Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks
In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the developm...
Saved in:
| Published in: | Computer methods in applied mechanics and engineering Vol. 389; p. 114333 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Amsterdam
Elsevier B.V
01.02.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 0045-7825, 1879-2138 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the development of physics informed neural networks (PINN) for the solution of partial differential equations. We introduce geometry-aware trial functions in artificial neural networks to improve the training in deep learning for partial differential equations. To this end, we use concepts from constructive solid geometry (R-functions) and generalized barycentric coordinates (mean value potential fields) to construct ϕ(x), an approximate distance function to the boundary of a domain in Rd. To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as ϕ(x) multiplied by the PINN approximation, and its generalization via transfinite interpolation is used to a priori satisfy inhomogeneous Dirichlet (essential), Neumann (natural), and Robin boundary conditions on complex geometries. In doing so, we eliminate modeling error associated with the satisfaction of boundary conditions in a collocation method and ensure that kinematic admissibility is met pointwise in a Ritz method. With this new ansatz, the training for the neural network is simplified: sole contribution to the loss function is from the residual error at interior collocation points where the governing equation is required to be satisfied. Numerical solutions are computed using strong form collocation and Ritz minimization. To convey the main ideas and to assess the accuracy of the approach, we present numerical solutions for linear and nonlinear boundary-value problems over convex and nonconvex polygonal domains as well as over domains with curved boundaries. Benchmark problems in one dimension for linear elasticity, advection-diffusion, and beam bending; and in two dimensions for the steady-state heat equation, Laplace equation, biharmonic equation (Kirchhoff plate bending), and the nonlinear Eikonal equation are considered. The construction of approximate distance functions using R-functions extends to higher dimensions, and we showcase its use by solving a Poisson problem with homogeneous Dirichlet boundary conditions over the four-dimensional hypercube. The proposed approach consistently outperforms a standard PINN-based collocation method, which underscores the importance of exactly (a priori) satisfying the boundary condition when constructing a loss function in PINN. This study provides a pathway for meshfree analysis to be conducted on the exact geometry without domain discretization. |
|---|---|
| AbstractList | In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the development of physics informed neural networks (PINN) for the solution of partial differential equations. We introduce geometry-aware trial functions in artificial neural networks to improve the training in deep learning for partial differential equations. To this end, we use concepts from constructive solid geometry (R-functions) and generalized barycentric coordinates (mean value potential fields) to construct ϕ(x), an approximate distance function to the boundary of a domain in ℝd. To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as ϕ(x) multiplied by the PINN approximation, and its generalization via transfinite interpolation is used to a priori satisfy inhomogeneous Dirichlet (essential), Neumann (natural), and Robin boundary conditions on complex geometries. In doing so, we eliminate modeling error associated with the satisfaction of boundary conditions in a collocation method and ensure that kinematic admissibility is met pointwise in a Ritz method. With this new ansatz, the training for the neural network is simplified: sole contribution to the loss function is from the residual error at interior collocation points where the governing equation is required to be satisfied. Numerical solutions are computed using strong form collocation and Ritz minimization. To convey the main ideas and to assess the accuracy of the approach, we present numerical solutions for linear and nonlinear boundary-value problems over convex and nonconvex polygonal domains as well as over domains with curved boundaries. Benchmark problems in one dimension for linear elasticity, advection-diffusion, and beam bending; and in two dimensions for the steady-state heat equation, Laplace equation, biharmonic equation (Kirchhoff plate bending), and the nonlinear Eikonal equation are considered. The construction of approximate distance functions using R-functions extends to higher dimensions, and we showcase its use by solving a Poisson problem with homogeneous Dirichlet boundary conditions over the four-dimensional hypercube. The proposed approach consistently outperforms a standard PINN-based collocation method, which underscores the importance of exactly (a priori) satisfying the boundary condition when constructing a loss function in PINN. This study provides a pathway for meshfree analysis to be conducted on the exact geometry without domain discretization. In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the development of physics informed neural networks (PINN) for the solution of partial differential equations. We introduce geometry-aware trial functions in artificial neural networks to improve the training in deep learning for partial differential equations. To this end, we use concepts from constructive solid geometry (R-functions) and generalized barycentric coordinates (mean value potential fields) to construct ϕ(x), an approximate distance function to the boundary of a domain in Rd. To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as ϕ(x) multiplied by the PINN approximation, and its generalization via transfinite interpolation is used to a priori satisfy inhomogeneous Dirichlet (essential), Neumann (natural), and Robin boundary conditions on complex geometries. In doing so, we eliminate modeling error associated with the satisfaction of boundary conditions in a collocation method and ensure that kinematic admissibility is met pointwise in a Ritz method. With this new ansatz, the training for the neural network is simplified: sole contribution to the loss function is from the residual error at interior collocation points where the governing equation is required to be satisfied. Numerical solutions are computed using strong form collocation and Ritz minimization. To convey the main ideas and to assess the accuracy of the approach, we present numerical solutions for linear and nonlinear boundary-value problems over convex and nonconvex polygonal domains as well as over domains with curved boundaries. Benchmark problems in one dimension for linear elasticity, advection-diffusion, and beam bending; and in two dimensions for the steady-state heat equation, Laplace equation, biharmonic equation (Kirchhoff plate bending), and the nonlinear Eikonal equation are considered. The construction of approximate distance functions using R-functions extends to higher dimensions, and we showcase its use by solving a Poisson problem with homogeneous Dirichlet boundary conditions over the four-dimensional hypercube. The proposed approach consistently outperforms a standard PINN-based collocation method, which underscores the importance of exactly (a priori) satisfying the boundary condition when constructing a loss function in PINN. This study provides a pathway for meshfree analysis to be conducted on the exact geometry without domain discretization. |
| ArticleNumber | 114333 |
| Author | Sukumar, N. Srivastava, Ankit |
| Author_xml | – sequence: 1 givenname: N. orcidid: 0000-0001-6744-7673 surname: Sukumar fullname: Sukumar, N. email: nsukumar@ucdavis.edu organization: Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA – sequence: 2 givenname: Ankit surname: Srivastava fullname: Srivastava, Ankit organization: Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA |
| BookMark | eNp9kE1LAzEURYNUsFZ_gLuA66n5mOmkuJJSP6DgRtchk7yhqW0yJhlr_72p48pFs3nwuOeFey7RyHkHCN1QMqWEzu42U71TU0YYnVJacs7P0JiKel4wysUIjQkpq6IWrLpAlzFuSH6CsjFaL7-VTtjuOh9tst5h3-LG986ocMDaO_O7jXhv0xobG5NyGnDbOz3srcPd-hCtjoV1rQ87MNgAdNhBH9Q2j7T34SNeofNWbSNc_80Jen9cvi2ei9Xr08viYVVozqpU0EZVRjDTEM2bOdQaeFkpYSpNjFCCAADJmRmYulSzhtdzaoRgrMk9WVtSPkG3w90u-M8eYpIb3weXv5Rsxud1rl1XOVUPKR18jAFaqW1Sx0YpKLuVlMijVrmRWas8apWD1kzSf2QX7C7LOsncDwzk4l8WgozaQvZobACdpPH2BP0D5zeT-Q |
| CitedBy_id | crossref_primary_10_1016_j_cma_2024_117226 crossref_primary_10_1016_j_cma_2023_116012 crossref_primary_10_1007_s11263_025_02476_6 crossref_primary_10_1016_j_compositesa_2025_108820 crossref_primary_10_1016_j_engstruct_2025_120262 crossref_primary_10_1016_j_jmps_2025_106222 crossref_primary_10_1016_j_jocs_2024_102384 crossref_primary_10_1115_1_4066054 crossref_primary_10_1016_j_cnsns_2024_108129 crossref_primary_10_1016_j_cageo_2024_105611 crossref_primary_10_1016_j_engappai_2024_109913 crossref_primary_10_1007_s00466_023_02365_0 crossref_primary_10_1007_s11831_023_09890_4 crossref_primary_10_3390_jmse12081372 crossref_primary_10_1016_j_neunet_2025_107983 crossref_primary_10_1016_j_cma_2024_116805 crossref_primary_10_23939_cds2025_01_011 crossref_primary_10_1016_j_apm_2025_116232 crossref_primary_10_1002_aic_18436 crossref_primary_10_1016_j_mechrescom_2025_104468 crossref_primary_10_3390_math12203285 crossref_primary_10_1016_j_cma_2025_118308 crossref_primary_10_1016_j_engstruct_2023_117093 crossref_primary_10_1007_s11431_024_2873_2 crossref_primary_10_1016_j_triboint_2023_108871 crossref_primary_10_1007_s00466_023_02288_w crossref_primary_10_1016_j_cma_2024_117691 crossref_primary_10_1016_j_cmpb_2025_109044 crossref_primary_10_3390_app14167002 crossref_primary_10_1137_23M1583375 crossref_primary_10_1016_j_compstruct_2024_118314 crossref_primary_10_1017_jfm_2025_10325 crossref_primary_10_1016_j_ymssp_2024_111920 crossref_primary_10_1017_S0373463322000455 crossref_primary_10_1016_j_cma_2025_117909 crossref_primary_10_1016_j_enganabound_2024_01_004 crossref_primary_10_1016_j_buildenv_2024_111175 crossref_primary_10_1016_j_engappai_2025_111847 crossref_primary_10_1007_s00466_025_02677_3 crossref_primary_10_1016_j_engappai_2023_106660 crossref_primary_10_1093_gji_ggaf243 crossref_primary_10_1016_j_cma_2024_117727 crossref_primary_10_3390_a17090415 crossref_primary_10_1016_j_jcp_2025_113994 crossref_primary_10_1016_j_camwa_2024_01_021 crossref_primary_10_1137_23M1588196 crossref_primary_10_1137_22M1515392 crossref_primary_10_1007_s42985_023_00244_0 crossref_primary_10_1016_j_cma_2025_118015 crossref_primary_10_1016_j_engappai_2023_106908 crossref_primary_10_1109_TUFFC_2024_3411718 crossref_primary_10_1007_s10915_023_02379_z crossref_primary_10_1186_s13362_024_00141_0 crossref_primary_10_1016_j_compstruct_2025_119608 crossref_primary_10_1016_j_eswa_2023_122903 crossref_primary_10_1093_mnras_stad1810 crossref_primary_10_1016_j_cpc_2024_109202 crossref_primary_10_1016_j_cma_2022_115852 crossref_primary_10_1007_s00170_025_15551_6 crossref_primary_10_1016_j_neunet_2024_106750 crossref_primary_10_1016_j_engappai_2025_111458 crossref_primary_10_1007_s10489_025_06669_x crossref_primary_10_1016_j_cma_2023_116561 crossref_primary_10_1016_j_optlastec_2025_113828 crossref_primary_10_1016_j_infsof_2025_107735 crossref_primary_10_1016_j_engstruct_2025_119884 crossref_primary_10_1007_s00366_024_01957_5 crossref_primary_10_1016_j_advwatres_2023_104448 crossref_primary_10_1016_j_engappai_2023_107324 crossref_primary_10_1016_j_cma_2024_117274 crossref_primary_10_1016_j_enganabound_2025_106161 crossref_primary_10_1063_5_0286075 crossref_primary_10_1093_pnasnexus_pgae005 crossref_primary_10_1145_3618403 crossref_primary_10_1007_s11071_024_09642_4 crossref_primary_10_1016_j_cma_2025_118260 crossref_primary_10_1016_j_inffus_2023_102041 crossref_primary_10_1029_2024JH000438 crossref_primary_10_1109_TGRS_2025_3581638 crossref_primary_10_1080_10255842_2025_2471504 crossref_primary_10_1016_j_camwa_2025_02_004 crossref_primary_10_1016_j_compchemeng_2023_108500 crossref_primary_10_1137_23M1601195 crossref_primary_10_1111_str_12431 crossref_primary_10_1007_s10915_022_01950_4 crossref_primary_10_1007_s10409_025_25340_x crossref_primary_10_3390_app132111983 crossref_primary_10_1007_s11071_025_11062_x crossref_primary_10_1016_j_cma_2025_117787 crossref_primary_10_1016_j_apm_2025_116301 crossref_primary_10_1093_mnras_staf1438 crossref_primary_10_1016_j_cad_2024_103709 crossref_primary_10_1111_mice_13405 crossref_primary_10_1115_1_4068396 crossref_primary_10_1016_j_cpc_2025_109867 crossref_primary_10_1007_s40819_025_01988_6 crossref_primary_10_1111_mice_70045 crossref_primary_10_1002_jnm_3264 crossref_primary_10_1016_j_compgeo_2025_107110 crossref_primary_10_1016_j_knosys_2024_111831 crossref_primary_10_1126_sciadv_ads5236 crossref_primary_10_1016_j_cma_2023_116569 crossref_primary_10_1016_j_jcp_2025_114156 crossref_primary_10_1016_j_istruc_2024_107051 crossref_primary_10_1007_s00366_024_02040_9 crossref_primary_10_1016_j_cma_2024_117655 crossref_primary_10_1177_02783649241238766 crossref_primary_10_3390_w17172621 crossref_primary_10_1007_s00466_024_02475_3 crossref_primary_10_1007_s00366_023_01871_2 crossref_primary_10_1016_j_jhydrol_2025_133624 crossref_primary_10_3390_math12213315 crossref_primary_10_1007_s44379_025_00015_1 crossref_primary_10_1016_j_cma_2023_116184 crossref_primary_10_1137_23M1601249 crossref_primary_10_1007_s00366_024_01971_7 crossref_primary_10_1016_j_ces_2025_122348 crossref_primary_10_1007_s00366_024_02090_z crossref_primary_10_1016_j_camwa_2024_02_041 crossref_primary_10_1016_j_jmps_2024_105714 crossref_primary_10_1007_s11431_022_2118_9 crossref_primary_10_3390_a18060334 crossref_primary_10_1016_j_jcp_2024_112904 crossref_primary_10_1016_j_tws_2023_111044 crossref_primary_10_1063_5_0279565 crossref_primary_10_1016_j_jcp_2023_112003 crossref_primary_10_1016_j_ijmecsci_2024_109210 crossref_primary_10_1016_j_cma_2025_117889 crossref_primary_10_1016_j_actaastro_2024_10_029 crossref_primary_10_1007_s11565_022_00441_6 crossref_primary_10_1016_j_cma_2024_117122 crossref_primary_10_1016_j_cma_2025_117764 crossref_primary_10_1177_10812865251362165 crossref_primary_10_1016_j_engstruct_2023_117235 crossref_primary_10_1016_j_cageo_2023_105477 crossref_primary_10_1016_j_ces_2023_119285 crossref_primary_10_1016_j_est_2024_113103 crossref_primary_10_1016_j_cpc_2025_109719 crossref_primary_10_1109_ACCESS_2022_3178589 crossref_primary_10_1016_j_rineng_2025_105440 crossref_primary_10_1007_s11709_025_1178_3 crossref_primary_10_1016_j_cma_2023_116505 crossref_primary_10_1098_rsta_2024_0324 crossref_primary_10_1007_s00466_025_02666_6 crossref_primary_10_1016_j_cma_2024_117637 crossref_primary_10_1002_nme_7585 crossref_primary_10_1016_j_oceaneng_2023_113737 crossref_primary_10_1016_j_ijmecsci_2025_110111 crossref_primary_10_1007_s00366_024_01955_7 crossref_primary_10_1007_s10483_025_3240_7 crossref_primary_10_1007_s00466_023_02309_8 crossref_primary_10_1121_10_0009057 crossref_primary_10_2514_1_J062870 crossref_primary_10_1016_j_cma_2024_117197 crossref_primary_10_1016_j_cma_2025_118184 crossref_primary_10_1016_j_euromechsol_2024_105332 crossref_primary_10_1016_j_cma_2022_115491 crossref_primary_10_1016_j_jocs_2025_102696 crossref_primary_10_1134_S106456242460194X crossref_primary_10_1016_j_compstruc_2023_107215 crossref_primary_10_1080_10407790_2023_2264489 crossref_primary_10_1093_imanum_drae081 crossref_primary_10_1016_j_jocs_2025_102613 crossref_primary_10_1007_s00366_024_01981_5 crossref_primary_10_1007_s11063_024_11644_7 crossref_primary_10_1038_s42005_024_01911_3 crossref_primary_10_26599_FRICT_2025_9441035 crossref_primary_10_1016_j_euromechsol_2022_104849 crossref_primary_10_1016_j_dte_2025_100057 crossref_primary_10_1016_j_neunet_2024_106286 crossref_primary_10_1016_j_cma_2025_117806 crossref_primary_10_1016_j_jcp_2025_114244 crossref_primary_10_1016_j_jsv_2025_119022 crossref_primary_10_1063_5_0277600 crossref_primary_10_1016_j_jcp_2024_113656 crossref_primary_10_1016_j_cma_2024_116779 crossref_primary_10_1016_j_cma_2024_117628 crossref_primary_10_1063_5_0258420 crossref_primary_10_1016_j_compstruc_2025_107899 crossref_primary_10_1016_j_heliyon_2023_e18820 |
| Cites_doi | 10.1016/j.jcp.2003.11.010 10.1016/S0010-4655(97)00054-4 10.1109/72.712178 10.1016/j.cma.2014.07.012 10.1016/S0010-4485(99)00043-3 10.1017/S096249290631001X 10.1162/neco.1991.3.2.246 10.1109/CVPR.2019.00025 10.1007/BF02574375 10.1016/j.jcp.2021.110600 10.1016/0898-1221(90)90270-T 10.1137/S0036144503429121 10.1142/S021865430400064X 10.1016/j.cma.2021.113938 10.1137/S0036142900373208 10.1109/TNN.2009.2020735 10.1073/pnas.1718942115 10.1016/j.cma.2014.10.012 10.1016/j.cad.2012.10.035 10.1002/nme.1534 10.1016/j.cam.2009.02.103 10.1002/nme.6150 10.1007/s003710050170 10.1090/S0025-5718-04-01678-3 10.1016/j.cagd.2007.12.003 10.1002/nme.1885 10.1016/S0167-8396(03)00002-5 10.1137/19M1274067 10.1016/j.gmod.2004.01.003 10.1002/nme.1193 10.1016/0893-6080(91)90009-T 10.1145/1183287.1183295 10.1007/s004660050479 10.1016/j.neucom.2019.12.099 10.1016/j.cma.2020.113115 10.1037/h0042519 10.1016/0898-1221(90)90271-K 10.1007/s003660200027 10.1002/nme.2793 10.1142/S0219530519410136 10.1109/72.870037 10.1017/S0962492906270016 10.1145/3131280 10.4208/cmr.2020-0051 10.1007/s40304-018-0127-z 10.1016/0893-6080(89)90020-8 10.1111/cgf.12611 10.1115/1.3005099 10.1016/S0167-8396(01)00015-2 10.1016/j.jcp.2018.10.045 10.1016/j.jcp.2018.08.029 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N 10.1115/1.3572035 10.1017/S0962492914000129 10.1016/j.jcp.2020.110085 10.1063/1.2149812 10.1162/neco.1996.8.1.164 10.1145/304012.304038 10.1093/comjnl/16.2.157 10.1016/j.cma.2019.112790 10.1002/nme.1052 10.1145/2451236.2451238 10.1145/1073204.1073229 10.1016/S0893-6080(09)80018-X 10.21105/joss.00747 10.1016/j.neucom.2018.06.056 10.1017/S0962492902000090 10.1016/j.finel.2011.03.001 10.1016/j.cma.2021.113796 10.1002/nme.6012 10.1111/1467-8659.114 10.1016/j.cma.2004.10.008 10.1115/1.4046892 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. Copyright Elsevier BV Feb 1, 2022 |
| Copyright_xml | – notice: 2021 Elsevier B.V. – notice: Copyright Elsevier BV Feb 1, 2022 |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1016/j.cma.2021.114333 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1879-2138 |
| ExternalDocumentID | 10_1016_j_cma_2021_114333 S0045782521006186 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABFNM ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACIWK ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K TN5 WH7 XPP ZMT ~02 ~G- 29F 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW VH1 VOH WUQ ZY4 ~HD 7SC 7TB 8FD AFXIZ AGCQF AGRNS BNPGV FR3 JQ2 KR7 L7M L~C L~D SSH |
| ID | FETCH-LOGICAL-c325t-1ba5d82db0c3b9e7ce345a8d5c0d8a80eee01ba6ed74a6b3791d8822b2132f413 |
| ISICitedReferencesCount | 212 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000783073400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7825 |
| IngestDate | Fri Jul 25 05:45:31 EDT 2025 Tue Nov 18 22:13:32 EST 2025 Sat Nov 29 07:27:36 EST 2025 Fri Feb 23 02:41:00 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Exact geometry Meshfree method Distance function R-function Transfinite interpolation |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c325t-1ba5d82db0c3b9e7ce345a8d5c0d8a80eee01ba6ed74a6b3791d8822b2132f413 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0001-6744-7673 |
| PQID | 2639708175 |
| PQPubID | 2045269 |
| ParticipantIDs | proquest_journals_2639708175 crossref_citationtrail_10_1016_j_cma_2021_114333 crossref_primary_10_1016_j_cma_2021_114333 elsevier_sciencedirect_doi_10_1016_j_cma_2021_114333 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-02-01 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: 2022-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Computer methods in applied mechanics and engineering |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Ricci (b105) 1973; 16 Berg, Nyström (b7) 2018; 317 Thoutireddy, Ortiz (b38) 2004; 61 Biswas, Shapiro (b29) 2004; 66 Lagaris, Likas, Fotiadis (b2) 1997; 104 Grinspun (b40) 2003 Wang, Wang, Perdikaris (b98) 2021; 384 V. Shapiro, I. Tsukanov, Implicit functions with guaranteed differential properties, in: Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications, 1999, pp. 258–269. LeNail (b90) 2019; 4 Wang, Teng, Perdikaris (b16) 2020 He, Li, Xu, Zheng (b39) 2018 Kantorovich, Krylov (b21) 1958 Tsukanov, Posireddy (b71) 2011; 11 McFall (b4) 2006 Shapiro (b30) 2007; 16 Kharazmi, Zhang, Karniadakis (b11) 2019 Bradbury, Frostig, Hawkins, Johnson, Leary, Maclaurin, Necula, Paszke, VanderPlas, Wanderman-Milne, Zhang (b93) 2018 Bloomenthal (b73) 1997; 16 Babuška, Melenk (b49) 1997; 40 Belyaev, Fayolle (b77) 2017 Barthe, Wyvill, De Groot (b107) 2004; 10 Freytag, Shapiro, Tsukanov (b31) 2011; 47 Bisong (b94) 2019 Babuška, Banerjee, Osborn (b19) 2003; 12 Lyu, Wu, Du, Chen (b18) 2020 Schlömer, Hariharan (b95) 2020 Shapiro (b26) 1991 Timoshenko, Woinowsky-Krieger (b101) 1959 Chen, Du, Wu (b17) 2020; 36 Hennigh, Narasimhan, Nabian, Subramaniam, Tangsali, Fang, Rietmann, Byeon, Choudhry (b70) 2021 Upreti, Song, Tambat, Subbarayan (b75) 2014; 280 E, Yu (b9) 2018; 6 Sherstyuk (b106) 1999; 15 Greco, Arroyo (b60) 2020; 367 Hornik, Stinchcombe, White (b66) 1989; 2 Floater (b78) 2015; 24 J.J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, Deepsdf: Learning continuous signed distance functions for shape representation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 165–174. (b80) 2017 Chin, Sukumar (b84) 2021; 380 Sukumar (b52) 2005; 803 Floater (b34) 2003; 20 Sethian (b72) 1999 Hughes, Cottrell, Bazilevs (b37) 2005; 194 Ramabathiran, Ramachandran (b59) 2021; 445 Shepard (b85) 1968 Mhaskar (b57) 1996; 8 Lu, Meng, Mao, Karniadakis (b13) 2021; 63 Dwivedi, Srinivasan (b62) 2020; 391 Rvachev, Sheiko (b23) 1995; 48 Opschoor, Petersen, Schwab (b42) 2020; 18 Belyaev, Fayolle (b111) 2019 Shapiro, Tsukanov (b28) 2002; 18 Sirignano, Spiliopoulos (b8) 2018; 375 Rohrhofer, Posch, Geiger (b69) 2021 Cecil, Qian, Osher (b104) 2004; 196 Rajan (b50) 1994; 12 Guo, Zhuang, Rabczuk (b102) 2021 Sukumar, Wright (b54) 2007; 70 Shapiro, Tsukanov (b27) 1999; 31 Raissi, Perdikaris, Karniadakis (b6) 2019; 378 Gourmel, Barthe, Cani, Wyvill, Bernhardt, Paulin, Grasberger (b108) 2013; 32 Rvachev (b22) 1982 Liao, Ming (b64) 2019 Lee, Trask, Patel, Gulian, Cyr (b58) 2021 Sukumar (b51) 2004; 61 Kansa (b43) 1990; 19 Persson, Strang (b96) 2004; 46 Dyken, Floater (b35) 2009; 26 Shewchuk (b100) 1996; vol. 1148 Dwivedi, Srinivasan (b63) 2020; 20 Ju, Schaefer, Warren (b83) 2005; 24 Kansa (b44) 1990; 19 Hornik (b67) 1991; 4 Rosolen, Millán, Arroyo (b55) 2010; 82 Park, Sandberg (b56) 1991; 3 Sheng, Yang (b61) 2021; 428 Rahaman, Baratin, Arpit, Draxler, Lin, Hamprecht, Bengio, Courville (b97) 2019 McFall, Mahan (b5) 2009; 20 Han, Jentzen, E (b10) 2018; 115 Pushkar, Meyer, DeRose, Green, Sanocki (b99) 2007; 26 Li, Liu (b65) 2004 Belyaev, Fayolle, Pasko (b36) 2013; 45 Arroyo, Ortiz (b53) 2007; vol. 57 Buhmann (b45) 2003 Lagaris, Likas, Papageorgiou (b3) 2000; 11 Hornik (b89) 1993; 6 Schaback, Wendland (b47) 2006; 15 Bruvoll, Floater (b82) 2010; 233 Belyaev, Fayolle (b109) 2015; 34 Crane, Weischedel, Wardetzky (b110) 2017; 60 Kingma, Ba (b91) 2014 Lagaris, Likas, Fotiadis (b1) 1998; 9 Millán, Sukumar, Arroyo (b33) 2015; 284 Anisimov (b79) 2017 Strang, Fix (b68) 1973 Finol, Lu, Mahadevan, Srivastava (b88) 2019; 118 Hormann, Floater (b81) 2006; 25 LeCun (b87) 1998 Rosenblatt (b86) 1958; 65 Fasshauer (b46) 2007 Zhao (b103) 2005; 74 Rvachev, Sheiko, Shapiro, Tsukanov (b25) 2001; 18 Rvachev, Sheiko, Shapiro, Tsukanov (b24) 2000; 25 Huerta, Belytschko, Fernández-Méndez, Rabczuk, Zhuang, Arroyo (b20) 2017; vol. 2 Cyr, Gulian, Patel, Perego, Trask (b41) 2020 Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b92) 2020; 362 Höllig, Reif, Wipper (b32) 2001; 39 Chin, Sukumar (b76) 2019; 120 Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (b15) 2019; 32 Arroyo, Ortiz (b48) 2006; 65 Kharazmi, Zhang, Karniadakis (b12) 2020; 374 Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (b14) 2016 Belyaev (10.1016/j.cma.2021.114333_b77) 2017 Park (10.1016/j.cma.2021.114333_b56) 1991; 3 Rajan (10.1016/j.cma.2021.114333_b50) 1994; 12 Chin (10.1016/j.cma.2021.114333_b84) 2021; 380 Belyaev (10.1016/j.cma.2021.114333_b111) 2019 10.1016/j.cma.2021.114333_b74 Shapiro (10.1016/j.cma.2021.114333_b27) 1999; 31 Strang (10.1016/j.cma.2021.114333_b68) 1973 Sukumar (10.1016/j.cma.2021.114333_b52) 2005; 803 Shapiro (10.1016/j.cma.2021.114333_b26) 1991 LeNail (10.1016/j.cma.2021.114333_b90) 2019; 4 Barthe (10.1016/j.cma.2021.114333_b107) 2004; 10 Belyaev (10.1016/j.cma.2021.114333_b109) 2015; 34 Timoshenko (10.1016/j.cma.2021.114333_b101) 1959 Kharazmi (10.1016/j.cma.2021.114333_b11) 2019 Rosenblatt (10.1016/j.cma.2021.114333_b86) 1958; 65 McFall (10.1016/j.cma.2021.114333_b4) 2006 Zhao (10.1016/j.cma.2021.114333_b103) 2005; 74 Upreti (10.1016/j.cma.2021.114333_b75) 2014; 280 Babuška (10.1016/j.cma.2021.114333_b19) 2003; 12 Dwivedi (10.1016/j.cma.2021.114333_b62) 2020; 391 Ricci (10.1016/j.cma.2021.114333_b105) 1973; 16 Bruvoll (10.1016/j.cma.2021.114333_b82) 2010; 233 Gourmel (10.1016/j.cma.2021.114333_b108) 2013; 32 Rohrhofer (10.1016/j.cma.2021.114333_b69) 2021 E (10.1016/j.cma.2021.114333_b9) 2018; 6 Biswas (10.1016/j.cma.2021.114333_b29) 2004; 66 Sukumar (10.1016/j.cma.2021.114333_b54) 2007; 70 Dyken (10.1016/j.cma.2021.114333_b35) 2009; 26 Hennigh (10.1016/j.cma.2021.114333_b70) 2021 Bloomenthal (10.1016/j.cma.2021.114333_b73) 1997; 16 Shapiro (10.1016/j.cma.2021.114333_b30) 2007; 16 Tsukanov (10.1016/j.cma.2021.114333_b71) 2011; 11 He (10.1016/j.cma.2021.114333_b39) 2018 Sethian (10.1016/j.cma.2021.114333_b72) 1999 Kansa (10.1016/j.cma.2021.114333_b44) 1990; 19 Samaniego (10.1016/j.cma.2021.114333_b92) 2020; 362 Kingma (10.1016/j.cma.2021.114333_b91) 2014 Lagaris (10.1016/j.cma.2021.114333_b2) 1997; 104 Raissi (10.1016/j.cma.2021.114333_b6) 2019; 378 Shepard (10.1016/j.cma.2021.114333_b85) 1968 LeCun (10.1016/j.cma.2021.114333_b87) 1998 Arroyo (10.1016/j.cma.2021.114333_b53) 2007; vol. 57 Rvachev (10.1016/j.cma.2021.114333_b25) 2001; 18 Rahaman (10.1016/j.cma.2021.114333_b97) 2019 Lagaris (10.1016/j.cma.2021.114333_b3) 2000; 11 Greco (10.1016/j.cma.2021.114333_b60) 2020; 367 10.1016/j.cma.2021.114333_b112 Crane (10.1016/j.cma.2021.114333_b110) 2017; 60 Lagaris (10.1016/j.cma.2021.114333_b1) 1998; 9 Cyr (10.1016/j.cma.2021.114333_b41) 2020 Floater (10.1016/j.cma.2021.114333_b34) 2003; 20 Thoutireddy (10.1016/j.cma.2021.114333_b38) 2004; 61 Rosolen (10.1016/j.cma.2021.114333_b55) 2010; 82 Ju (10.1016/j.cma.2021.114333_b83) 2005; 24 Abadi (10.1016/j.cma.2021.114333_b14) 2016 Rvachev (10.1016/j.cma.2021.114333_b23) 1995; 48 Berg (10.1016/j.cma.2021.114333_b7) 2018; 317 Han (10.1016/j.cma.2021.114333_b10) 2018; 115 Höllig (10.1016/j.cma.2021.114333_b32) 2001; 39 Rvachev (10.1016/j.cma.2021.114333_b24) 2000; 25 Lee (10.1016/j.cma.2021.114333_b58) 2021 Freytag (10.1016/j.cma.2021.114333_b31) 2011; 47 Mhaskar (10.1016/j.cma.2021.114333_b57) 1996; 8 Babuška (10.1016/j.cma.2021.114333_b49) 1997; 40 Sherstyuk (10.1016/j.cma.2021.114333_b106) 1999; 15 Wang (10.1016/j.cma.2021.114333_b98) 2021; 384 Hughes (10.1016/j.cma.2021.114333_b37) 2005; 194 Bradbury (10.1016/j.cma.2021.114333_b93) 2018 Schlömer (10.1016/j.cma.2021.114333_b95) 2020 Wang (10.1016/j.cma.2021.114333_b16) 2020 Arroyo (10.1016/j.cma.2021.114333_b48) 2006; 65 Liao (10.1016/j.cma.2021.114333_b64) 2019 Shewchuk (10.1016/j.cma.2021.114333_b100) 1996; vol. 1148 Paszke (10.1016/j.cma.2021.114333_b15) 2019; 32 Dwivedi (10.1016/j.cma.2021.114333_b63) 2020; 20 Sheng (10.1016/j.cma.2021.114333_b61) 2021; 428 Guo (10.1016/j.cma.2021.114333_b102) 2021 Persson (10.1016/j.cma.2021.114333_b96) 2004; 46 Chen (10.1016/j.cma.2021.114333_b17) 2020; 36 Hormann (10.1016/j.cma.2021.114333_b81) 2006; 25 Opschoor (10.1016/j.cma.2021.114333_b42) 2020; 18 Kharazmi (10.1016/j.cma.2021.114333_b12) 2020; 374 Sirignano (10.1016/j.cma.2021.114333_b8) 2018; 375 Buhmann (10.1016/j.cma.2021.114333_b45) 2003 McFall (10.1016/j.cma.2021.114333_b5) 2009; 20 Kansa (10.1016/j.cma.2021.114333_b43) 1990; 19 Floater (10.1016/j.cma.2021.114333_b78) 2015; 24 Belyaev (10.1016/j.cma.2021.114333_b36) 2013; 45 (10.1016/j.cma.2021.114333_b80) 2017 Grinspun (10.1016/j.cma.2021.114333_b40) 2003 Pushkar (10.1016/j.cma.2021.114333_b99) 2007; 26 Millán (10.1016/j.cma.2021.114333_b33) 2015; 284 Hornik (10.1016/j.cma.2021.114333_b67) 1991; 4 Huerta (10.1016/j.cma.2021.114333_b20) 2017; vol. 2 Schaback (10.1016/j.cma.2021.114333_b47) 2006; 15 Hornik (10.1016/j.cma.2021.114333_b66) 1989; 2 Kantorovich (10.1016/j.cma.2021.114333_b21) 1958 Chin (10.1016/j.cma.2021.114333_b76) 2019; 120 Rvachev (10.1016/j.cma.2021.114333_b22) 1982 Shapiro (10.1016/j.cma.2021.114333_b28) 2002; 18 Fasshauer (10.1016/j.cma.2021.114333_b46) 2007 Sukumar (10.1016/j.cma.2021.114333_b51) 2004; 61 Ramabathiran (10.1016/j.cma.2021.114333_b59) 2021; 445 Lu (10.1016/j.cma.2021.114333_b13) 2021; 63 Anisimov (10.1016/j.cma.2021.114333_b79) 2017 Lyu (10.1016/j.cma.2021.114333_b18) 2020 Bisong (10.1016/j.cma.2021.114333_b94) 2019 Cecil (10.1016/j.cma.2021.114333_b104) 2004; 196 Hornik (10.1016/j.cma.2021.114333_b89) 1993; 6 Finol (10.1016/j.cma.2021.114333_b88) 2019; 118 Li (10.1016/j.cma.2021.114333_b65) 2004 |
| References_xml | – volume: 46 start-page: 329 year: 2004 end-page: 345 ident: b96 article-title: A simple mesh generator in MATLAB publication-title: SIAM Rev. – volume: 9 start-page: 987 year: 1998 end-page: 1000 ident: b1 article-title: Artifical neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. – year: 2003 ident: b40 article-title: The basis refinement method – reference: V. Shapiro, I. Tsukanov, Implicit functions with guaranteed differential properties, in: Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications, 1999, pp. 258–269. – year: 1959 ident: b101 article-title: Theory of Plates and Shells – volume: 367 year: 2020 ident: b60 article-title: High-order maximum-entropy collocation methods publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 11 start-page: 1041 year: 2000 end-page: 1049 ident: b3 article-title: Neural-network methods for boundary value problems with irregular boundaries publication-title: IEEE Trans. Neural Netw. – volume: 4 start-page: 251 year: 1991 end-page: 257 ident: b67 article-title: Approximation capabilities of multilayer perceptrons publication-title: Neural Netw. – volume: 47 start-page: 957 year: 2011 end-page: 972 ident: b31 article-title: Finite element analysis in situ publication-title: Finite Elem. Anal. Des. – start-page: 512 year: 2020 end-page: 536 ident: b41 article-title: Robust training and initialization of deep neural networks: An adaptive basis viewpoint publication-title: Mathematical and Scientific Machine Learning – volume: 70 start-page: 181 year: 2007 end-page: 205 ident: b54 article-title: Overview and construction of meshfree basis functions: From moving least squares to entropy approximants publication-title: Internat. J. Numer. Methods Engrg. – volume: 445 year: 2021 ident: b59 article-title: SPINN: Sparse, physics-based, and partially interpretable neural networks for PDEs publication-title: J. Comput. Phys. – volume: 74 start-page: 603 year: 2005 end-page: 627 ident: b103 article-title: A fast sweeping method for Eikonal equations publication-title: Math. Comp. – year: 1982 ident: b22 article-title: Theory of R-Functions and Some Applications – volume: 48 start-page: 151 year: 1995 end-page: 188 ident: b23 article-title: R-functions in boundary value problems in mechanics publication-title: Appl. Mech. Rev. – volume: 10 start-page: 135 year: 2004 end-page: 154 ident: b107 article-title: Controllable binary CSG operators for “soft objects” publication-title: Int. J. Shape Model. – volume: 19 start-page: 147 year: 1990 end-page: 161 ident: b44 article-title: Multiquadrics—A scattered data approximation scheme for applications to computational fluid-dynamics. 2. Solutions to parabolic, hyperboloc and elliptic partial-differential equations publication-title: Comput. Math. Appl. – year: 2017 ident: b80 article-title: Generalized barycentric coordinates in computer graphics and computational mechanics – volume: 20 start-page: 1221 year: 2009 end-page: 1233 ident: b5 article-title: Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions publication-title: IEEE Trans. Neural Netw. – year: 1991 ident: b26 article-title: Theory of R-functions and applications: A primer – start-page: 517 year: 1968 end-page: 524 ident: b85 article-title: A two-dimensional interpolation function for irregularly-spaced data publication-title: Proceedings of the 23rd ACM National Conference – start-page: 5301 year: 2019 end-page: 5310 ident: b97 article-title: On the spectral bias of neural networks publication-title: International Conference on Machine Learning – volume: vol. 1148 start-page: 203 year: 1996 end-page: 222 ident: b100 article-title: Triangle: Engineering a 2D quality mesh generator and delaunay triangulator publication-title: Applied Computational Geometry: Towards Geometric Engineering – volume: 16 start-page: 239 year: 2007 end-page: 303 ident: b30 article-title: Semi-analytic geometry with R-functions publication-title: Acta Numer. – volume: 428 year: 2021 ident: b61 article-title: PFNN: A penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries publication-title: J. Comput. Phys. – start-page: 3 year: 2017 end-page: 22 ident: b79 publication-title: Barycentric coordinates and their properties – volume: 18 start-page: 295 year: 2002 end-page: 311 ident: b28 article-title: The architecture of SAGE–a meshfree system based on RFM publication-title: Eng. Comput. – volume: 24 start-page: 161 year: 2015 end-page: 214 ident: b78 article-title: Generalized barycentric coordinates and applications publication-title: Acta Numer. – volume: 115 start-page: 8505 year: 2018 end-page: 8510 ident: b10 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proc. Natl. Acad. Sci. – volume: 18 start-page: 195 year: 2001 end-page: 220 ident: b25 article-title: Transfinite interpolation over implicitly defined sets publication-title: Comput. Aided Geom. Design – volume: 45 start-page: 523 year: 2013 end-page: 528 ident: b36 article-title: Signed publication-title: Comput. Aided Des. – volume: 61 start-page: 2159 year: 2004 end-page: 2181 ident: b51 article-title: Construction of polygonal interpolants: a maximum entropy approach publication-title: Internat. J. Numer. Methods Engrg. – volume: 61 start-page: 1 year: 2004 end-page: 21 ident: b38 article-title: A variational publication-title: Internat. J. Numer. Methods Engrg. – start-page: 59 year: 2019 end-page: 64 ident: b94 article-title: Google colaboratory publication-title: Building Machine Learning and Deep Learning Models on Google Cloud Platform – volume: 3 start-page: 246 year: 1991 end-page: 257 ident: b56 article-title: Universal approximation using radial-basis-function networks publication-title: Neural Comput. – volume: 362 year: 2020 ident: b92 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 26 year: 2007 ident: b99 article-title: Harmonic coordinates for character articulation publication-title: ACM Trans. Graph. – reference: J.J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, Deepsdf: Learning continuous signed distance functions for shape representation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 165–174. – volume: 32 start-page: 12:1 year: 2013 end-page: 12:12 ident: b108 article-title: A gradient-based implicit blend publication-title: ACM Trans. Graph. – volume: 26 start-page: 117 year: 2009 end-page: 134 ident: b35 article-title: Transfinite mean value interpolation publication-title: Comput. Aided Geom. Design – volume: 194 start-page: 4135 year: 2005 end-page: 4195 ident: b37 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 18 start-page: 715 year: 2020 end-page: 770 ident: b42 article-title: Deep ReLU networks and high-order finite element methods publication-title: Anal. Appl. – year: 2018 ident: b93 article-title: JAX: composable transformations of Python+NumPy programs – volume: 391 start-page: 96 year: 2020 end-page: 118 ident: b62 article-title: Physics informed extreme learning machine (PIELM)–a rapid method for the numerical solution of partial differential equations publication-title: Neuralcomputing – year: 2020 ident: b16 article-title: Understanding and mitigating gradient pathologies in physics-informed neural networks – volume: 12 start-page: 189 year: 1994 end-page: 202 ident: b50 article-title: Optimality of the Delaunay triangulation in publication-title: Discrete Comput. Geom. – volume: 24 start-page: 561 year: 2005 end-page: 566 ident: b83 article-title: Mean value coordinates for closed triangular meshes publication-title: ACM Trans. Graph. – year: 1999 ident: b72 article-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science – volume: 15 start-page: 171 year: 1999 end-page: 182 ident: b106 article-title: Kernel functions in convolution surfaces: a comparative analysis publication-title: Vis. Comput. – volume: 34 start-page: 104 year: 2015 end-page: 118 ident: b109 article-title: On variational and PDE-based distance function approximations publication-title: Comput. Graph. Forum – volume: 20 start-page: 19 year: 2003 end-page: 27 ident: b34 article-title: Mean value coordinates publication-title: Comput. Aided Geom. Design – start-page: 265 year: 2016 end-page: 283 ident: b14 article-title: Tensorflow: A system for large-scale machine learning publication-title: 12th – volume: 19 start-page: 127 year: 1990 end-page: 145 ident: b43 article-title: Multiquadrics—A scattered data approximation scheme for applications to computational fluid-dynamics. 1. Surface approximations and partial derivative estimates publication-title: Comput. Math. Appl. – volume: 6 start-page: 1069 year: 1993 end-page: 1072 ident: b89 article-title: Some new results on neural network approximation publication-title: Neural Netw. – volume: 118 start-page: 258 year: 2019 end-page: 275 ident: b88 article-title: Deep convolutional neural networks for eigenvalue problems in mechanics publication-title: Internat. J. Numer. Methods Engrg. – year: 2021 ident: b69 article-title: On the Pareto front of physics-informed neural networks – volume: 374 year: 2020 ident: b12 article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 8 start-page: 164 year: 1996 end-page: 177 ident: b57 article-title: Neural networks for optimal approximation of smooth and analytic functions publication-title: Neural Comput. – volume: 40 start-page: 727 year: 1997 end-page: 758 ident: b49 article-title: The partition of unity method publication-title: Internat. J. Numer. Methods Engrg. – volume: vol. 57 start-page: 1 year: 2007 end-page: 16 ident: b53 article-title: Local maximum-entropy approximation schemes publication-title: Meshfree Methods for Partial Differential Equations III – volume: 31 start-page: 459 year: 1999 end-page: 471 ident: b27 article-title: Meshfree simulation of deforming domains publication-title: Comput. Aided Des. – volume: 25 start-page: 305 year: 2000 end-page: 3163 ident: b24 article-title: On completeness of RFM solution structures publication-title: Comput. Mech. – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: b66 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. – year: 1973 ident: b68 article-title: An Analysis of the Finite Element Method – volume: 63 start-page: 208 year: 2021 end-page: 228 ident: b13 article-title: DeepXDE: A deep learning library for solving differential equations publication-title: SIAM Rev. – year: 2003 ident: b45 article-title: Radial Basis Functions: Theory and Implementations – year: 1998 ident: b87 article-title: The MNIST database of handwritten digits – year: 2019 ident: b64 article-title: Deep Nitsche method: Deep Ritz method with essential boundary conditions – volume: 66 start-page: 133 year: 2004 end-page: 159 ident: b29 article-title: Approximate distance fields with non-vanishing gradients publication-title: Graph. Models – year: 2004 ident: b65 article-title: Meshfree Particle Methods – volume: 378 start-page: 686 year: 2019 end-page: 707 ident: b6 article-title: Physics-informed neural networks: A deep learning framework for forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – volume: 65 start-page: 2167 year: 2006 end-page: 2202 ident: b48 article-title: Local publication-title: Internat. J. Numer. Methods Engrg. – volume: vol. 2 start-page: 1 year: 2017 end-page: 38 ident: b20 article-title: Meshfree methods publication-title: Encycl. Comput. Mech. – volume: 317 start-page: 28 year: 2018 end-page: 41 ident: b7 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neuralcomputing – volume: 196 start-page: 327 year: 2004 end-page: 347 ident: b104 article-title: Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions publication-title: J. Comput. Phys. – year: 2018 ident: b39 article-title: ReLU deep neural networks and linear finite elements – start-page: 43 year: 2017 end-page: 62 ident: b77 publication-title: Transfinite barycentric coordinates – volume: 32 year: 2019 ident: b15 article-title: Pytorch: An imperative style, high-performance deep learning library publication-title: Advances in Neural Information Processing Systems – volume: 36 start-page: 354 year: 2020 end-page: 376 ident: b17 article-title: A comparison study of deep Galerkin method and deep Ritz method for elliptic problems with different boundary conditions publication-title: Commun. Math. Res. – volume: 39 start-page: 442 year: 2001 end-page: 462 ident: b32 article-title: Weighted extended B-spline approximation of Dirichlet problems publication-title: SIAM J. Numer. Anal. – volume: 82 start-page: 868 year: 2010 end-page: 895 ident: b55 article-title: On the optimum support size in meshfree methods: a variational adaptivity approach with maximum entropy approximants publication-title: Internat. J. Numer. Methods Engrg. – volume: 12 start-page: 1 year: 2003 end-page: 125 ident: b19 article-title: Survey of meshless and generalized finite element methods: a unified approach publication-title: Acta Numer. – volume: 16 start-page: 31 year: 1997 end-page: 41 ident: b73 article-title: Bulge elimination in convolution surfaces publication-title: Comput. Graph. Forum – volume: 16 start-page: 157 year: 1973 end-page: 160 ident: b105 article-title: A constructive geometry for computer graphics publication-title: Comput. J. – volume: 6 start-page: 1 year: 2018 end-page: 12 ident: b9 article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems publication-title: Commun. Math. Stat. – volume: 803 start-page: 337 year: 2005 end-page: 344 ident: b52 article-title: Maximum entropy approximation publication-title: AIP Conf. Proc. – start-page: 175 year: 2019 end-page: 181 ident: b111 article-title: A variational method for accurate distance function estimation publication-title: Numerical Geometry, Grid Generation and Scientific Computing – year: 2014 ident: b91 article-title: Adam: A method for stochastic optimization – year: 2021 ident: b102 article-title: A deep collocation method for the bending analysis of Kirchhoff plate – year: 2020 ident: b95 article-title: Dmsh – volume: 233 start-page: 1631 year: 2010 end-page: 1639 ident: b82 article-title: Transfinite mean value interpolation in general dimension publication-title: J. Comput. Appl. Math. – volume: 120 start-page: 607 year: 2019 end-page: 649 ident: b76 article-title: Modeling curved interfaces without element-partitioning in the extended finite element method publication-title: Internat. J. Numer. Methods Engrg. – year: 2019 ident: b11 article-title: Variational physics-informed neural networks for solving partial differential equations – year: 2020 ident: b18 article-title: Enforcing exact boundary and initial conditions in the deep mixed residual method – year: 2021 ident: b58 article-title: Partition of unity networks: deep hp-approximation – volume: 284 start-page: 712 year: 2015 end-page: 731 ident: b33 article-title: Cell-based maximum-entropy approximants publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 20 year: 2020 ident: b63 article-title: Solution of biharmonic equation in complicated geometries with physics informed extreme learning machine publication-title: J. Comput. Inf. Sci. Eng. – volume: 25 start-page: 1424 year: 2006 end-page: 1441 ident: b81 article-title: Mean value coordinates for arbitrary planar polygons publication-title: ACM Trans. Graph. – volume: 384 year: 2021 ident: b98 article-title: On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 104 start-page: 1 year: 1997 end-page: 14 ident: b2 article-title: Artifical neural network methods in quantum mechanics publication-title: Comput. Phys. Comm. – year: 2006 ident: b4 article-title: An artificial neural network method for solving boundary value problems with arbitrary irregular boundaries – volume: 375 start-page: 1339 year: 2018 end-page: 1364 ident: b8 article-title: DGM: A deep learning algorithm for solving partial differential equations publication-title: J. Comput. Phys. – year: 2007 ident: b46 article-title: Meshfree Approximation Methods in MATLAB – start-page: 447 year: 2021 end-page: 461 ident: b70 article-title: NVIDIA SimNet™: An AI-accelerated multi-physics simulation framework publication-title: International Conference on Computational Science – volume: 60 start-page: 90 year: 2017 end-page: 99 ident: b110 article-title: The heat method for distance computation publication-title: Commun. ACM – volume: 280 start-page: 28 year: 2014 end-page: 56 ident: b75 article-title: Algebraic distance estimations for enriched isogeometric analysis publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 380 year: 2021 ident: b84 article-title: Scaled boundary cubature scheme for numerical integration over planar regions with affine and curved boundaries publication-title: Comput. Methods Appl. Mech. Engrg. – volume: 11 year: 2011 ident: b71 article-title: Hybrid method of engineering analysis: Combining meshfree method with distance fields and collocation technique publication-title: J. Comput. Inf. Sci. Eng. – volume: 4 start-page: 747 year: 2019 ident: b90 article-title: Nn-svg: Publication-ready neural network architecture schematics publication-title: J. Open Sour. Softw. – volume: 65 start-page: 386 year: 1958 ident: b86 article-title: The perceptron: A probabilistic model for information storage and organization in the brain. publication-title: Psychol. Rev. – year: 1958 ident: b21 article-title: Approximate Methods of Higher Analysis – volume: 15 start-page: 543 year: 2006 ident: b47 article-title: Kernel techniques: from machine learning to meshless methods publication-title: Acta Numer. – volume: 196 start-page: 327 issue: 1 year: 2004 ident: 10.1016/j.cma.2021.114333_b104 article-title: Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2003.11.010 – year: 2019 ident: 10.1016/j.cma.2021.114333_b11 – volume: 104 start-page: 1 year: 1997 ident: 10.1016/j.cma.2021.114333_b2 article-title: Artifical neural network methods in quantum mechanics publication-title: Comput. Phys. Comm. doi: 10.1016/S0010-4655(97)00054-4 – volume: 9 start-page: 987 issue: 5 year: 1998 ident: 10.1016/j.cma.2021.114333_b1 article-title: Artifical neural networks for solving ordinary and partial differential equations publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.712178 – year: 2020 ident: 10.1016/j.cma.2021.114333_b16 – volume: vol. 1148 start-page: 203 year: 1996 ident: 10.1016/j.cma.2021.114333_b100 article-title: Triangle: Engineering a 2D quality mesh generator and delaunay triangulator – volume: 280 start-page: 28 year: 2014 ident: 10.1016/j.cma.2021.114333_b75 article-title: Algebraic distance estimations for enriched isogeometric analysis publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2014.07.012 – volume: 31 start-page: 459 issue: 7 year: 1999 ident: 10.1016/j.cma.2021.114333_b27 article-title: Meshfree simulation of deforming domains publication-title: Comput. Aided Des. doi: 10.1016/S0010-4485(99)00043-3 – volume: 16 start-page: 239 year: 2007 ident: 10.1016/j.cma.2021.114333_b30 article-title: Semi-analytic geometry with R-functions publication-title: Acta Numer. doi: 10.1017/S096249290631001X – volume: 3 start-page: 246 year: 1991 ident: 10.1016/j.cma.2021.114333_b56 article-title: Universal approximation using radial-basis-function networks publication-title: Neural Comput. doi: 10.1162/neco.1991.3.2.246 – ident: 10.1016/j.cma.2021.114333_b112 doi: 10.1109/CVPR.2019.00025 – start-page: 175 year: 2019 ident: 10.1016/j.cma.2021.114333_b111 article-title: A variational method for accurate distance function estimation – volume: 12 start-page: 189 issue: 1 year: 1994 ident: 10.1016/j.cma.2021.114333_b50 article-title: Optimality of the Delaunay triangulation in Rd publication-title: Discrete Comput. Geom. doi: 10.1007/BF02574375 – volume: vol. 2 start-page: 1 year: 2017 ident: 10.1016/j.cma.2021.114333_b20 article-title: Meshfree methods – volume: 445 year: 2021 ident: 10.1016/j.cma.2021.114333_b59 article-title: SPINN: Sparse, physics-based, and partially interpretable neural networks for PDEs publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2021.110600 – year: 2003 ident: 10.1016/j.cma.2021.114333_b45 – volume: 19 start-page: 127 issue: 8/9 year: 1990 ident: 10.1016/j.cma.2021.114333_b43 article-title: Multiquadrics—A scattered data approximation scheme for applications to computational fluid-dynamics. 1. Surface approximations and partial derivative estimates publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(90)90270-T – volume: 46 start-page: 329 issue: 2 year: 2004 ident: 10.1016/j.cma.2021.114333_b96 article-title: A simple mesh generator in MATLAB publication-title: SIAM Rev. doi: 10.1137/S0036144503429121 – volume: 10 start-page: 135 issue: 02 year: 2004 ident: 10.1016/j.cma.2021.114333_b107 article-title: Controllable binary CSG operators for “soft objects” publication-title: Int. J. Shape Model. doi: 10.1142/S021865430400064X – volume: 384 year: 2021 ident: 10.1016/j.cma.2021.114333_b98 article-title: On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113938 – volume: 39 start-page: 442 issue: 2 year: 2001 ident: 10.1016/j.cma.2021.114333_b32 article-title: Weighted extended B-spline approximation of Dirichlet problems publication-title: SIAM J. Numer. Anal. doi: 10.1137/S0036142900373208 – volume: 20 start-page: 1221 issue: 8 year: 2009 ident: 10.1016/j.cma.2021.114333_b5 article-title: Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2009.2020735 – volume: 115 start-page: 8505 issue: 34 year: 2018 ident: 10.1016/j.cma.2021.114333_b10 article-title: Solving high-dimensional partial differential equations using deep learning publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1718942115 – volume: 284 start-page: 712 year: 2015 ident: 10.1016/j.cma.2021.114333_b33 article-title: Cell-based maximum-entropy approximants publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2014.10.012 – volume: 45 start-page: 523 issue: 2 year: 2013 ident: 10.1016/j.cma.2021.114333_b36 article-title: Signed Lp-distance fields publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2012.10.035 – volume: 65 start-page: 2167 issue: 13 year: 2006 ident: 10.1016/j.cma.2021.114333_b48 article-title: Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1534 – volume: 233 start-page: 1631 issue: 7 year: 2010 ident: 10.1016/j.cma.2021.114333_b82 article-title: Transfinite mean value interpolation in general dimension publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2009.02.103 – volume: 120 start-page: 607 issue: 5 year: 2019 ident: 10.1016/j.cma.2021.114333_b76 article-title: Modeling curved interfaces without element-partitioning in the extended finite element method publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.6150 – volume: 15 start-page: 171 issue: 4 year: 1999 ident: 10.1016/j.cma.2021.114333_b106 article-title: Kernel functions in convolution surfaces: a comparative analysis publication-title: Vis. Comput. doi: 10.1007/s003710050170 – volume: 74 start-page: 603 issue: 250 year: 2005 ident: 10.1016/j.cma.2021.114333_b103 article-title: A fast sweeping method for Eikonal equations publication-title: Math. Comp. doi: 10.1090/S0025-5718-04-01678-3 – year: 2018 ident: 10.1016/j.cma.2021.114333_b39 – volume: 26 start-page: 117 issue: 1 year: 2009 ident: 10.1016/j.cma.2021.114333_b35 article-title: Transfinite mean value interpolation publication-title: Comput. Aided Geom. Design doi: 10.1016/j.cagd.2007.12.003 – volume: 70 start-page: 181 issue: 2 year: 2007 ident: 10.1016/j.cma.2021.114333_b54 article-title: Overview and construction of meshfree basis functions: From moving least squares to entropy approximants publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1885 – year: 1999 ident: 10.1016/j.cma.2021.114333_b72 – volume: 20 start-page: 19 issue: 1 year: 2003 ident: 10.1016/j.cma.2021.114333_b34 article-title: Mean value coordinates publication-title: Comput. Aided Geom. Design doi: 10.1016/S0167-8396(03)00002-5 – year: 2020 ident: 10.1016/j.cma.2021.114333_b18 – volume: 63 start-page: 208 issue: 1 year: 2021 ident: 10.1016/j.cma.2021.114333_b13 article-title: DeepXDE: A deep learning library for solving differential equations publication-title: SIAM Rev. doi: 10.1137/19M1274067 – year: 1973 ident: 10.1016/j.cma.2021.114333_b68 – volume: 66 start-page: 133 issue: 3 year: 2004 ident: 10.1016/j.cma.2021.114333_b29 article-title: Approximate distance fields with non-vanishing gradients publication-title: Graph. Models doi: 10.1016/j.gmod.2004.01.003 – volume: 32 year: 2019 ident: 10.1016/j.cma.2021.114333_b15 article-title: Pytorch: An imperative style, high-performance deep learning library – volume: 61 start-page: 2159 issue: 12 year: 2004 ident: 10.1016/j.cma.2021.114333_b51 article-title: Construction of polygonal interpolants: a maximum entropy approach publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1193 – volume: 4 start-page: 251 year: 1991 ident: 10.1016/j.cma.2021.114333_b67 article-title: Approximation capabilities of multilayer perceptrons publication-title: Neural Netw. doi: 10.1016/0893-6080(91)90009-T – volume: 25 start-page: 1424 issue: 4 year: 2006 ident: 10.1016/j.cma.2021.114333_b81 article-title: Mean value coordinates for arbitrary planar polygons publication-title: ACM Trans. Graph. doi: 10.1145/1183287.1183295 – volume: 25 start-page: 305 year: 2000 ident: 10.1016/j.cma.2021.114333_b24 article-title: On completeness of RFM solution structures publication-title: Comput. Mech. doi: 10.1007/s004660050479 – volume: 391 start-page: 96 year: 2020 ident: 10.1016/j.cma.2021.114333_b62 article-title: Physics informed extreme learning machine (PIELM)–a rapid method for the numerical solution of partial differential equations publication-title: Neuralcomputing doi: 10.1016/j.neucom.2019.12.099 – volume: 367 year: 2020 ident: 10.1016/j.cma.2021.114333_b60 article-title: High-order maximum-entropy collocation methods publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2020.113115 – volume: 65 start-page: 386 issue: 6 year: 1958 ident: 10.1016/j.cma.2021.114333_b86 article-title: The perceptron: A probabilistic model for information storage and organization in the brain. publication-title: Psychol. Rev. doi: 10.1037/h0042519 – volume: 19 start-page: 147 issue: 8/9 year: 1990 ident: 10.1016/j.cma.2021.114333_b44 article-title: Multiquadrics—A scattered data approximation scheme for applications to computational fluid-dynamics. 2. Solutions to parabolic, hyperboloc and elliptic partial-differential equations publication-title: Comput. Math. Appl. doi: 10.1016/0898-1221(90)90271-K – volume: 18 start-page: 295 issue: 4 year: 2002 ident: 10.1016/j.cma.2021.114333_b28 article-title: The architecture of SAGE–a meshfree system based on RFM publication-title: Eng. Comput. doi: 10.1007/s003660200027 – volume: 82 start-page: 868 issue: 7 year: 2010 ident: 10.1016/j.cma.2021.114333_b55 article-title: On the optimum support size in meshfree methods: a variational adaptivity approach with maximum entropy approximants publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.2793 – volume: 26 issue: 3 year: 2007 ident: 10.1016/j.cma.2021.114333_b99 article-title: Harmonic coordinates for character articulation publication-title: ACM Trans. Graph. – year: 2017 ident: 10.1016/j.cma.2021.114333_b80 – start-page: 512 year: 2020 ident: 10.1016/j.cma.2021.114333_b41 article-title: Robust training and initialization of deep neural networks: An adaptive basis viewpoint – year: 2006 ident: 10.1016/j.cma.2021.114333_b4 – volume: 18 start-page: 715 issue: 05 year: 2020 ident: 10.1016/j.cma.2021.114333_b42 article-title: Deep ReLU networks and high-order finite element methods publication-title: Anal. Appl. doi: 10.1142/S0219530519410136 – year: 1958 ident: 10.1016/j.cma.2021.114333_b21 – year: 2018 ident: 10.1016/j.cma.2021.114333_b93 – start-page: 5301 year: 2019 ident: 10.1016/j.cma.2021.114333_b97 article-title: On the spectral bias of neural networks – year: 1959 ident: 10.1016/j.cma.2021.114333_b101 – volume: 11 start-page: 1041 issue: 5 year: 2000 ident: 10.1016/j.cma.2021.114333_b3 article-title: Neural-network methods for boundary value problems with irregular boundaries publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.870037 – volume: vol. 57 start-page: 1 year: 2007 ident: 10.1016/j.cma.2021.114333_b53 article-title: Local maximum-entropy approximation schemes – volume: 15 start-page: 543 year: 2006 ident: 10.1016/j.cma.2021.114333_b47 article-title: Kernel techniques: from machine learning to meshless methods publication-title: Acta Numer. doi: 10.1017/S0962492906270016 – volume: 60 start-page: 90 issue: 11 year: 2017 ident: 10.1016/j.cma.2021.114333_b110 article-title: The heat method for distance computation publication-title: Commun. ACM doi: 10.1145/3131280 – volume: 36 start-page: 354 issue: 3 year: 2020 ident: 10.1016/j.cma.2021.114333_b17 article-title: A comparison study of deep Galerkin method and deep Ritz method for elliptic problems with different boundary conditions publication-title: Commun. Math. Res. doi: 10.4208/cmr.2020-0051 – year: 2014 ident: 10.1016/j.cma.2021.114333_b91 – volume: 6 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.cma.2021.114333_b9 article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems publication-title: Commun. Math. Stat. doi: 10.1007/s40304-018-0127-z – year: 2020 ident: 10.1016/j.cma.2021.114333_b95 – year: 2007 ident: 10.1016/j.cma.2021.114333_b46 – volume: 2 start-page: 359 year: 1989 ident: 10.1016/j.cma.2021.114333_b66 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Netw. doi: 10.1016/0893-6080(89)90020-8 – volume: 34 start-page: 104 issue: 8 year: 2015 ident: 10.1016/j.cma.2021.114333_b109 article-title: On variational and PDE-based distance function approximations publication-title: Comput. Graph. Forum doi: 10.1111/cgf.12611 – volume: 48 start-page: 151 issue: 4 year: 1995 ident: 10.1016/j.cma.2021.114333_b23 article-title: R-functions in boundary value problems in mechanics publication-title: Appl. Mech. Rev. doi: 10.1115/1.3005099 – year: 2004 ident: 10.1016/j.cma.2021.114333_b65 – volume: 18 start-page: 195 year: 2001 ident: 10.1016/j.cma.2021.114333_b25 article-title: Transfinite interpolation over implicitly defined sets publication-title: Comput. Aided Geom. Design doi: 10.1016/S0167-8396(01)00015-2 – start-page: 517 year: 1968 ident: 10.1016/j.cma.2021.114333_b85 article-title: A two-dimensional interpolation function for irregularly-spaced data – volume: 378 start-page: 686 year: 2019 ident: 10.1016/j.cma.2021.114333_b6 article-title: Physics-informed neural networks: A deep learning framework for forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 375 start-page: 1339 year: 2018 ident: 10.1016/j.cma.2021.114333_b8 article-title: DGM: A deep learning algorithm for solving partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.08.029 – start-page: 3 year: 2017 ident: 10.1016/j.cma.2021.114333_b79 – volume: 40 start-page: 727 year: 1997 ident: 10.1016/j.cma.2021.114333_b49 article-title: The partition of unity method publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N – year: 1982 ident: 10.1016/j.cma.2021.114333_b22 – volume: 11 issue: 3 year: 2011 ident: 10.1016/j.cma.2021.114333_b71 article-title: Hybrid method of engineering analysis: Combining meshfree method with distance fields and collocation technique publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.3572035 – volume: 24 start-page: 161 year: 2015 ident: 10.1016/j.cma.2021.114333_b78 article-title: Generalized barycentric coordinates and applications publication-title: Acta Numer. doi: 10.1017/S0962492914000129 – start-page: 43 year: 2017 ident: 10.1016/j.cma.2021.114333_b77 – volume: 428 year: 2021 ident: 10.1016/j.cma.2021.114333_b61 article-title: PFNN: A penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2020.110085 – volume: 803 start-page: 337 issue: 1 year: 2005 ident: 10.1016/j.cma.2021.114333_b52 article-title: Maximum entropy approximation publication-title: AIP Conf. Proc. doi: 10.1063/1.2149812 – volume: 8 start-page: 164 issue: 1 year: 1996 ident: 10.1016/j.cma.2021.114333_b57 article-title: Neural networks for optimal approximation of smooth and analytic functions publication-title: Neural Comput. doi: 10.1162/neco.1996.8.1.164 – ident: 10.1016/j.cma.2021.114333_b74 doi: 10.1145/304012.304038 – year: 2021 ident: 10.1016/j.cma.2021.114333_b58 – start-page: 59 year: 2019 ident: 10.1016/j.cma.2021.114333_b94 article-title: Google colaboratory – volume: 16 start-page: 157 issue: 2 year: 1973 ident: 10.1016/j.cma.2021.114333_b105 article-title: A constructive geometry for computer graphics publication-title: Comput. J. doi: 10.1093/comjnl/16.2.157 – start-page: 447 year: 2021 ident: 10.1016/j.cma.2021.114333_b70 article-title: NVIDIA SimNet™: An AI-accelerated multi-physics simulation framework – volume: 362 year: 2020 ident: 10.1016/j.cma.2021.114333_b92 article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2019.112790 – volume: 61 start-page: 1 issue: 1 year: 2004 ident: 10.1016/j.cma.2021.114333_b38 article-title: A variational r-adaption and shape-optimization method for finite-deformation elasticity publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.1052 – year: 1998 ident: 10.1016/j.cma.2021.114333_b87 – volume: 32 start-page: 12:1 issue: 2 year: 2013 ident: 10.1016/j.cma.2021.114333_b108 article-title: A gradient-based implicit blend publication-title: ACM Trans. Graph. doi: 10.1145/2451236.2451238 – volume: 24 start-page: 561 issue: 3 year: 2005 ident: 10.1016/j.cma.2021.114333_b83 article-title: Mean value coordinates for closed triangular meshes publication-title: ACM Trans. Graph. doi: 10.1145/1073204.1073229 – volume: 6 start-page: 1069 year: 1993 ident: 10.1016/j.cma.2021.114333_b89 article-title: Some new results on neural network approximation publication-title: Neural Netw. doi: 10.1016/S0893-6080(09)80018-X – year: 2019 ident: 10.1016/j.cma.2021.114333_b64 – volume: 4 start-page: 747 issue: 33 year: 2019 ident: 10.1016/j.cma.2021.114333_b90 article-title: Nn-svg: Publication-ready neural network architecture schematics publication-title: J. Open Sour. Softw. doi: 10.21105/joss.00747 – volume: 317 start-page: 28 year: 2018 ident: 10.1016/j.cma.2021.114333_b7 article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries publication-title: Neuralcomputing doi: 10.1016/j.neucom.2018.06.056 – volume: 12 start-page: 1 year: 2003 ident: 10.1016/j.cma.2021.114333_b19 article-title: Survey of meshless and generalized finite element methods: a unified approach publication-title: Acta Numer. doi: 10.1017/S0962492902000090 – volume: 47 start-page: 957 issue: 9 year: 2011 ident: 10.1016/j.cma.2021.114333_b31 article-title: Finite element analysis in situ publication-title: Finite Elem. Anal. Des. doi: 10.1016/j.finel.2011.03.001 – volume: 380 year: 2021 ident: 10.1016/j.cma.2021.114333_b84 article-title: Scaled boundary cubature scheme for numerical integration over planar regions with affine and curved boundaries publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2021.113796 – volume: 118 start-page: 258 issue: 5 year: 2019 ident: 10.1016/j.cma.2021.114333_b88 article-title: Deep convolutional neural networks for eigenvalue problems in mechanics publication-title: Internat. J. Numer. Methods Engrg. doi: 10.1002/nme.6012 – year: 2021 ident: 10.1016/j.cma.2021.114333_b102 – year: 2003 ident: 10.1016/j.cma.2021.114333_b40 – volume: 374 year: 2020 ident: 10.1016/j.cma.2021.114333_b12 article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition publication-title: Comput. Methods Appl. Mech. Engrg. – year: 1991 ident: 10.1016/j.cma.2021.114333_b26 – volume: 16 start-page: 31 issue: 1 year: 1997 ident: 10.1016/j.cma.2021.114333_b73 article-title: Bulge elimination in convolution surfaces publication-title: Comput. Graph. Forum doi: 10.1111/1467-8659.114 – volume: 194 start-page: 4135 issue: 39–41 year: 2005 ident: 10.1016/j.cma.2021.114333_b37 article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement publication-title: Comput. Methods Appl. Mech. Engrg. doi: 10.1016/j.cma.2004.10.008 – year: 2021 ident: 10.1016/j.cma.2021.114333_b69 – start-page: 265 year: 2016 ident: 10.1016/j.cma.2021.114333_b14 article-title: Tensorflow: A system for large-scale machine learning – volume: 20 issue: 6 year: 2020 ident: 10.1016/j.cma.2021.114333_b63 article-title: Solution of biharmonic equation in complicated geometries with physics informed extreme learning machine publication-title: J. Comput. Inf. Sci. Eng. doi: 10.1115/1.4046892 |
| SSID | ssj0000812 |
| Score | 2.7242603 |
| Snippet | In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 114333 |
| SubjectTerms | Artificial neural networks Bending Biharmonic equations Boundary conditions Boundary value problems Collocation methods Constructive solid geometry Deep learning Differential geometry Dirichlet problem Distance function Domains Eikonal equation Exact geometry Geometry Hypercubes Interpolation Laplace equation Machine learning Meshfree method Meshless methods Neural networks Partial differential equations Physics Potential fields R-function Ritz method Thermodynamics Training Transfinite interpolation |
| Title | Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks |
| URI | https://dx.doi.org/10.1016/j.cma.2021.114333 https://www.proquest.com/docview/2639708175 |
| Volume | 389 |
| WOSCitedRecordID | wos000783073400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-2138 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000812 issn: 0045-7825 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwGLVgAwkO_CggBgP5gDiAjBLHzo_jhDoBmsoOHerNcmxHZGNZaUpV_ns-x3aTVVDBgUtUpUka9T1_frY_vw-hV4kqKS2rhKRScmLdTUhZGE5yWTEVqYqyVHXFJrLJJJ_NilOfOtR25QSypsnX62L-X6GGcwC23Tr7D3BvHgon4DOADkeAHY5_Bfx4bbc91pchHcvKwbIrnrT4aZPMtUvScjOw2spH27Zt_9anlXfgtcS5qoIk1cbM31rrSwC0cYnj7VDWhtoQviB19xDp9e2lsZuLgxm06f0P-_Woi5Dn3a8LLeqVhFdbuWnf5qJeDucnYGgbXcv16DfOfBnGYcYJaBM-jMOJqyXkI2n82_juphrO36nOM4rG1uo4cU4a1720J5_F8dnJiZiOZ9PX8-_Elhmzy_G-5spNtE8zXkAY3D_6OJ596jvvPHYG8_4Fw0J4lxK49at_kjJbnXqnVKYP0D0_xMBHjhoP0Q3TjNB9P9zAPpi3I3R34EU5QrdPHeiP0NeOQbhnEL6qcGAQ7hmELYNwYBDeMAjXDd5mELYMwo5BODDoMTo7Hk_ffyC-IAdRCeVLEpeS65zqMlIJtOhMmYRxmWuuIp3LPDLGRHBNanTGZFomWRFrGMHRksYJrUAuPUF7zVVjniKcGqYrEyuQpxq6kbxkGdwXVQWjscyUPkBR-G-F8m71tmjKNxHSEs8FwCEsHMLBcYDebG6ZO6uWXRezAJjwWtNpSAFU23XbYQBX-DbfCmoXx4E4GX-2--vn6E7fQg7R3nLxw7xAt9RqWbeLl56KvwCZDq3U |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+imposition+of+boundary+conditions+with+distance+functions+in+physics-informed+deep+neural+networks&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Sukumar%2C+N&rft.au=Srivastava%2C+Ankit&rft.date=2022-02-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=389&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2021.114333&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon |