A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization

Based on the idea of randomized coordinate descent of α-averaged operators, a randomized primal-dual optimization algorithm is introduced, where a random subset of coordinates is updated at each iteration. The algorithm builds upon a variant of a recent (deterministic) algorithm proposed by Vũ and...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on automatic control Ročník 61; číslo 10; s. 2947 - 2957
Hlavní autoři: Bianchi, Pascal, Hachem, Walid, Iutzeler, Franck
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York IEEE 01.10.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Témata:
ISSN:0018-9286, 1558-2523
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Based on the idea of randomized coordinate descent of α-averaged operators, a randomized primal-dual optimization algorithm is introduced, where a random subset of coordinates is updated at each iteration. The algorithm builds upon a variant of a recent (deterministic) algorithm proposed by Vũ and Condat that includes the well-known Alternating Direction Method of Multipliers as a particular case. The obtained algorithm is used to solve asynchronously a distributed optimization problem. A network of agents, each having a separate cost function containing a differentiable term, seek to find a consensus on the minimum of the aggregate objective. The method yields an algorithm where at each iteration, a random subset of agents wake up, update their local estimates, exchange some data with their neighbors, and go idle. Numerical results demonstrate the attractive performance of the method. The general approach can be naturally adapted to other situations where coordinate descent convex optimization algorithms are used with a random choice of the coordinates.
AbstractList Based on the idea of randomized coordinate descent of [Formula Omitted]-averaged operators, a randomized primal-dual optimization algorithm is introduced, where a random subset of coordinates is updated at each iteration. The algorithm builds upon a variant of a recent (deterministic) algorithm proposed by Vu and Condat that includes the well-known Alternating Direction Method of Multipliers as a particular case. The obtained algorithm is used to solve asynchronously a distributed optimization problem. A network of agents, each having a separate cost function containing a differentiable term, seek to find a consensus on the minimum of the aggregate objective. The method yields an algorithm where at each iteration, a random subset of agents wake up, update their local estimates, exchange some data with their neighbors, and go idle. Numerical results demonstrate the attractive performance of the method. The general approach can be naturally adapted to other situations where coordinate descent convex optimization algorithms are used with a random choice of the coordinates.
Based on the idea of randomized coordinate descent of $\alpha$-averaged operators, a randomized primal-dual optimization algorithm is introduced, where a random subset of coordinates is updated at each iteration. The algorithm builds upon a variant of a recent (deterministic) algorithm proposed by Vũ and Condat that includes the well known ADMM as a particular case. The obtained algorithm is used to solve asynchronously a distributed optimization problem. A network of agents, each having a separate cost function containing a differentiable term, seek to find a consensus on the minimum of the aggregate objective. The method yields an algorithm where at each iteration, a random subset of agents wake up, update their local estimates, exchange some data with their neighbors, and go idle. Numerical results demonstrate the attractive performance of the method. The general approach can be naturally adapted to other situations where coordinate descent convex optimization algorithms are used with a random choice of the coordinates.
Based on the idea of randomized coordinate descent of α-averaged operators, a randomized primal-dual optimization algorithm is introduced, where a random subset of coordinates is updated at each iteration. The algorithm builds upon a variant of a recent (deterministic) algorithm proposed by Vũ and Condat that includes the well-known Alternating Direction Method of Multipliers as a particular case. The obtained algorithm is used to solve asynchronously a distributed optimization problem. A network of agents, each having a separate cost function containing a differentiable term, seek to find a consensus on the minimum of the aggregate objective. The method yields an algorithm where at each iteration, a random subset of agents wake up, update their local estimates, exchange some data with their neighbors, and go idle. Numerical results demonstrate the attractive performance of the method. The general approach can be naturally adapted to other situations where coordinate descent convex optimization algorithms are used with a random choice of the coordinates.
Author Iutzeler, Franck
Hachem, Walid
Bianchi, Pascal
Author_xml – sequence: 1
  givenname: Pascal
  surname: Bianchi
  fullname: Bianchi, Pascal
  email: pascal.bianchi@telecom-paristech.fr
  organization: LTCI, Telecom ParisTech, Paris, France
– sequence: 2
  givenname: Walid
  surname: Hachem
  fullname: Hachem, Walid
  email: walid.hachem@telecom-paristech.fr
  organization: LTCI, Telecom ParisTech, Paris, France
– sequence: 3
  givenname: Franck
  surname: Iutzeler
  fullname: Iutzeler, Franck
  email: franck.iutzeler@imag.fr
  organization: LJK, Univ. Grenoble Alpes, Grenoble, France
BackLink https://hal.science/hal-01237226$$DView record in HAL
BookMark eNp9kDFv2zAQRokgAWon2Qt0IdCpg1zeSaSkUbDTJoCBdEhmgqKpmIFMqiRVwPn1ke3AQ4dMxPHed-S9Obl03hlCvgJbALD651OzXCADvkAOyIr8gsyA8ypDjvklmTEGVVZjJb6QeYyvUymKAmZEN3TpfdhYp5KhKxO1cYn-CXan-mw1qp42_YsPNm13VLkNbYaht1ol6x1Nnq5sTMG2YzJTK-6d3gbv_Bjp45Dszr4dwRty1ak-mtuP85o8_7p7Wt5n68ffD8tmnekcecpAs9rgBgE2XGkQSomyMrzTbS1qaLHUvEKskLUo2NQsWFHwznRdy2pVKMyvyY_T3K3q5XBYIeylV1beN2t5uGOAeYko_sHEfj-xQ_B_RxOTfPVjcNP3JFQ5q2soOZsodqJ08DEG053HApMH7XLSLg_a5Yf2KSL-i2ibjhpSULb_LPjtFLTGmPM7ZS4KKDF_B97hkIQ
CODEN IETAA9
CitedBy_id crossref_primary_10_1109_TAC_2017_2747505
crossref_primary_10_1109_TSIPN_2024_3375597
crossref_primary_10_1080_01630563_2016_1254243
crossref_primary_10_1016_j_neucom_2021_05_037
crossref_primary_10_1109_TSMC_2022_3200680
crossref_primary_10_1109_TNSE_2021_3122927
crossref_primary_10_1109_LSP_2018_2870951
crossref_primary_10_1109_TSIPN_2015_2509182
crossref_primary_10_1109_ACCESS_2016_2640270
crossref_primary_10_1109_TAC_2025_3539454
crossref_primary_10_1109_TSP_2024_3366437
crossref_primary_10_2478_jdis_2024_0031
crossref_primary_10_1109_TAC_2020_3033490
crossref_primary_10_1137_20M134842X
crossref_primary_10_1080_10556788_2021_2023524
crossref_primary_10_1109_TAC_2020_2996205
crossref_primary_10_1109_TAC_2019_2906924
crossref_primary_10_1109_TAC_2018_2874748
crossref_primary_10_1007_s10107_020_01599_7
crossref_primary_10_1109_TETCI_2021_3098831
crossref_primary_10_1109_TNNLS_2020_3027381
crossref_primary_10_1109_TAC_2020_2977940
crossref_primary_10_1109_TAC_2019_2901829
crossref_primary_10_1109_TPDS_2021_3072373
crossref_primary_10_1016_j_ins_2022_12_090
crossref_primary_10_1016_j_ifacol_2025_07_066
crossref_primary_10_1109_TAC_2024_3419186
crossref_primary_10_1109_TSG_2023_3308101
crossref_primary_10_3390_math10173135
crossref_primary_10_1109_JSTARS_2022_3214653
crossref_primary_10_1080_10556788_2017_1396601
crossref_primary_10_1109_TAC_2022_3173171
crossref_primary_10_1109_TCSII_2021_3132392
crossref_primary_10_1109_TII_2018_2881974
crossref_primary_10_1007_s10589_018_0037_8
crossref_primary_10_1007_s40747_022_00785_8
crossref_primary_10_1109_TCNS_2017_2774010
crossref_primary_10_1109_TAC_2020_2981035
crossref_primary_10_1007_s10479_020_03811_5
crossref_primary_10_1016_j_neucom_2018_07_005
crossref_primary_10_1109_TAC_2020_3009363
crossref_primary_10_1016_j_dsp_2022_103610
crossref_primary_10_1109_TAC_2024_3470841
crossref_primary_10_1109_TSIPN_2017_2695121
crossref_primary_10_1109_TCNS_2021_3065644
crossref_primary_10_1186_s13663_023_00751_0
crossref_primary_10_1109_TSIPN_2018_2876754
crossref_primary_10_1007_s11590_020_01614_y
crossref_primary_10_1007_s10589_017_9909_6
crossref_primary_10_1109_TSIPN_2017_2672403
crossref_primary_10_1109_TAC_2019_2930234
crossref_primary_10_1109_TIFS_2024_3515803
crossref_primary_10_1109_TAC_2019_2907711
crossref_primary_10_1109_TAC_2019_2933607
crossref_primary_10_1109_TGRS_2018_2870486
crossref_primary_10_1109_TSP_2017_2666771
crossref_primary_10_1109_TSMC_2024_3516936
crossref_primary_10_1109_TAC_2020_3011358
crossref_primary_10_1109_TAC_2018_2805260
crossref_primary_10_1016_j_energy_2021_122158
crossref_primary_10_1109_TAC_2021_3116116
crossref_primary_10_1016_j_jfranklin_2022_07_053
crossref_primary_10_1109_LSP_2017_2672684
crossref_primary_10_1287_moor_2020_1092
crossref_primary_10_1016_j_automatica_2019_02_003
crossref_primary_10_1109_TAC_2019_2937499
crossref_primary_10_1109_JPROC_2020_3026619
crossref_primary_10_1109_TNNLS_2021_3110295
crossref_primary_10_1109_TSP_2020_3011640
Cites_doi 10.1109/TIT.2006.874516
10.1561/2200000016
10.1016/0898-1221(76)90003-1
10.1002/cpa.20042
10.1109/GlobalSIP.2013.6736937
10.1016/S0168-2024(08)70034-1
10.1109/TAC.2012.2209984
10.1137/100802001
10.1109/MSP.2014.2329397
10.1109/TIT.2013.2275131
10.1007/978-1-4419-9467-7
10.1109/TSP.2007.906734
10.1109/ICASSP.2015.7178513
10.1109/TAC.2010.2079650
10.1137/0325070
10.1109/TAC.1986.1104412
10.1007/978-3-642-37801-0
10.1109/TAC.2010.2041686
10.1007/s10444-011-9254-8
10.1007/s10957-012-0245-9
10.1137/100814494
10.1515/9781400873173
10.1109/CDC.2013.6760448
10.1109/TAC.2008.2009515
10.1109/TAC.2009.2037460
10.1109/TAC.2014.2364096
10.1007/s11856-012-0091-3
10.1145/1791212.1791218
10.1109/CDC.2014.7039609
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Distributed under a Creative Commons Attribution 4.0 International License
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
– notice: Distributed under a Creative Commons Attribution 4.0 International License
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
1XC
VOOES
DOI 10.1109/TAC.2015.2512043
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005-present
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEL
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Statistics
Mathematics
EISSN 1558-2523
EndPage 2957
ExternalDocumentID oai:HAL:hal-01237226v1
4223852131
10_1109_TAC_2015_2512043
7364172
Genre orig-research
GrantInformation_xml – fundername: French Defense Agency (DGA)
  grantid: ODISSEE
  funderid: 10.13039/100005445
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
~02
AAYXX
CITATION
7SC
7SP
7TB
8FD
FR3
JQ2
L7M
L~C
L~D
RIG
1XC
VOOES
ID FETCH-LOGICAL-c325t-1c09e2d211d5ac16aa678e5fcb9691b27c5822820b260aa640445feffb09a4a23
IEDL.DBID RIE
ISICitedReferencesCount 93
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000385406100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9286
IngestDate Tue Oct 14 20:58:09 EDT 2025
Mon Jun 30 10:19:09 EDT 2025
Sat Nov 29 05:40:20 EST 2025
Tue Nov 18 22:41:40 EST 2025
Wed Aug 27 02:48:38 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Distributed Optimization
Primal-Dual Algorithm
Coordinate Descent
Consensus algorithms
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
Distributed under a Creative Commons Attribution 4.0 International License: http://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c325t-1c09e2d211d5ac16aa678e5fcb9691b27c5822820b260aa640445feffb09a4a23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2537-380X
0000-0001-8499-2761
OpenAccessLink https://hal.science/hal-01237226
PQID 1830991750
PQPubID 85475
PageCount 11
ParticipantIDs ieee_primary_7364172
proquest_journals_1830991750
crossref_primary_10_1109_TAC_2015_2512043
crossref_citationtrail_10_1109_TAC_2015_2512043
hal_primary_oai_HAL_hal_01237226v1
PublicationCentury 2000
PublicationDate 2016-10-01
PublicationDateYYYYMMDD 2016-10-01
PublicationDate_xml – month: 10
  year: 2016
  text: 2016-10-01
  day: 01
PublicationDecade 2010
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on automatic control
PublicationTitleAbbrev TAC
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Institute of Electrical and Electronics Engineers
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
– name: Institute of Electrical and Electronics Engineers
References ref35
ref13
tsianos (ref24) 2014
ref14
ref31
ref30
ref33
ref11
ref32
ref2
tsitsiklis (ref15) 1984
ref39
ref17
ref38
rauber (ref37) 2013
ref16
ref19
iutzeler (ref23) 2013
shi (ref28) 2014
ouyang (ref10) 0
jaggi (ref26) 2014
agarwal (ref34) 2011
v? (ref1) 2013; 38
ref25
ref20
combettes (ref12) 2014
fercoq (ref6) 2013
ref22
ref21
ref27
pesquet (ref36) 2014
ref29
ref8
ref7
ref9
lopes (ref18) 0
ref4
ref3
ref5
ref40
References_xml – year: 2013
  ident: ref23
  article-title: Explicit convergence rate of a distributed alternating direction method of multipliers
  publication-title: arXiv preprint arXiv 1312 1085
– year: 2011
  ident: ref34
  article-title: A reliable effective terascale linear learning system
  publication-title: arXiv preprint arXiv 1110 4198
– ident: ref40
  doi: 10.1109/TIT.2006.874516
– year: 2014
  ident: ref36
  article-title: A class of randomized primal-dual algorithms for distributed optimization
  publication-title: ArXiv e-prints
– year: 2013
  ident: ref6
  article-title: Accelerated, parallel and proximal coordinate descent
  publication-title: arXiv preprint arXiv 1312 5799
– ident: ref13
  doi: 10.1561/2200000016
– ident: ref3
  doi: 10.1016/0898-1221(76)90003-1
– ident: ref32
  doi: 10.1002/cpa.20042
– start-page: 80
  year: 0
  ident: ref10
  article-title: Stochastic alternating direction method of multipliers
  publication-title: Proc Int Conf Mach Learn
– ident: ref29
  doi: 10.1109/GlobalSIP.2013.6736937
– ident: ref4
  doi: 10.1016/S0168-2024(08)70034-1
– year: 1984
  ident: ref15
  publication-title: Problems in decentralized decision making and computation
– ident: ref21
  doi: 10.1109/TAC.2012.2209984
– ident: ref5
  doi: 10.1137/100802001
– ident: ref14
  doi: 10.1109/MSP.2014.2329397
– ident: ref20
  doi: 10.1109/TIT.2013.2275131
– ident: ref8
  doi: 10.1007/978-1-4419-9467-7
– ident: ref9
  doi: 10.1109/TSP.2007.906734
– ident: ref25
  doi: 10.1109/ICASSP.2015.7178513
– start-page: 1
  year: 0
  ident: ref18
  article-title: Distributed processing over adaptive networks
  publication-title: Proc Adaptive Sensor Array Processing Workshop
– ident: ref39
  doi: 10.1109/TAC.2010.2079650
– year: 2014
  ident: ref12
  article-title: Stochastic quasi-Fejér block-coordinate fixed point iterations with random sweeping
  publication-title: arXiv preprint arXiv 1404 7536
– ident: ref17
  doi: 10.1137/0325070
– ident: ref16
  doi: 10.1109/TAC.1986.1104412
– year: 2014
  ident: ref26
  article-title: Communication-efficient distributed dual coordinate ascent
  publication-title: arXiv preprint arXiv 1409 1458
– year: 2013
  ident: ref37
  publication-title: Parallel Programming For Multicore and Cluster Systems
  doi: 10.1007/978-3-642-37801-0
– ident: ref19
  doi: 10.1109/TAC.2010.2041686
– year: 2014
  ident: ref24
  article-title: Efficient distributed online prediction and stochastic optimization with approximate distributed mini-batches
  publication-title: arXiv preprint arXiv 1403 0603
– volume: 38
  start-page: 667
  year: 2013
  ident: ref1
  article-title: A splitting algorithm for dual monotone inclusions involving cocoercive operators
  publication-title: Adv Comput Math
  doi: 10.1007/s10444-011-9254-8
– ident: ref2
  doi: 10.1007/s10957-012-0245-9
– ident: ref31
  doi: 10.1137/100814494
– ident: ref30
  doi: 10.1515/9781400873173
– ident: ref11
  doi: 10.1109/CDC.2013.6760448
– ident: ref38
  doi: 10.1109/TAC.2008.2009515
– ident: ref35
  doi: 10.1109/TAC.2009.2037460
– year: 2014
  ident: ref28
  article-title: Extra: An exact first-order algorithm for decentralized consensus optimization
  publication-title: arXiv preprint arXiv 1404 6264
– ident: ref22
  doi: 10.1109/TAC.2014.2364096
– ident: ref7
  doi: 10.1007/s11856-012-0091-3
– ident: ref33
  doi: 10.1145/1791212.1791218
– ident: ref27
  doi: 10.1109/CDC.2014.7039609
SSID ssj0016441
Score 2.564167
Snippet Based on the idea of randomized coordinate descent of α-averaged operators, a randomized primal-dual optimization algorithm is introduced, where a random...
Based on the idea of randomized coordinate descent of [Formula Omitted]-averaged operators, a randomized primal-dual optimization algorithm is introduced,...
Based on the idea of randomized coordinate descent of $\alpha$-averaged operators, a randomized primal-dual optimization algorithm is introduced, where a...
SourceID hal
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2947
SubjectTerms Consensus algorithms
Convergence
Convex functions
coordinate descent
Cost function
distributed optimization
Mathematics
Minimization
Optimization algorithms
Optimization and Control
primal-dual algorithm
Statistics
Yttrium
Title A Coordinate Descent Primal-Dual Algorithm and Application to Distributed Asynchronous Optimization
URI https://ieeexplore.ieee.org/document/7364172
https://www.proquest.com/docview/1830991750
https://hal.science/hal-01237226
Volume 61
WOSCitedRecordID wos000385406100015&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEL
  customDbUrl:
  eissn: 1558-2523
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016441
  issn: 0018-9286
  databaseCode: RIE
  dateStart: 19630101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7a4kEPvqoYrbKIF8G0abJ57DG0Sg-l9qDiLaSbjRbaRNq04L93JkmjogheQsjuQMjsznyTmf0G4EqYoeEp4eiO55o653ghGindJv_kRVYkcrLnp6E7GnnPz2Jcg5vqLIxSKi8-U226zXP5USpX9Kus41oOR4dbh7rrusVZrSpjQH69sLq4gU2vSkkaovPg96iGy26TLze49c0F1V-pADLvrPLDHOc-5m7vf2-3D7sllmR-ofwDqKnkEHa-MAw2Qfqsl2J8OU0QU7J-wd3ExkQxMdP7K5KevaSLafY6Z2ESMf8zn82ylPWJVpc6YikcWr4nkqh009WS3aOlmZdHOI_g8e72oTfQy74KurRMO9O70hDKjDD0i-xQdp0wRI-l7FhOhCO6E9OVNsIGhAYTDHZwkBuc27GK44khQh6a1jE0kjRRJ8CUpFQkFyYuBR7bKKwkymLcizAyiqUGnc2nDmRJOk69L2ZBHnwYIkDlBKScoFSOBteVxFtBuPHH3EvUXjWNmLIH_jCgZwQVXYSW664GTdJVNatUkwatjbKDctsuA7RviJgRURmnv0udwTa-gFNU87WgkS1W6hy25DqbLhcX-Yr8AH8e21g
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Ra9swED7abrD2YVvXlqbLNlH2MpgTW5Zs69EkKxlL0z5ko2_CkeU2kNolcQr9972zHbdjY7AXYywdGJ90953v9B3AZ8UTN7IqcIIo5I4QeCEaKUeSf4pSP1UV2fOvcTiZRFdX6nILvrZnYay1VfGZ7dFtlctPC7OmX2X90A8EOtxteCGF4F59WqvNGZBnr-0ubmEetUlJV_Wn8YCquGSPvLkr_N-c0PYNlUBWvVX-MMiVlzl783_v9xZeN2iSxbX692HL5u9g7xnH4AGYmA0KjDDnOaJKNqzZm9glkUwsnOGapBfXxXJe3tyyJE9Z_JTRZmXBhkSsSz2xLA6tHnJDZLrFesUu0NbcNoc4D-Hn2bfpYOQ0nRUc43NZOp5xleUpBn-pTIwXJAn6LCszM1OB8mY8NBKBA4KDGYY7OChcIWRms2zmqkQk3D-CnbzI7TEwaygZKRTHxSAyicLWoCxGvggk08x0oL_51No0tOPU_WKhq_DDVRqVo0k5ulFOB760Enc15cY_5p6i9tppxJU9iseanhFYDBFc3nsdOCBdtbMaNXWgu1G2bjbuSqOFQ8yMmMo9-bvUJ3g1mp6P9fj75Md72MWXCeravi7slMu1_QAvzX05Xy0_VqvzEQ523p8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+Coordinate+Descent+Primal-Dual+Algorithm+and+Application+to+Distributed+Asynchronous+Optimization&rft.jtitle=IEEE+transactions+on+automatic+control&rft.au=Bianchi%2C+Pascal&rft.au=Hachem%2C+Walid&rft.au=Iutzeler%2C+Franck&rft.date=2016-10-01&rft.pub=IEEE&rft.issn=0018-9286&rft.volume=61&rft.issue=10&rft.spage=2947&rft.epage=2957&rft_id=info:doi/10.1109%2FTAC.2015.2512043&rft.externalDocID=7364172
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9286&client=summon