Benchmarking a coupled immersed-boundary-finite-element solver for large-scale flow-induced deformation publication-title: AIAA J. doi: 10.2514/1.J051621 – volume: 337 start-page: 216 year: 2017 ident: 10.1016/j.jcp.2020.110028_br0090 article-title: A generalized transport-velocity formulation for smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2017.02.016 – volume: 191 start-page: 63 issue: 1 year: 1998 ident: 10.1016/j.jcp.2020.110028_br0500 article-title: The use of the dimensionless womersley number to characterize the unsteady nature of internal flow publication-title: J. Theor. Biol. doi: 10.1006/jtbi.1997.0564 – volume: 85 start-page: 879 issue: 11–14 year: 2007 ident: 10.1016/j.jcp.2020.110028_br0120 article-title: Numerical simulation of fluid–structure interaction by SPH publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2007.01.002 – volume: 110 start-page: 399 issue: 2 year: 1994 ident: 10.1016/j.jcp.2020.110028_br0360 article-title: Simulating free surface flows with SPH publication-title: J. Comput. Phys. doi: 10.1006/jcph.1994.1034 – year: 2019 ident: 10.1016/j.jcp.2020.110028_br0270 article-title: Numerical study of 3-d liquid sloshing in an elastic tank by MPS-FEM coupled method publication-title: J. Ship Res. doi: 10.5957/JOSR.09180082 – volume: 82 start-page: 397 year: 2019 ident: 10.1016/j.jcp.2020.110028_br0230 article-title: Multi-resolution MPS for incompressible fluid-elastic structure interactions in ocean engineering publication-title: Appl. Ocean Res. doi: 10.1016/j.apor.2018.10.020 – volume: 226 start-page: 2206 issue: 2 year: 2007 ident: 10.1016/j.jcp.2020.110028_br0470 article-title: Simulation of flexible filaments in a uniform flow by the immersed boundary method publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2007.07.002 – volume: 402 year: 2020 ident: 10.1016/j.jcp.2020.110028_br0100 article-title: A weakly compressible SPH method for violent multi-phase flows with high density ratio publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109092 – year: 2009 ident: 10.1016/j.jcp.2020.110028_br0130 article-title: Simulations of hydro-elastic impacts using a parallel SPH model – volume: 404 year: 2020 ident: 10.1016/j.jcp.2020.110028_br0410 article-title: Dual-criteria time stepping for weakly compressible smoothed particle hydrodynamics publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2019.109135 – volume: 82 start-page: 1013 year: 1977 ident: 10.1016/j.jcp.2020.110028_br0040 article-title: A numerical approach to the testing of the fission hypothesis publication-title: Astron. J. doi: 10.1086/112164 – volume: 86 start-page: 329 year: 2019 ident: 10.1016/j.jcp.2020.110028_br0160 article-title: A stabilized TL–WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2019.02.002 – volume: 217 start-page: 66 year: 2017 ident: 10.1016/j.jcp.2020.110028_br0420 article-title: An efficient FSI coupling strategy between smoothed particle hydrodynamics and finite element methods publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2017.04.005 – start-page: 371 year: 2006 ident: 10.1016/j.jcp.2020.110028_br0430 article-title: Proposal for numerical benchmarking of fluid-structure interaction between an elastic object and laminar incompressible flow |
| SSID | ssj0008548 |
| Score | 2.676393 |
| Snippet | •Different spatial-temporal resolution for fluid and solid structure.•Position-based Verlet time integration scheme.•Time-averaged velocity and acceleration to... In this paper, we present a multi-resolution smoothed particle hydrodynamics (SPH) method for modeling fluid-structure interaction (FSI) problems. By... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 110028 |
| SubjectTerms | Acceleration Computational fluid dynamics Computational physics Fluid flow Fluid-elastic structure interaction Fluid-structure interaction Multi-resolution Multiple time steps Robustness (mathematics) Smooth particle hydrodynamics Smoothed particle hydrodynamics Source code Time integration |
| Title | A multi-resolution SPH method for fluid-structure interactions |
| URI | https://dx.doi.org/10.1016/j.jcp.2020.110028 https://www.proquest.com/docview/2501260082 |
| Volume | 429 |
| WOSCitedRecordID | wos000618824400010&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1090-2716 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008548 issn: 0021-9991 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dSxwxEA_t2Ye-9LuoVdmHPrVEckl2N3kpHKJooSLUwr2Fzce2d8gqrifWv76TneyqV5S20JflCPvF_OaS305mfkPI-0paD8w2p6UvJJU-Z1SFUFLndFEKWYXKYrOJ8vBQTaf6KPW7b7t2AmXTqKsrffZfoYYxADuWzv4F3MNNYQB-A-hwBNjh-EfATzBJkMJ3dHrOx69H-6lVdJdVWJ8sZp6icmzcP4iSEedY4NDeQ1Zd1_yhDxxiOGRg40PQeefHbNjACdfVZUqa_AIE_XThbzwoDk7BL7__XNyOOvAu7QrrLjEU1pfD3MnWxHwPje23tgPOqEwzykssqOynXIlRjt-mb4wkzLfnLkqJ8q5IgaXi8buq2HGTOSoojHkU3IFTH5MVXuZajcjK5GB3-nlYjlUucTlO79ZvbXdJfksPuo-cLC3THfc4fkGeJRyyCYL9kjwKzSvyPH1AZGl6bl-TT5NsGfsMsM8Q-wywz5awz25j_4Z829s93tmnqUEGdYLnF5RHJR3FZaFyp32nZVd7WzjhZQAaXOgK6LHgdjx2ZQ08NE65tRBBMs9qpoN4S0bNaRNWSZY7q3hdATv0StqS2doGYYVS1jItXL1GWG8Z45J6fGxicmL6NMG5AWOaaEyDxlwjH4ZLzlA65aGTZW9uk7gfcjoDvvHQZRs9NCb9B1sDrH4c-y4ovv5vd31Hnt74_AYZASZhkzxxlxez9nwrOdgvqjKF2g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-resolution+SPH+method+for+fluid-structure+interactions&rft.jtitle=Journal+of+computational+physics&rft.au=Zhang%2C+Chi&rft.au=Rezavand%2C+Massoud&rft.au=Hu%2C+Xiangyu&rft.date=2021-03-15&rft.pub=Elsevier+Inc&rft.issn=0021-9991&rft.eissn=1090-2716&rft.volume=429&rft_id=info:doi/10.1016%2Fj.jcp.2020.110028&rft.externalDocID=S0021999120308020 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |