Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks

In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the developm...

Full description

Saved in:
Bibliographic Details
Published in:Computer methods in applied mechanics and engineering Vol. 389; p. 114333
Main Authors: Sukumar, N., Srivastava, Ankit
Format: Journal Article
Language:English
Published: Amsterdam Elsevier B.V 01.02.2022
Elsevier BV
Subjects:
ISSN:0045-7825, 1879-2138
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the development of physics informed neural networks (PINN) for the solution of partial differential equations. We introduce geometry-aware trial functions in artificial neural networks to improve the training in deep learning for partial differential equations. To this end, we use concepts from constructive solid geometry (R-functions) and generalized barycentric coordinates (mean value potential fields) to construct ϕ(x), an approximate distance function to the boundary of a domain in Rd. To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as ϕ(x) multiplied by the PINN approximation, and its generalization via transfinite interpolation is used to a priori satisfy inhomogeneous Dirichlet (essential), Neumann (natural), and Robin boundary conditions on complex geometries. In doing so, we eliminate modeling error associated with the satisfaction of boundary conditions in a collocation method and ensure that kinematic admissibility is met pointwise in a Ritz method. With this new ansatz, the training for the neural network is simplified: sole contribution to the loss function is from the residual error at interior collocation points where the governing equation is required to be satisfied. Numerical solutions are computed using strong form collocation and Ritz minimization. To convey the main ideas and to assess the accuracy of the approach, we present numerical solutions for linear and nonlinear boundary-value problems over convex and nonconvex polygonal domains as well as over domains with curved boundaries. Benchmark problems in one dimension for linear elasticity, advection-diffusion, and beam bending; and in two dimensions for the steady-state heat equation, Laplace equation, biharmonic equation (Kirchhoff plate bending), and the nonlinear Eikonal equation are considered. The construction of approximate distance functions using R-functions extends to higher dimensions, and we showcase its use by solving a Poisson problem with homogeneous Dirichlet boundary conditions over the four-dimensional hypercube. The proposed approach consistently outperforms a standard PINN-based collocation method, which underscores the importance of exactly (a priori) satisfying the boundary condition when constructing a loss function in PINN. This study provides a pathway for meshfree analysis to be conducted on the exact geometry without domain discretization.
AbstractList In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the development of physics informed neural networks (PINN) for the solution of partial differential equations. We introduce geometry-aware trial functions in artificial neural networks to improve the training in deep learning for partial differential equations. To this end, we use concepts from constructive solid geometry (R-functions) and generalized barycentric coordinates (mean value potential fields) to construct ϕ(x), an approximate distance function to the boundary of a domain in ℝd. To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as ϕ(x) multiplied by the PINN approximation, and its generalization via transfinite interpolation is used to a priori satisfy inhomogeneous Dirichlet (essential), Neumann (natural), and Robin boundary conditions on complex geometries. In doing so, we eliminate modeling error associated with the satisfaction of boundary conditions in a collocation method and ensure that kinematic admissibility is met pointwise in a Ritz method. With this new ansatz, the training for the neural network is simplified: sole contribution to the loss function is from the residual error at interior collocation points where the governing equation is required to be satisfied. Numerical solutions are computed using strong form collocation and Ritz minimization. To convey the main ideas and to assess the accuracy of the approach, we present numerical solutions for linear and nonlinear boundary-value problems over convex and nonconvex polygonal domains as well as over domains with curved boundaries. Benchmark problems in one dimension for linear elasticity, advection-diffusion, and beam bending; and in two dimensions for the steady-state heat equation, Laplace equation, biharmonic equation (Kirchhoff plate bending), and the nonlinear Eikonal equation are considered. The construction of approximate distance functions using R-functions extends to higher dimensions, and we showcase its use by solving a Poisson problem with homogeneous Dirichlet boundary conditions over the four-dimensional hypercube. The proposed approach consistently outperforms a standard PINN-based collocation method, which underscores the importance of exactly (a priori) satisfying the boundary condition when constructing a loss function in PINN. This study provides a pathway for meshfree analysis to be conducted on the exact geometry without domain discretization.
In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The challenges in satisfying Dirichlet boundary conditions in meshfree and particle methods are well-known. This issue is also pertinent in the development of physics informed neural networks (PINN) for the solution of partial differential equations. We introduce geometry-aware trial functions in artificial neural networks to improve the training in deep learning for partial differential equations. To this end, we use concepts from constructive solid geometry (R-functions) and generalized barycentric coordinates (mean value potential fields) to construct ϕ(x), an approximate distance function to the boundary of a domain in Rd. To exactly impose homogeneous Dirichlet boundary conditions, the trial function is taken as ϕ(x) multiplied by the PINN approximation, and its generalization via transfinite interpolation is used to a priori satisfy inhomogeneous Dirichlet (essential), Neumann (natural), and Robin boundary conditions on complex geometries. In doing so, we eliminate modeling error associated with the satisfaction of boundary conditions in a collocation method and ensure that kinematic admissibility is met pointwise in a Ritz method. With this new ansatz, the training for the neural network is simplified: sole contribution to the loss function is from the residual error at interior collocation points where the governing equation is required to be satisfied. Numerical solutions are computed using strong form collocation and Ritz minimization. To convey the main ideas and to assess the accuracy of the approach, we present numerical solutions for linear and nonlinear boundary-value problems over convex and nonconvex polygonal domains as well as over domains with curved boundaries. Benchmark problems in one dimension for linear elasticity, advection-diffusion, and beam bending; and in two dimensions for the steady-state heat equation, Laplace equation, biharmonic equation (Kirchhoff plate bending), and the nonlinear Eikonal equation are considered. The construction of approximate distance functions using R-functions extends to higher dimensions, and we showcase its use by solving a Poisson problem with homogeneous Dirichlet boundary conditions over the four-dimensional hypercube. The proposed approach consistently outperforms a standard PINN-based collocation method, which underscores the importance of exactly (a priori) satisfying the boundary condition when constructing a loss function in PINN. This study provides a pathway for meshfree analysis to be conducted on the exact geometry without domain discretization.
ArticleNumber 114333
Author Sukumar, N.
Srivastava, Ankit
Author_xml – sequence: 1
  givenname: N.
  orcidid: 0000-0001-6744-7673
  surname: Sukumar
  fullname: Sukumar, N.
  email: nsukumar@ucdavis.edu
  organization: Department of Civil and Environmental Engineering, University of California, Davis, CA 95616, USA
– sequence: 2
  givenname: Ankit
  surname: Srivastava
  fullname: Srivastava, Ankit
  organization: Department of Mechanical, Materials, and Aerospace Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA
BookMark eNp9kE1LAzEURYNUsFZ_gLuA66n5mOmkuJJSP6DgRtchk7yhqW0yJhlr_72p48pFs3nwuOeFey7RyHkHCN1QMqWEzu42U71TU0YYnVJacs7P0JiKel4wysUIjQkpq6IWrLpAlzFuSH6CsjFaL7-VTtjuOh9tst5h3-LG986ocMDaO_O7jXhv0xobG5NyGnDbOz3srcPd-hCtjoV1rQ87MNgAdNhBH9Q2j7T34SNeofNWbSNc_80Jen9cvi2ei9Xr08viYVVozqpU0EZVRjDTEM2bOdQaeFkpYSpNjFCCAADJmRmYulSzhtdzaoRgrMk9WVtSPkG3w90u-M8eYpIb3weXv5Rsxud1rl1XOVUPKR18jAFaqW1Sx0YpKLuVlMijVrmRWas8apWD1kzSf2QX7C7LOsncDwzk4l8WgozaQvZobACdpPH2BP0D5zeT-Q
CitedBy_id crossref_primary_10_1016_j_cma_2024_117226
crossref_primary_10_1016_j_cma_2023_116012
crossref_primary_10_1007_s11263_025_02476_6
crossref_primary_10_1016_j_compositesa_2025_108820
crossref_primary_10_1016_j_engstruct_2025_120262
crossref_primary_10_1016_j_jmps_2025_106222
crossref_primary_10_1016_j_jocs_2024_102384
crossref_primary_10_1115_1_4066054
crossref_primary_10_1016_j_cnsns_2024_108129
crossref_primary_10_1016_j_cageo_2024_105611
crossref_primary_10_1016_j_engappai_2024_109913
crossref_primary_10_1007_s00466_023_02365_0
crossref_primary_10_1007_s11831_023_09890_4
crossref_primary_10_3390_jmse12081372
crossref_primary_10_1016_j_neunet_2025_107983
crossref_primary_10_1016_j_cma_2024_116805
crossref_primary_10_23939_cds2025_01_011
crossref_primary_10_1016_j_apm_2025_116232
crossref_primary_10_1002_aic_18436
crossref_primary_10_1016_j_mechrescom_2025_104468
crossref_primary_10_3390_math12203285
crossref_primary_10_1016_j_cma_2025_118308
crossref_primary_10_1016_j_engstruct_2023_117093
crossref_primary_10_1007_s11431_024_2873_2
crossref_primary_10_1016_j_triboint_2023_108871
crossref_primary_10_1007_s00466_023_02288_w
crossref_primary_10_1016_j_cma_2024_117691
crossref_primary_10_1016_j_cmpb_2025_109044
crossref_primary_10_3390_app14167002
crossref_primary_10_1137_23M1583375
crossref_primary_10_1016_j_compstruct_2024_118314
crossref_primary_10_1017_jfm_2025_10325
crossref_primary_10_1016_j_ymssp_2024_111920
crossref_primary_10_1017_S0373463322000455
crossref_primary_10_1016_j_cma_2025_117909
crossref_primary_10_1016_j_enganabound_2024_01_004
crossref_primary_10_1016_j_buildenv_2024_111175
crossref_primary_10_1016_j_engappai_2025_111847
crossref_primary_10_1007_s00466_025_02677_3
crossref_primary_10_1016_j_engappai_2023_106660
crossref_primary_10_1093_gji_ggaf243
crossref_primary_10_1016_j_cma_2024_117727
crossref_primary_10_3390_a17090415
crossref_primary_10_1016_j_jcp_2025_113994
crossref_primary_10_1016_j_camwa_2024_01_021
crossref_primary_10_1137_23M1588196
crossref_primary_10_1137_22M1515392
crossref_primary_10_1007_s42985_023_00244_0
crossref_primary_10_1016_j_cma_2025_118015
crossref_primary_10_1016_j_engappai_2023_106908
crossref_primary_10_1109_TUFFC_2024_3411718
crossref_primary_10_1007_s10915_023_02379_z
crossref_primary_10_1186_s13362_024_00141_0
crossref_primary_10_1016_j_compstruct_2025_119608
crossref_primary_10_1016_j_eswa_2023_122903
crossref_primary_10_1093_mnras_stad1810
crossref_primary_10_1016_j_cpc_2024_109202
crossref_primary_10_1016_j_cma_2022_115852
crossref_primary_10_1007_s00170_025_15551_6
crossref_primary_10_1016_j_neunet_2024_106750
crossref_primary_10_1016_j_engappai_2025_111458
crossref_primary_10_1007_s10489_025_06669_x
crossref_primary_10_1016_j_cma_2023_116561
crossref_primary_10_1016_j_optlastec_2025_113828
crossref_primary_10_1016_j_infsof_2025_107735
crossref_primary_10_1016_j_engstruct_2025_119884
crossref_primary_10_1007_s00366_024_01957_5
crossref_primary_10_1016_j_advwatres_2023_104448
crossref_primary_10_1016_j_engappai_2023_107324
crossref_primary_10_1016_j_cma_2024_117274
crossref_primary_10_1016_j_enganabound_2025_106161
crossref_primary_10_1063_5_0286075
crossref_primary_10_1093_pnasnexus_pgae005
crossref_primary_10_1145_3618403
crossref_primary_10_1007_s11071_024_09642_4
crossref_primary_10_1016_j_cma_2025_118260
crossref_primary_10_1016_j_inffus_2023_102041
crossref_primary_10_1029_2024JH000438
crossref_primary_10_1109_TGRS_2025_3581638
crossref_primary_10_1080_10255842_2025_2471504
crossref_primary_10_1016_j_camwa_2025_02_004
crossref_primary_10_1016_j_compchemeng_2023_108500
crossref_primary_10_1137_23M1601195
crossref_primary_10_1111_str_12431
crossref_primary_10_1007_s10915_022_01950_4
crossref_primary_10_1007_s10409_025_25340_x
crossref_primary_10_3390_app132111983
crossref_primary_10_1007_s11071_025_11062_x
crossref_primary_10_1016_j_cma_2025_117787
crossref_primary_10_1016_j_apm_2025_116301
crossref_primary_10_1093_mnras_staf1438
crossref_primary_10_1016_j_cad_2024_103709
crossref_primary_10_1111_mice_13405
crossref_primary_10_1115_1_4068396
crossref_primary_10_1016_j_cpc_2025_109867
crossref_primary_10_1007_s40819_025_01988_6
crossref_primary_10_1111_mice_70045
crossref_primary_10_1002_jnm_3264
crossref_primary_10_1016_j_compgeo_2025_107110
crossref_primary_10_1016_j_knosys_2024_111831
crossref_primary_10_1126_sciadv_ads5236
crossref_primary_10_1016_j_cma_2023_116569
crossref_primary_10_1016_j_jcp_2025_114156
crossref_primary_10_1016_j_istruc_2024_107051
crossref_primary_10_1007_s00366_024_02040_9
crossref_primary_10_1016_j_cma_2024_117655
crossref_primary_10_1177_02783649241238766
crossref_primary_10_3390_w17172621
crossref_primary_10_1007_s00466_024_02475_3
crossref_primary_10_1007_s00366_023_01871_2
crossref_primary_10_1016_j_jhydrol_2025_133624
crossref_primary_10_3390_math12213315
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_1016_j_cma_2023_116184
crossref_primary_10_1137_23M1601249
crossref_primary_10_1007_s00366_024_01971_7
crossref_primary_10_1016_j_ces_2025_122348
crossref_primary_10_1007_s00366_024_02090_z
crossref_primary_10_1016_j_camwa_2024_02_041
crossref_primary_10_1016_j_jmps_2024_105714
crossref_primary_10_1007_s11431_022_2118_9
crossref_primary_10_3390_a18060334
crossref_primary_10_1016_j_jcp_2024_112904
crossref_primary_10_1016_j_tws_2023_111044
crossref_primary_10_1063_5_0279565
crossref_primary_10_1016_j_jcp_2023_112003
crossref_primary_10_1016_j_ijmecsci_2024_109210
crossref_primary_10_1016_j_cma_2025_117889
crossref_primary_10_1016_j_actaastro_2024_10_029
crossref_primary_10_1007_s11565_022_00441_6
crossref_primary_10_1016_j_cma_2024_117122
crossref_primary_10_1016_j_cma_2025_117764
crossref_primary_10_1177_10812865251362165
crossref_primary_10_1016_j_engstruct_2023_117235
crossref_primary_10_1016_j_cageo_2023_105477
crossref_primary_10_1016_j_ces_2023_119285
crossref_primary_10_1016_j_est_2024_113103
crossref_primary_10_1016_j_cpc_2025_109719
crossref_primary_10_1109_ACCESS_2022_3178589
crossref_primary_10_1016_j_rineng_2025_105440
crossref_primary_10_1007_s11709_025_1178_3
crossref_primary_10_1016_j_cma_2023_116505
crossref_primary_10_1098_rsta_2024_0324
crossref_primary_10_1007_s00466_025_02666_6
crossref_primary_10_1016_j_cma_2024_117637
crossref_primary_10_1002_nme_7585
crossref_primary_10_1016_j_oceaneng_2023_113737
crossref_primary_10_1016_j_ijmecsci_2025_110111
crossref_primary_10_1007_s00366_024_01955_7
crossref_primary_10_1007_s10483_025_3240_7
crossref_primary_10_1007_s00466_023_02309_8
crossref_primary_10_1121_10_0009057
crossref_primary_10_2514_1_J062870
crossref_primary_10_1016_j_cma_2024_117197
crossref_primary_10_1016_j_cma_2025_118184
crossref_primary_10_1016_j_euromechsol_2024_105332
crossref_primary_10_1016_j_cma_2022_115491
crossref_primary_10_1016_j_jocs_2025_102696
crossref_primary_10_1134_S106456242460194X
crossref_primary_10_1016_j_compstruc_2023_107215
crossref_primary_10_1080_10407790_2023_2264489
crossref_primary_10_1093_imanum_drae081
crossref_primary_10_1016_j_jocs_2025_102613
crossref_primary_10_1007_s00366_024_01981_5
crossref_primary_10_1007_s11063_024_11644_7
crossref_primary_10_1038_s42005_024_01911_3
crossref_primary_10_26599_FRICT_2025_9441035
crossref_primary_10_1016_j_euromechsol_2022_104849
crossref_primary_10_1016_j_dte_2025_100057
crossref_primary_10_1016_j_neunet_2024_106286
crossref_primary_10_1016_j_cma_2025_117806
crossref_primary_10_1016_j_jcp_2025_114244
crossref_primary_10_1016_j_jsv_2025_119022
crossref_primary_10_1063_5_0277600
crossref_primary_10_1016_j_jcp_2024_113656
crossref_primary_10_1016_j_cma_2024_116779
crossref_primary_10_1016_j_cma_2024_117628
crossref_primary_10_1063_5_0258420
crossref_primary_10_1016_j_compstruc_2025_107899
crossref_primary_10_1016_j_heliyon_2023_e18820
Cites_doi 10.1016/j.jcp.2003.11.010
10.1016/S0010-4655(97)00054-4
10.1109/72.712178
10.1016/j.cma.2014.07.012
10.1016/S0010-4485(99)00043-3
10.1017/S096249290631001X
10.1162/neco.1991.3.2.246
10.1109/CVPR.2019.00025
10.1007/BF02574375
10.1016/j.jcp.2021.110600
10.1016/0898-1221(90)90270-T
10.1137/S0036144503429121
10.1142/S021865430400064X
10.1016/j.cma.2021.113938
10.1137/S0036142900373208
10.1109/TNN.2009.2020735
10.1073/pnas.1718942115
10.1016/j.cma.2014.10.012
10.1016/j.cad.2012.10.035
10.1002/nme.1534
10.1016/j.cam.2009.02.103
10.1002/nme.6150
10.1007/s003710050170
10.1090/S0025-5718-04-01678-3
10.1016/j.cagd.2007.12.003
10.1002/nme.1885
10.1016/S0167-8396(03)00002-5
10.1137/19M1274067
10.1016/j.gmod.2004.01.003
10.1002/nme.1193
10.1016/0893-6080(91)90009-T
10.1145/1183287.1183295
10.1007/s004660050479
10.1016/j.neucom.2019.12.099
10.1016/j.cma.2020.113115
10.1037/h0042519
10.1016/0898-1221(90)90271-K
10.1007/s003660200027
10.1002/nme.2793
10.1142/S0219530519410136
10.1109/72.870037
10.1017/S0962492906270016
10.1145/3131280
10.4208/cmr.2020-0051
10.1007/s40304-018-0127-z
10.1016/0893-6080(89)90020-8
10.1111/cgf.12611
10.1115/1.3005099
10.1016/S0167-8396(01)00015-2
10.1016/j.jcp.2018.10.045
10.1016/j.jcp.2018.08.029
10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
10.1115/1.3572035
10.1017/S0962492914000129
10.1016/j.jcp.2020.110085
10.1063/1.2149812
10.1162/neco.1996.8.1.164
10.1145/304012.304038
10.1093/comjnl/16.2.157
10.1016/j.cma.2019.112790
10.1002/nme.1052
10.1145/2451236.2451238
10.1145/1073204.1073229
10.1016/S0893-6080(09)80018-X
10.21105/joss.00747
10.1016/j.neucom.2018.06.056
10.1017/S0962492902000090
10.1016/j.finel.2011.03.001
10.1016/j.cma.2021.113796
10.1002/nme.6012
10.1111/1467-8659.114
10.1016/j.cma.2004.10.008
10.1115/1.4046892
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright Elsevier BV Feb 1, 2022
Copyright_xml – notice: 2021 Elsevier B.V.
– notice: Copyright Elsevier BV Feb 1, 2022
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1016/j.cma.2021.114333
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1879-2138
ExternalDocumentID 10_1016_j_cma_2021_114333
S0045782521006186
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACIWK
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
WH7
XPP
ZMT
~02
~G-
29F
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
VH1
VOH
WUQ
ZY4
~HD
7SC
7TB
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
FR3
JQ2
KR7
L7M
L~C
L~D
SSH
ID FETCH-LOGICAL-c325t-1ba5d82db0c3b9e7ce345a8d5c0d8a80eee01ba6ed74a6b3791d8822b2132f413
ISICitedReferencesCount 212
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000783073400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7825
IngestDate Fri Jul 25 05:45:31 EDT 2025
Tue Nov 18 22:13:32 EST 2025
Sat Nov 29 07:27:36 EST 2025
Fri Feb 23 02:41:00 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Exact geometry
Meshfree method
Distance function
R-function
Transfinite interpolation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c325t-1ba5d82db0c3b9e7ce345a8d5c0d8a80eee01ba6ed74a6b3791d8822b2132f413
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-6744-7673
PQID 2639708175
PQPubID 2045269
ParticipantIDs proquest_journals_2639708175
crossref_citationtrail_10_1016_j_cma_2021_114333
crossref_primary_10_1016_j_cma_2021_114333
elsevier_sciencedirect_doi_10_1016_j_cma_2021_114333
PublicationCentury 2000
PublicationDate 2022-02-01
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: 2022-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Computer methods in applied mechanics and engineering
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Ricci (b105) 1973; 16
Berg, Nyström (b7) 2018; 317
Thoutireddy, Ortiz (b38) 2004; 61
Biswas, Shapiro (b29) 2004; 66
Lagaris, Likas, Fotiadis (b2) 1997; 104
Grinspun (b40) 2003
Wang, Wang, Perdikaris (b98) 2021; 384
V. Shapiro, I. Tsukanov, Implicit functions with guaranteed differential properties, in: Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications, 1999, pp. 258–269.
LeNail (b90) 2019; 4
Wang, Teng, Perdikaris (b16) 2020
He, Li, Xu, Zheng (b39) 2018
Kantorovich, Krylov (b21) 1958
Tsukanov, Posireddy (b71) 2011; 11
McFall (b4) 2006
Shapiro (b30) 2007; 16
Kharazmi, Zhang, Karniadakis (b11) 2019
Bradbury, Frostig, Hawkins, Johnson, Leary, Maclaurin, Necula, Paszke, VanderPlas, Wanderman-Milne, Zhang (b93) 2018
Bloomenthal (b73) 1997; 16
Babuška, Melenk (b49) 1997; 40
Belyaev, Fayolle (b77) 2017
Barthe, Wyvill, De Groot (b107) 2004; 10
Freytag, Shapiro, Tsukanov (b31) 2011; 47
Bisong (b94) 2019
Babuška, Banerjee, Osborn (b19) 2003; 12
Lyu, Wu, Du, Chen (b18) 2020
Schlömer, Hariharan (b95) 2020
Shapiro (b26) 1991
Timoshenko, Woinowsky-Krieger (b101) 1959
Chen, Du, Wu (b17) 2020; 36
Hennigh, Narasimhan, Nabian, Subramaniam, Tangsali, Fang, Rietmann, Byeon, Choudhry (b70) 2021
Upreti, Song, Tambat, Subbarayan (b75) 2014; 280
E, Yu (b9) 2018; 6
Sherstyuk (b106) 1999; 15
Greco, Arroyo (b60) 2020; 367
Hornik, Stinchcombe, White (b66) 1989; 2
Floater (b78) 2015; 24
J.J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, Deepsdf: Learning continuous signed distance functions for shape representation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 165–174.
(b80) 2017
Chin, Sukumar (b84) 2021; 380
Sukumar (b52) 2005; 803
Floater (b34) 2003; 20
Sethian (b72) 1999
Hughes, Cottrell, Bazilevs (b37) 2005; 194
Ramabathiran, Ramachandran (b59) 2021; 445
Shepard (b85) 1968
Mhaskar (b57) 1996; 8
Lu, Meng, Mao, Karniadakis (b13) 2021; 63
Dwivedi, Srinivasan (b62) 2020; 391
Rvachev, Sheiko (b23) 1995; 48
Opschoor, Petersen, Schwab (b42) 2020; 18
Belyaev, Fayolle (b111) 2019
Shapiro, Tsukanov (b28) 2002; 18
Sirignano, Spiliopoulos (b8) 2018; 375
Rohrhofer, Posch, Geiger (b69) 2021
Cecil, Qian, Osher (b104) 2004; 196
Rajan (b50) 1994; 12
Guo, Zhuang, Rabczuk (b102) 2021
Sukumar, Wright (b54) 2007; 70
Shapiro, Tsukanov (b27) 1999; 31
Raissi, Perdikaris, Karniadakis (b6) 2019; 378
Gourmel, Barthe, Cani, Wyvill, Bernhardt, Paulin, Grasberger (b108) 2013; 32
Rvachev (b22) 1982
Liao, Ming (b64) 2019
Lee, Trask, Patel, Gulian, Cyr (b58) 2021
Sukumar (b51) 2004; 61
Kansa (b43) 1990; 19
Persson, Strang (b96) 2004; 46
Dyken, Floater (b35) 2009; 26
Shewchuk (b100) 1996; vol. 1148
Dwivedi, Srinivasan (b63) 2020; 20
Ju, Schaefer, Warren (b83) 2005; 24
Kansa (b44) 1990; 19
Hornik (b67) 1991; 4
Rosolen, Millán, Arroyo (b55) 2010; 82
Park, Sandberg (b56) 1991; 3
Sheng, Yang (b61) 2021; 428
Rahaman, Baratin, Arpit, Draxler, Lin, Hamprecht, Bengio, Courville (b97) 2019
McFall, Mahan (b5) 2009; 20
Han, Jentzen, E (b10) 2018; 115
Pushkar, Meyer, DeRose, Green, Sanocki (b99) 2007; 26
Li, Liu (b65) 2004
Belyaev, Fayolle, Pasko (b36) 2013; 45
Arroyo, Ortiz (b53) 2007; vol. 57
Buhmann (b45) 2003
Lagaris, Likas, Papageorgiou (b3) 2000; 11
Hornik (b89) 1993; 6
Schaback, Wendland (b47) 2006; 15
Bruvoll, Floater (b82) 2010; 233
Belyaev, Fayolle (b109) 2015; 34
Crane, Weischedel, Wardetzky (b110) 2017; 60
Kingma, Ba (b91) 2014
Lagaris, Likas, Fotiadis (b1) 1998; 9
Millán, Sukumar, Arroyo (b33) 2015; 284
Anisimov (b79) 2017
Strang, Fix (b68) 1973
Finol, Lu, Mahadevan, Srivastava (b88) 2019; 118
Hormann, Floater (b81) 2006; 25
LeCun (b87) 1998
Rosenblatt (b86) 1958; 65
Fasshauer (b46) 2007
Zhao (b103) 2005; 74
Rvachev, Sheiko, Shapiro, Tsukanov (b25) 2001; 18
Rvachev, Sheiko, Shapiro, Tsukanov (b24) 2000; 25
Huerta, Belytschko, Fernández-Méndez, Rabczuk, Zhuang, Arroyo (b20) 2017; vol. 2
Cyr, Gulian, Patel, Perego, Trask (b41) 2020
Samaniego, Anitescu, Goswami, Nguyen-Thanh, Guo, Hamdia, Zhuang, Rabczuk (b92) 2020; 362
Höllig, Reif, Wipper (b32) 2001; 39
Chin, Sukumar (b76) 2019; 120
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga, Desmaison, Kopf, Yang, DeVito, Raison, Tejani, Chilamkurthy, Steiner, Fang, Bai, Chintala (b15) 2019; 32
Arroyo, Ortiz (b48) 2006; 65
Kharazmi, Zhang, Karniadakis (b12) 2020; 374
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (b14) 2016
Belyaev (10.1016/j.cma.2021.114333_b77) 2017
Park (10.1016/j.cma.2021.114333_b56) 1991; 3
Rajan (10.1016/j.cma.2021.114333_b50) 1994; 12
Chin (10.1016/j.cma.2021.114333_b84) 2021; 380
Belyaev (10.1016/j.cma.2021.114333_b111) 2019
10.1016/j.cma.2021.114333_b74
Shapiro (10.1016/j.cma.2021.114333_b27) 1999; 31
Strang (10.1016/j.cma.2021.114333_b68) 1973
Sukumar (10.1016/j.cma.2021.114333_b52) 2005; 803
Shapiro (10.1016/j.cma.2021.114333_b26) 1991
LeNail (10.1016/j.cma.2021.114333_b90) 2019; 4
Barthe (10.1016/j.cma.2021.114333_b107) 2004; 10
Belyaev (10.1016/j.cma.2021.114333_b109) 2015; 34
Timoshenko (10.1016/j.cma.2021.114333_b101) 1959
Kharazmi (10.1016/j.cma.2021.114333_b11) 2019
Rosenblatt (10.1016/j.cma.2021.114333_b86) 1958; 65
McFall (10.1016/j.cma.2021.114333_b4) 2006
Zhao (10.1016/j.cma.2021.114333_b103) 2005; 74
Upreti (10.1016/j.cma.2021.114333_b75) 2014; 280
Babuška (10.1016/j.cma.2021.114333_b19) 2003; 12
Dwivedi (10.1016/j.cma.2021.114333_b62) 2020; 391
Ricci (10.1016/j.cma.2021.114333_b105) 1973; 16
Bruvoll (10.1016/j.cma.2021.114333_b82) 2010; 233
Gourmel (10.1016/j.cma.2021.114333_b108) 2013; 32
Rohrhofer (10.1016/j.cma.2021.114333_b69) 2021
E (10.1016/j.cma.2021.114333_b9) 2018; 6
Biswas (10.1016/j.cma.2021.114333_b29) 2004; 66
Sukumar (10.1016/j.cma.2021.114333_b54) 2007; 70
Dyken (10.1016/j.cma.2021.114333_b35) 2009; 26
Hennigh (10.1016/j.cma.2021.114333_b70) 2021
Bloomenthal (10.1016/j.cma.2021.114333_b73) 1997; 16
Shapiro (10.1016/j.cma.2021.114333_b30) 2007; 16
Tsukanov (10.1016/j.cma.2021.114333_b71) 2011; 11
He (10.1016/j.cma.2021.114333_b39) 2018
Sethian (10.1016/j.cma.2021.114333_b72) 1999
Kansa (10.1016/j.cma.2021.114333_b44) 1990; 19
Samaniego (10.1016/j.cma.2021.114333_b92) 2020; 362
Kingma (10.1016/j.cma.2021.114333_b91) 2014
Lagaris (10.1016/j.cma.2021.114333_b2) 1997; 104
Raissi (10.1016/j.cma.2021.114333_b6) 2019; 378
Shepard (10.1016/j.cma.2021.114333_b85) 1968
LeCun (10.1016/j.cma.2021.114333_b87) 1998
Arroyo (10.1016/j.cma.2021.114333_b53) 2007; vol. 57
Rvachev (10.1016/j.cma.2021.114333_b25) 2001; 18
Rahaman (10.1016/j.cma.2021.114333_b97) 2019
Lagaris (10.1016/j.cma.2021.114333_b3) 2000; 11
Greco (10.1016/j.cma.2021.114333_b60) 2020; 367
10.1016/j.cma.2021.114333_b112
Crane (10.1016/j.cma.2021.114333_b110) 2017; 60
Lagaris (10.1016/j.cma.2021.114333_b1) 1998; 9
Cyr (10.1016/j.cma.2021.114333_b41) 2020
Floater (10.1016/j.cma.2021.114333_b34) 2003; 20
Thoutireddy (10.1016/j.cma.2021.114333_b38) 2004; 61
Rosolen (10.1016/j.cma.2021.114333_b55) 2010; 82
Ju (10.1016/j.cma.2021.114333_b83) 2005; 24
Abadi (10.1016/j.cma.2021.114333_b14) 2016
Rvachev (10.1016/j.cma.2021.114333_b23) 1995; 48
Berg (10.1016/j.cma.2021.114333_b7) 2018; 317
Han (10.1016/j.cma.2021.114333_b10) 2018; 115
Höllig (10.1016/j.cma.2021.114333_b32) 2001; 39
Rvachev (10.1016/j.cma.2021.114333_b24) 2000; 25
Lee (10.1016/j.cma.2021.114333_b58) 2021
Freytag (10.1016/j.cma.2021.114333_b31) 2011; 47
Mhaskar (10.1016/j.cma.2021.114333_b57) 1996; 8
Babuška (10.1016/j.cma.2021.114333_b49) 1997; 40
Sherstyuk (10.1016/j.cma.2021.114333_b106) 1999; 15
Wang (10.1016/j.cma.2021.114333_b98) 2021; 384
Hughes (10.1016/j.cma.2021.114333_b37) 2005; 194
Bradbury (10.1016/j.cma.2021.114333_b93) 2018
Schlömer (10.1016/j.cma.2021.114333_b95) 2020
Wang (10.1016/j.cma.2021.114333_b16) 2020
Arroyo (10.1016/j.cma.2021.114333_b48) 2006; 65
Liao (10.1016/j.cma.2021.114333_b64) 2019
Shewchuk (10.1016/j.cma.2021.114333_b100) 1996; vol. 1148
Paszke (10.1016/j.cma.2021.114333_b15) 2019; 32
Dwivedi (10.1016/j.cma.2021.114333_b63) 2020; 20
Sheng (10.1016/j.cma.2021.114333_b61) 2021; 428
Guo (10.1016/j.cma.2021.114333_b102) 2021
Persson (10.1016/j.cma.2021.114333_b96) 2004; 46
Chen (10.1016/j.cma.2021.114333_b17) 2020; 36
Hormann (10.1016/j.cma.2021.114333_b81) 2006; 25
Opschoor (10.1016/j.cma.2021.114333_b42) 2020; 18
Kharazmi (10.1016/j.cma.2021.114333_b12) 2020; 374
Sirignano (10.1016/j.cma.2021.114333_b8) 2018; 375
Buhmann (10.1016/j.cma.2021.114333_b45) 2003
McFall (10.1016/j.cma.2021.114333_b5) 2009; 20
Kansa (10.1016/j.cma.2021.114333_b43) 1990; 19
Floater (10.1016/j.cma.2021.114333_b78) 2015; 24
Belyaev (10.1016/j.cma.2021.114333_b36) 2013; 45
(10.1016/j.cma.2021.114333_b80) 2017
Grinspun (10.1016/j.cma.2021.114333_b40) 2003
Pushkar (10.1016/j.cma.2021.114333_b99) 2007; 26
Millán (10.1016/j.cma.2021.114333_b33) 2015; 284
Hornik (10.1016/j.cma.2021.114333_b67) 1991; 4
Huerta (10.1016/j.cma.2021.114333_b20) 2017; vol. 2
Schaback (10.1016/j.cma.2021.114333_b47) 2006; 15
Hornik (10.1016/j.cma.2021.114333_b66) 1989; 2
Kantorovich (10.1016/j.cma.2021.114333_b21) 1958
Chin (10.1016/j.cma.2021.114333_b76) 2019; 120
Rvachev (10.1016/j.cma.2021.114333_b22) 1982
Shapiro (10.1016/j.cma.2021.114333_b28) 2002; 18
Fasshauer (10.1016/j.cma.2021.114333_b46) 2007
Sukumar (10.1016/j.cma.2021.114333_b51) 2004; 61
Ramabathiran (10.1016/j.cma.2021.114333_b59) 2021; 445
Lu (10.1016/j.cma.2021.114333_b13) 2021; 63
Anisimov (10.1016/j.cma.2021.114333_b79) 2017
Lyu (10.1016/j.cma.2021.114333_b18) 2020
Bisong (10.1016/j.cma.2021.114333_b94) 2019
Cecil (10.1016/j.cma.2021.114333_b104) 2004; 196
Hornik (10.1016/j.cma.2021.114333_b89) 1993; 6
Finol (10.1016/j.cma.2021.114333_b88) 2019; 118
Li (10.1016/j.cma.2021.114333_b65) 2004
References_xml – volume: 46
  start-page: 329
  year: 2004
  end-page: 345
  ident: b96
  article-title: A simple mesh generator in MATLAB
  publication-title: SIAM Rev.
– volume: 9
  start-page: 987
  year: 1998
  end-page: 1000
  ident: b1
  article-title: Artifical neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
– year: 2003
  ident: b40
  article-title: The basis refinement method
– reference: V. Shapiro, I. Tsukanov, Implicit functions with guaranteed differential properties, in: Proceedings of the Fifth ACM Symposium on Solid Modeling and Applications, 1999, pp. 258–269.
– year: 1959
  ident: b101
  article-title: Theory of Plates and Shells
– volume: 367
  year: 2020
  ident: b60
  article-title: High-order maximum-entropy collocation methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 11
  start-page: 1041
  year: 2000
  end-page: 1049
  ident: b3
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
– volume: 4
  start-page: 251
  year: 1991
  end-page: 257
  ident: b67
  article-title: Approximation capabilities of multilayer perceptrons
  publication-title: Neural Netw.
– volume: 47
  start-page: 957
  year: 2011
  end-page: 972
  ident: b31
  article-title: Finite element analysis in situ
  publication-title: Finite Elem. Anal. Des.
– start-page: 512
  year: 2020
  end-page: 536
  ident: b41
  article-title: Robust training and initialization of deep neural networks: An adaptive basis viewpoint
  publication-title: Mathematical and Scientific Machine Learning
– volume: 70
  start-page: 181
  year: 2007
  end-page: 205
  ident: b54
  article-title: Overview and construction of meshfree basis functions: From moving least squares to entropy approximants
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 445
  year: 2021
  ident: b59
  article-title: SPINN: Sparse, physics-based, and partially interpretable neural networks for PDEs
  publication-title: J. Comput. Phys.
– volume: 74
  start-page: 603
  year: 2005
  end-page: 627
  ident: b103
  article-title: A fast sweeping method for Eikonal equations
  publication-title: Math. Comp.
– year: 1982
  ident: b22
  article-title: Theory of R-Functions and Some Applications
– volume: 48
  start-page: 151
  year: 1995
  end-page: 188
  ident: b23
  article-title: R-functions in boundary value problems in mechanics
  publication-title: Appl. Mech. Rev.
– volume: 10
  start-page: 135
  year: 2004
  end-page: 154
  ident: b107
  article-title: Controllable binary CSG operators for “soft objects”
  publication-title: Int. J. Shape Model.
– volume: 19
  start-page: 147
  year: 1990
  end-page: 161
  ident: b44
  article-title: Multiquadrics—A scattered data approximation scheme for applications to computational fluid-dynamics. 2. Solutions to parabolic, hyperboloc and elliptic partial-differential equations
  publication-title: Comput. Math. Appl.
– year: 2017
  ident: b80
  article-title: Generalized barycentric coordinates in computer graphics and computational mechanics
– volume: 20
  start-page: 1221
  year: 2009
  end-page: 1233
  ident: b5
  article-title: Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions
  publication-title: IEEE Trans. Neural Netw.
– year: 1991
  ident: b26
  article-title: Theory of R-functions and applications: A primer
– start-page: 517
  year: 1968
  end-page: 524
  ident: b85
  article-title: A two-dimensional interpolation function for irregularly-spaced data
  publication-title: Proceedings of the 23rd ACM National Conference
– start-page: 5301
  year: 2019
  end-page: 5310
  ident: b97
  article-title: On the spectral bias of neural networks
  publication-title: International Conference on Machine Learning
– volume: vol. 1148
  start-page: 203
  year: 1996
  end-page: 222
  ident: b100
  article-title: Triangle: Engineering a 2D quality mesh generator and delaunay triangulator
  publication-title: Applied Computational Geometry: Towards Geometric Engineering
– volume: 16
  start-page: 239
  year: 2007
  end-page: 303
  ident: b30
  article-title: Semi-analytic geometry with R-functions
  publication-title: Acta Numer.
– volume: 428
  year: 2021
  ident: b61
  article-title: PFNN: A penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries
  publication-title: J. Comput. Phys.
– start-page: 3
  year: 2017
  end-page: 22
  ident: b79
  publication-title: Barycentric coordinates and their properties
– volume: 18
  start-page: 295
  year: 2002
  end-page: 311
  ident: b28
  article-title: The architecture of SAGE–a meshfree system based on RFM
  publication-title: Eng. Comput.
– volume: 24
  start-page: 161
  year: 2015
  end-page: 214
  ident: b78
  article-title: Generalized barycentric coordinates and applications
  publication-title: Acta Numer.
– volume: 115
  start-page: 8505
  year: 2018
  end-page: 8510
  ident: b10
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci.
– volume: 18
  start-page: 195
  year: 2001
  end-page: 220
  ident: b25
  article-title: Transfinite interpolation over implicitly defined sets
  publication-title: Comput. Aided Geom. Design
– volume: 45
  start-page: 523
  year: 2013
  end-page: 528
  ident: b36
  article-title: Signed
  publication-title: Comput. Aided Des.
– volume: 61
  start-page: 2159
  year: 2004
  end-page: 2181
  ident: b51
  article-title: Construction of polygonal interpolants: a maximum entropy approach
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 61
  start-page: 1
  year: 2004
  end-page: 21
  ident: b38
  article-title: A variational
  publication-title: Internat. J. Numer. Methods Engrg.
– start-page: 59
  year: 2019
  end-page: 64
  ident: b94
  article-title: Google colaboratory
  publication-title: Building Machine Learning and Deep Learning Models on Google Cloud Platform
– volume: 3
  start-page: 246
  year: 1991
  end-page: 257
  ident: b56
  article-title: Universal approximation using radial-basis-function networks
  publication-title: Neural Comput.
– volume: 362
  year: 2020
  ident: b92
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 26
  year: 2007
  ident: b99
  article-title: Harmonic coordinates for character articulation
  publication-title: ACM Trans. Graph.
– reference: J.J. Park, P. Florence, J. Straub, R. Newcombe, S. Lovegrove, Deepsdf: Learning continuous signed distance functions for shape representation, in: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2019, pp. 165–174.
– volume: 32
  start-page: 12:1
  year: 2013
  end-page: 12:12
  ident: b108
  article-title: A gradient-based implicit blend
  publication-title: ACM Trans. Graph.
– volume: 26
  start-page: 117
  year: 2009
  end-page: 134
  ident: b35
  article-title: Transfinite mean value interpolation
  publication-title: Comput. Aided Geom. Design
– volume: 194
  start-page: 4135
  year: 2005
  end-page: 4195
  ident: b37
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 18
  start-page: 715
  year: 2020
  end-page: 770
  ident: b42
  article-title: Deep ReLU networks and high-order finite element methods
  publication-title: Anal. Appl.
– year: 2018
  ident: b93
  article-title: JAX: composable transformations of Python+NumPy programs
– volume: 391
  start-page: 96
  year: 2020
  end-page: 118
  ident: b62
  article-title: Physics informed extreme learning machine (PIELM)–a rapid method for the numerical solution of partial differential equations
  publication-title: Neuralcomputing
– year: 2020
  ident: b16
  article-title: Understanding and mitigating gradient pathologies in physics-informed neural networks
– volume: 12
  start-page: 189
  year: 1994
  end-page: 202
  ident: b50
  article-title: Optimality of the Delaunay triangulation in
  publication-title: Discrete Comput. Geom.
– volume: 24
  start-page: 561
  year: 2005
  end-page: 566
  ident: b83
  article-title: Mean value coordinates for closed triangular meshes
  publication-title: ACM Trans. Graph.
– year: 1999
  ident: b72
  article-title: Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid Mechanics, Computer Vision, and Materials Science
– volume: 15
  start-page: 171
  year: 1999
  end-page: 182
  ident: b106
  article-title: Kernel functions in convolution surfaces: a comparative analysis
  publication-title: Vis. Comput.
– volume: 34
  start-page: 104
  year: 2015
  end-page: 118
  ident: b109
  article-title: On variational and PDE-based distance function approximations
  publication-title: Comput. Graph. Forum
– volume: 20
  start-page: 19
  year: 2003
  end-page: 27
  ident: b34
  article-title: Mean value coordinates
  publication-title: Comput. Aided Geom. Design
– start-page: 265
  year: 2016
  end-page: 283
  ident: b14
  article-title: Tensorflow: A system for large-scale machine learning
  publication-title: 12th
– volume: 19
  start-page: 127
  year: 1990
  end-page: 145
  ident: b43
  article-title: Multiquadrics—A scattered data approximation scheme for applications to computational fluid-dynamics. 1. Surface approximations and partial derivative estimates
  publication-title: Comput. Math. Appl.
– volume: 6
  start-page: 1069
  year: 1993
  end-page: 1072
  ident: b89
  article-title: Some new results on neural network approximation
  publication-title: Neural Netw.
– volume: 118
  start-page: 258
  year: 2019
  end-page: 275
  ident: b88
  article-title: Deep convolutional neural networks for eigenvalue problems in mechanics
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 2021
  ident: b69
  article-title: On the Pareto front of physics-informed neural networks
– volume: 374
  year: 2020
  ident: b12
  article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 8
  start-page: 164
  year: 1996
  end-page: 177
  ident: b57
  article-title: Neural networks for optimal approximation of smooth and analytic functions
  publication-title: Neural Comput.
– volume: 40
  start-page: 727
  year: 1997
  end-page: 758
  ident: b49
  article-title: The partition of unity method
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: vol. 57
  start-page: 1
  year: 2007
  end-page: 16
  ident: b53
  article-title: Local maximum-entropy approximation schemes
  publication-title: Meshfree Methods for Partial Differential Equations III
– volume: 31
  start-page: 459
  year: 1999
  end-page: 471
  ident: b27
  article-title: Meshfree simulation of deforming domains
  publication-title: Comput. Aided Des.
– volume: 25
  start-page: 305
  year: 2000
  end-page: 3163
  ident: b24
  article-title: On completeness of RFM solution structures
  publication-title: Comput. Mech.
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: b66
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– year: 1973
  ident: b68
  article-title: An Analysis of the Finite Element Method
– volume: 63
  start-page: 208
  year: 2021
  end-page: 228
  ident: b13
  article-title: DeepXDE: A deep learning library for solving differential equations
  publication-title: SIAM Rev.
– year: 2003
  ident: b45
  article-title: Radial Basis Functions: Theory and Implementations
– year: 1998
  ident: b87
  article-title: The MNIST database of handwritten digits
– year: 2019
  ident: b64
  article-title: Deep Nitsche method: Deep Ritz method with essential boundary conditions
– volume: 66
  start-page: 133
  year: 2004
  end-page: 159
  ident: b29
  article-title: Approximate distance fields with non-vanishing gradients
  publication-title: Graph. Models
– year: 2004
  ident: b65
  article-title: Meshfree Particle Methods
– volume: 378
  start-page: 686
  year: 2019
  end-page: 707
  ident: b6
  article-title: Physics-informed neural networks: A deep learning framework for forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
– volume: 65
  start-page: 2167
  year: 2006
  end-page: 2202
  ident: b48
  article-title: Local
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: vol. 2
  start-page: 1
  year: 2017
  end-page: 38
  ident: b20
  article-title: Meshfree methods
  publication-title: Encycl. Comput. Mech.
– volume: 317
  start-page: 28
  year: 2018
  end-page: 41
  ident: b7
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neuralcomputing
– volume: 196
  start-page: 327
  year: 2004
  end-page: 347
  ident: b104
  article-title: Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions
  publication-title: J. Comput. Phys.
– year: 2018
  ident: b39
  article-title: ReLU deep neural networks and linear finite elements
– start-page: 43
  year: 2017
  end-page: 62
  ident: b77
  publication-title: Transfinite barycentric coordinates
– volume: 32
  year: 2019
  ident: b15
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Advances in Neural Information Processing Systems
– volume: 36
  start-page: 354
  year: 2020
  end-page: 376
  ident: b17
  article-title: A comparison study of deep Galerkin method and deep Ritz method for elliptic problems with different boundary conditions
  publication-title: Commun. Math. Res.
– volume: 39
  start-page: 442
  year: 2001
  end-page: 462
  ident: b32
  article-title: Weighted extended B-spline approximation of Dirichlet problems
  publication-title: SIAM J. Numer. Anal.
– volume: 82
  start-page: 868
  year: 2010
  end-page: 895
  ident: b55
  article-title: On the optimum support size in meshfree methods: a variational adaptivity approach with maximum entropy approximants
  publication-title: Internat. J. Numer. Methods Engrg.
– volume: 12
  start-page: 1
  year: 2003
  end-page: 125
  ident: b19
  article-title: Survey of meshless and generalized finite element methods: a unified approach
  publication-title: Acta Numer.
– volume: 16
  start-page: 31
  year: 1997
  end-page: 41
  ident: b73
  article-title: Bulge elimination in convolution surfaces
  publication-title: Comput. Graph. Forum
– volume: 16
  start-page: 157
  year: 1973
  end-page: 160
  ident: b105
  article-title: A constructive geometry for computer graphics
  publication-title: Comput. J.
– volume: 6
  start-page: 1
  year: 2018
  end-page: 12
  ident: b9
  article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
– volume: 803
  start-page: 337
  year: 2005
  end-page: 344
  ident: b52
  article-title: Maximum entropy approximation
  publication-title: AIP Conf. Proc.
– start-page: 175
  year: 2019
  end-page: 181
  ident: b111
  article-title: A variational method for accurate distance function estimation
  publication-title: Numerical Geometry, Grid Generation and Scientific Computing
– year: 2014
  ident: b91
  article-title: Adam: A method for stochastic optimization
– year: 2021
  ident: b102
  article-title: A deep collocation method for the bending analysis of Kirchhoff plate
– year: 2020
  ident: b95
  article-title: Dmsh
– volume: 233
  start-page: 1631
  year: 2010
  end-page: 1639
  ident: b82
  article-title: Transfinite mean value interpolation in general dimension
  publication-title: J. Comput. Appl. Math.
– volume: 120
  start-page: 607
  year: 2019
  end-page: 649
  ident: b76
  article-title: Modeling curved interfaces without element-partitioning in the extended finite element method
  publication-title: Internat. J. Numer. Methods Engrg.
– year: 2019
  ident: b11
  article-title: Variational physics-informed neural networks for solving partial differential equations
– year: 2020
  ident: b18
  article-title: Enforcing exact boundary and initial conditions in the deep mixed residual method
– year: 2021
  ident: b58
  article-title: Partition of unity networks: deep hp-approximation
– volume: 284
  start-page: 712
  year: 2015
  end-page: 731
  ident: b33
  article-title: Cell-based maximum-entropy approximants
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 20
  year: 2020
  ident: b63
  article-title: Solution of biharmonic equation in complicated geometries with physics informed extreme learning machine
  publication-title: J. Comput. Inf. Sci. Eng.
– volume: 25
  start-page: 1424
  year: 2006
  end-page: 1441
  ident: b81
  article-title: Mean value coordinates for arbitrary planar polygons
  publication-title: ACM Trans. Graph.
– volume: 384
  year: 2021
  ident: b98
  article-title: On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 104
  start-page: 1
  year: 1997
  end-page: 14
  ident: b2
  article-title: Artifical neural network methods in quantum mechanics
  publication-title: Comput. Phys. Comm.
– year: 2006
  ident: b4
  article-title: An artificial neural network method for solving boundary value problems with arbitrary irregular boundaries
– volume: 375
  start-page: 1339
  year: 2018
  end-page: 1364
  ident: b8
  article-title: DGM: A deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
– year: 2007
  ident: b46
  article-title: Meshfree Approximation Methods in MATLAB
– start-page: 447
  year: 2021
  end-page: 461
  ident: b70
  article-title: NVIDIA SimNet™: An AI-accelerated multi-physics simulation framework
  publication-title: International Conference on Computational Science
– volume: 60
  start-page: 90
  year: 2017
  end-page: 99
  ident: b110
  article-title: The heat method for distance computation
  publication-title: Commun. ACM
– volume: 280
  start-page: 28
  year: 2014
  end-page: 56
  ident: b75
  article-title: Algebraic distance estimations for enriched isogeometric analysis
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 380
  year: 2021
  ident: b84
  article-title: Scaled boundary cubature scheme for numerical integration over planar regions with affine and curved boundaries
  publication-title: Comput. Methods Appl. Mech. Engrg.
– volume: 11
  year: 2011
  ident: b71
  article-title: Hybrid method of engineering analysis: Combining meshfree method with distance fields and collocation technique
  publication-title: J. Comput. Inf. Sci. Eng.
– volume: 4
  start-page: 747
  year: 2019
  ident: b90
  article-title: Nn-svg: Publication-ready neural network architecture schematics
  publication-title: J. Open Sour. Softw.
– volume: 65
  start-page: 386
  year: 1958
  ident: b86
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain.
  publication-title: Psychol. Rev.
– year: 1958
  ident: b21
  article-title: Approximate Methods of Higher Analysis
– volume: 15
  start-page: 543
  year: 2006
  ident: b47
  article-title: Kernel techniques: from machine learning to meshless methods
  publication-title: Acta Numer.
– volume: 196
  start-page: 327
  issue: 1
  year: 2004
  ident: 10.1016/j.cma.2021.114333_b104
  article-title: Numerical methods for high dimensional Hamilton–Jacobi equations using radial basis functions
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2003.11.010
– year: 2019
  ident: 10.1016/j.cma.2021.114333_b11
– volume: 104
  start-page: 1
  year: 1997
  ident: 10.1016/j.cma.2021.114333_b2
  article-title: Artifical neural network methods in quantum mechanics
  publication-title: Comput. Phys. Comm.
  doi: 10.1016/S0010-4655(97)00054-4
– volume: 9
  start-page: 987
  issue: 5
  year: 1998
  ident: 10.1016/j.cma.2021.114333_b1
  article-title: Artifical neural networks for solving ordinary and partial differential equations
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.712178
– year: 2020
  ident: 10.1016/j.cma.2021.114333_b16
– volume: vol. 1148
  start-page: 203
  year: 1996
  ident: 10.1016/j.cma.2021.114333_b100
  article-title: Triangle: Engineering a 2D quality mesh generator and delaunay triangulator
– volume: 280
  start-page: 28
  year: 2014
  ident: 10.1016/j.cma.2021.114333_b75
  article-title: Algebraic distance estimations for enriched isogeometric analysis
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2014.07.012
– volume: 31
  start-page: 459
  issue: 7
  year: 1999
  ident: 10.1016/j.cma.2021.114333_b27
  article-title: Meshfree simulation of deforming domains
  publication-title: Comput. Aided Des.
  doi: 10.1016/S0010-4485(99)00043-3
– volume: 16
  start-page: 239
  year: 2007
  ident: 10.1016/j.cma.2021.114333_b30
  article-title: Semi-analytic geometry with R-functions
  publication-title: Acta Numer.
  doi: 10.1017/S096249290631001X
– volume: 3
  start-page: 246
  year: 1991
  ident: 10.1016/j.cma.2021.114333_b56
  article-title: Universal approximation using radial-basis-function networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1991.3.2.246
– ident: 10.1016/j.cma.2021.114333_b112
  doi: 10.1109/CVPR.2019.00025
– start-page: 175
  year: 2019
  ident: 10.1016/j.cma.2021.114333_b111
  article-title: A variational method for accurate distance function estimation
– volume: 12
  start-page: 189
  issue: 1
  year: 1994
  ident: 10.1016/j.cma.2021.114333_b50
  article-title: Optimality of the Delaunay triangulation in Rd
  publication-title: Discrete Comput. Geom.
  doi: 10.1007/BF02574375
– volume: vol. 2
  start-page: 1
  year: 2017
  ident: 10.1016/j.cma.2021.114333_b20
  article-title: Meshfree methods
– volume: 445
  year: 2021
  ident: 10.1016/j.cma.2021.114333_b59
  article-title: SPINN: Sparse, physics-based, and partially interpretable neural networks for PDEs
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2021.110600
– year: 2003
  ident: 10.1016/j.cma.2021.114333_b45
– volume: 19
  start-page: 127
  issue: 8/9
  year: 1990
  ident: 10.1016/j.cma.2021.114333_b43
  article-title: Multiquadrics—A scattered data approximation scheme for applications to computational fluid-dynamics. 1. Surface approximations and partial derivative estimates
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(90)90270-T
– volume: 46
  start-page: 329
  issue: 2
  year: 2004
  ident: 10.1016/j.cma.2021.114333_b96
  article-title: A simple mesh generator in MATLAB
  publication-title: SIAM Rev.
  doi: 10.1137/S0036144503429121
– volume: 10
  start-page: 135
  issue: 02
  year: 2004
  ident: 10.1016/j.cma.2021.114333_b107
  article-title: Controllable binary CSG operators for “soft objects”
  publication-title: Int. J. Shape Model.
  doi: 10.1142/S021865430400064X
– volume: 384
  year: 2021
  ident: 10.1016/j.cma.2021.114333_b98
  article-title: On the eigenvector bias of Fourier feature networks: From regression to solving multi-scale PDEs with physics-informed neural networks
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113938
– volume: 39
  start-page: 442
  issue: 2
  year: 2001
  ident: 10.1016/j.cma.2021.114333_b32
  article-title: Weighted extended B-spline approximation of Dirichlet problems
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/S0036142900373208
– volume: 20
  start-page: 1221
  issue: 8
  year: 2009
  ident: 10.1016/j.cma.2021.114333_b5
  article-title: Artificial neural network method for solution of boundary value problems with exact satisfaction of arbitrary boundary conditions
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2009.2020735
– volume: 115
  start-page: 8505
  issue: 34
  year: 2018
  ident: 10.1016/j.cma.2021.114333_b10
  article-title: Solving high-dimensional partial differential equations using deep learning
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1718942115
– volume: 284
  start-page: 712
  year: 2015
  ident: 10.1016/j.cma.2021.114333_b33
  article-title: Cell-based maximum-entropy approximants
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2014.10.012
– volume: 45
  start-page: 523
  issue: 2
  year: 2013
  ident: 10.1016/j.cma.2021.114333_b36
  article-title: Signed Lp-distance fields
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2012.10.035
– volume: 65
  start-page: 2167
  issue: 13
  year: 2006
  ident: 10.1016/j.cma.2021.114333_b48
  article-title: Local maximum-entropy approximation schemes: a seamless bridge between finite elements and meshfree methods
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1534
– volume: 233
  start-page: 1631
  issue: 7
  year: 2010
  ident: 10.1016/j.cma.2021.114333_b82
  article-title: Transfinite mean value interpolation in general dimension
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2009.02.103
– volume: 120
  start-page: 607
  issue: 5
  year: 2019
  ident: 10.1016/j.cma.2021.114333_b76
  article-title: Modeling curved interfaces without element-partitioning in the extended finite element method
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.6150
– volume: 15
  start-page: 171
  issue: 4
  year: 1999
  ident: 10.1016/j.cma.2021.114333_b106
  article-title: Kernel functions in convolution surfaces: a comparative analysis
  publication-title: Vis. Comput.
  doi: 10.1007/s003710050170
– volume: 74
  start-page: 603
  issue: 250
  year: 2005
  ident: 10.1016/j.cma.2021.114333_b103
  article-title: A fast sweeping method for Eikonal equations
  publication-title: Math. Comp.
  doi: 10.1090/S0025-5718-04-01678-3
– year: 2018
  ident: 10.1016/j.cma.2021.114333_b39
– volume: 26
  start-page: 117
  issue: 1
  year: 2009
  ident: 10.1016/j.cma.2021.114333_b35
  article-title: Transfinite mean value interpolation
  publication-title: Comput. Aided Geom. Design
  doi: 10.1016/j.cagd.2007.12.003
– volume: 70
  start-page: 181
  issue: 2
  year: 2007
  ident: 10.1016/j.cma.2021.114333_b54
  article-title: Overview and construction of meshfree basis functions: From moving least squares to entropy approximants
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1885
– year: 1999
  ident: 10.1016/j.cma.2021.114333_b72
– volume: 20
  start-page: 19
  issue: 1
  year: 2003
  ident: 10.1016/j.cma.2021.114333_b34
  article-title: Mean value coordinates
  publication-title: Comput. Aided Geom. Design
  doi: 10.1016/S0167-8396(03)00002-5
– year: 2020
  ident: 10.1016/j.cma.2021.114333_b18
– volume: 63
  start-page: 208
  issue: 1
  year: 2021
  ident: 10.1016/j.cma.2021.114333_b13
  article-title: DeepXDE: A deep learning library for solving differential equations
  publication-title: SIAM Rev.
  doi: 10.1137/19M1274067
– year: 1973
  ident: 10.1016/j.cma.2021.114333_b68
– volume: 66
  start-page: 133
  issue: 3
  year: 2004
  ident: 10.1016/j.cma.2021.114333_b29
  article-title: Approximate distance fields with non-vanishing gradients
  publication-title: Graph. Models
  doi: 10.1016/j.gmod.2004.01.003
– volume: 32
  year: 2019
  ident: 10.1016/j.cma.2021.114333_b15
  article-title: Pytorch: An imperative style, high-performance deep learning library
– volume: 61
  start-page: 2159
  issue: 12
  year: 2004
  ident: 10.1016/j.cma.2021.114333_b51
  article-title: Construction of polygonal interpolants: a maximum entropy approach
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1193
– volume: 4
  start-page: 251
  year: 1991
  ident: 10.1016/j.cma.2021.114333_b67
  article-title: Approximation capabilities of multilayer perceptrons
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(91)90009-T
– volume: 25
  start-page: 1424
  issue: 4
  year: 2006
  ident: 10.1016/j.cma.2021.114333_b81
  article-title: Mean value coordinates for arbitrary planar polygons
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1183287.1183295
– volume: 25
  start-page: 305
  year: 2000
  ident: 10.1016/j.cma.2021.114333_b24
  article-title: On completeness of RFM solution structures
  publication-title: Comput. Mech.
  doi: 10.1007/s004660050479
– volume: 391
  start-page: 96
  year: 2020
  ident: 10.1016/j.cma.2021.114333_b62
  article-title: Physics informed extreme learning machine (PIELM)–a rapid method for the numerical solution of partial differential equations
  publication-title: Neuralcomputing
  doi: 10.1016/j.neucom.2019.12.099
– volume: 367
  year: 2020
  ident: 10.1016/j.cma.2021.114333_b60
  article-title: High-order maximum-entropy collocation methods
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2020.113115
– volume: 65
  start-page: 386
  issue: 6
  year: 1958
  ident: 10.1016/j.cma.2021.114333_b86
  article-title: The perceptron: A probabilistic model for information storage and organization in the brain.
  publication-title: Psychol. Rev.
  doi: 10.1037/h0042519
– volume: 19
  start-page: 147
  issue: 8/9
  year: 1990
  ident: 10.1016/j.cma.2021.114333_b44
  article-title: Multiquadrics—A scattered data approximation scheme for applications to computational fluid-dynamics. 2. Solutions to parabolic, hyperboloc and elliptic partial-differential equations
  publication-title: Comput. Math. Appl.
  doi: 10.1016/0898-1221(90)90271-K
– volume: 18
  start-page: 295
  issue: 4
  year: 2002
  ident: 10.1016/j.cma.2021.114333_b28
  article-title: The architecture of SAGE–a meshfree system based on RFM
  publication-title: Eng. Comput.
  doi: 10.1007/s003660200027
– volume: 82
  start-page: 868
  issue: 7
  year: 2010
  ident: 10.1016/j.cma.2021.114333_b55
  article-title: On the optimum support size in meshfree methods: a variational adaptivity approach with maximum entropy approximants
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.2793
– volume: 26
  issue: 3
  year: 2007
  ident: 10.1016/j.cma.2021.114333_b99
  article-title: Harmonic coordinates for character articulation
  publication-title: ACM Trans. Graph.
– year: 2017
  ident: 10.1016/j.cma.2021.114333_b80
– start-page: 512
  year: 2020
  ident: 10.1016/j.cma.2021.114333_b41
  article-title: Robust training and initialization of deep neural networks: An adaptive basis viewpoint
– year: 2006
  ident: 10.1016/j.cma.2021.114333_b4
– volume: 18
  start-page: 715
  issue: 05
  year: 2020
  ident: 10.1016/j.cma.2021.114333_b42
  article-title: Deep ReLU networks and high-order finite element methods
  publication-title: Anal. Appl.
  doi: 10.1142/S0219530519410136
– year: 1958
  ident: 10.1016/j.cma.2021.114333_b21
– year: 2018
  ident: 10.1016/j.cma.2021.114333_b93
– start-page: 5301
  year: 2019
  ident: 10.1016/j.cma.2021.114333_b97
  article-title: On the spectral bias of neural networks
– year: 1959
  ident: 10.1016/j.cma.2021.114333_b101
– volume: 11
  start-page: 1041
  issue: 5
  year: 2000
  ident: 10.1016/j.cma.2021.114333_b3
  article-title: Neural-network methods for boundary value problems with irregular boundaries
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.870037
– volume: vol. 57
  start-page: 1
  year: 2007
  ident: 10.1016/j.cma.2021.114333_b53
  article-title: Local maximum-entropy approximation schemes
– volume: 15
  start-page: 543
  year: 2006
  ident: 10.1016/j.cma.2021.114333_b47
  article-title: Kernel techniques: from machine learning to meshless methods
  publication-title: Acta Numer.
  doi: 10.1017/S0962492906270016
– volume: 60
  start-page: 90
  issue: 11
  year: 2017
  ident: 10.1016/j.cma.2021.114333_b110
  article-title: The heat method for distance computation
  publication-title: Commun. ACM
  doi: 10.1145/3131280
– volume: 36
  start-page: 354
  issue: 3
  year: 2020
  ident: 10.1016/j.cma.2021.114333_b17
  article-title: A comparison study of deep Galerkin method and deep Ritz method for elliptic problems with different boundary conditions
  publication-title: Commun. Math. Res.
  doi: 10.4208/cmr.2020-0051
– year: 2014
  ident: 10.1016/j.cma.2021.114333_b91
– volume: 6
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.cma.2021.114333_b9
  article-title: The deep Ritz method: a deep learning-based numerical algorithm for solving variational problems
  publication-title: Commun. Math. Stat.
  doi: 10.1007/s40304-018-0127-z
– year: 2020
  ident: 10.1016/j.cma.2021.114333_b95
– year: 2007
  ident: 10.1016/j.cma.2021.114333_b46
– volume: 2
  start-page: 359
  year: 1989
  ident: 10.1016/j.cma.2021.114333_b66
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– volume: 34
  start-page: 104
  issue: 8
  year: 2015
  ident: 10.1016/j.cma.2021.114333_b109
  article-title: On variational and PDE-based distance function approximations
  publication-title: Comput. Graph. Forum
  doi: 10.1111/cgf.12611
– volume: 48
  start-page: 151
  issue: 4
  year: 1995
  ident: 10.1016/j.cma.2021.114333_b23
  article-title: R-functions in boundary value problems in mechanics
  publication-title: Appl. Mech. Rev.
  doi: 10.1115/1.3005099
– year: 2004
  ident: 10.1016/j.cma.2021.114333_b65
– volume: 18
  start-page: 195
  year: 2001
  ident: 10.1016/j.cma.2021.114333_b25
  article-title: Transfinite interpolation over implicitly defined sets
  publication-title: Comput. Aided Geom. Design
  doi: 10.1016/S0167-8396(01)00015-2
– start-page: 517
  year: 1968
  ident: 10.1016/j.cma.2021.114333_b85
  article-title: A two-dimensional interpolation function for irregularly-spaced data
– volume: 378
  start-page: 686
  year: 2019
  ident: 10.1016/j.cma.2021.114333_b6
  article-title: Physics-informed neural networks: A deep learning framework for forward and inverse problems involving nonlinear partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.10.045
– volume: 375
  start-page: 1339
  year: 2018
  ident: 10.1016/j.cma.2021.114333_b8
  article-title: DGM: A deep learning algorithm for solving partial differential equations
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2018.08.029
– start-page: 3
  year: 2017
  ident: 10.1016/j.cma.2021.114333_b79
– volume: 40
  start-page: 727
  year: 1997
  ident: 10.1016/j.cma.2021.114333_b49
  article-title: The partition of unity method
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/(SICI)1097-0207(19970228)40:4<727::AID-NME86>3.0.CO;2-N
– year: 1982
  ident: 10.1016/j.cma.2021.114333_b22
– volume: 11
  issue: 3
  year: 2011
  ident: 10.1016/j.cma.2021.114333_b71
  article-title: Hybrid method of engineering analysis: Combining meshfree method with distance fields and collocation technique
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.3572035
– volume: 24
  start-page: 161
  year: 2015
  ident: 10.1016/j.cma.2021.114333_b78
  article-title: Generalized barycentric coordinates and applications
  publication-title: Acta Numer.
  doi: 10.1017/S0962492914000129
– start-page: 43
  year: 2017
  ident: 10.1016/j.cma.2021.114333_b77
– volume: 428
  year: 2021
  ident: 10.1016/j.cma.2021.114333_b61
  article-title: PFNN: A penalty-free neural network method for solving a class of second-order boundary-value problems on complex geometries
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2020.110085
– volume: 803
  start-page: 337
  issue: 1
  year: 2005
  ident: 10.1016/j.cma.2021.114333_b52
  article-title: Maximum entropy approximation
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.2149812
– volume: 8
  start-page: 164
  issue: 1
  year: 1996
  ident: 10.1016/j.cma.2021.114333_b57
  article-title: Neural networks for optimal approximation of smooth and analytic functions
  publication-title: Neural Comput.
  doi: 10.1162/neco.1996.8.1.164
– ident: 10.1016/j.cma.2021.114333_b74
  doi: 10.1145/304012.304038
– year: 2021
  ident: 10.1016/j.cma.2021.114333_b58
– start-page: 59
  year: 2019
  ident: 10.1016/j.cma.2021.114333_b94
  article-title: Google colaboratory
– volume: 16
  start-page: 157
  issue: 2
  year: 1973
  ident: 10.1016/j.cma.2021.114333_b105
  article-title: A constructive geometry for computer graphics
  publication-title: Comput. J.
  doi: 10.1093/comjnl/16.2.157
– start-page: 447
  year: 2021
  ident: 10.1016/j.cma.2021.114333_b70
  article-title: NVIDIA SimNet™: An AI-accelerated multi-physics simulation framework
– volume: 362
  year: 2020
  ident: 10.1016/j.cma.2021.114333_b92
  article-title: An energy approach to the solution of partial differential equations in computational mechanics via machine learning: Concepts, implementation and applications
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2019.112790
– volume: 61
  start-page: 1
  issue: 1
  year: 2004
  ident: 10.1016/j.cma.2021.114333_b38
  article-title: A variational r-adaption and shape-optimization method for finite-deformation elasticity
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.1052
– year: 1998
  ident: 10.1016/j.cma.2021.114333_b87
– volume: 32
  start-page: 12:1
  issue: 2
  year: 2013
  ident: 10.1016/j.cma.2021.114333_b108
  article-title: A gradient-based implicit blend
  publication-title: ACM Trans. Graph.
  doi: 10.1145/2451236.2451238
– volume: 24
  start-page: 561
  issue: 3
  year: 2005
  ident: 10.1016/j.cma.2021.114333_b83
  article-title: Mean value coordinates for closed triangular meshes
  publication-title: ACM Trans. Graph.
  doi: 10.1145/1073204.1073229
– volume: 6
  start-page: 1069
  year: 1993
  ident: 10.1016/j.cma.2021.114333_b89
  article-title: Some new results on neural network approximation
  publication-title: Neural Netw.
  doi: 10.1016/S0893-6080(09)80018-X
– year: 2019
  ident: 10.1016/j.cma.2021.114333_b64
– volume: 4
  start-page: 747
  issue: 33
  year: 2019
  ident: 10.1016/j.cma.2021.114333_b90
  article-title: Nn-svg: Publication-ready neural network architecture schematics
  publication-title: J. Open Sour. Softw.
  doi: 10.21105/joss.00747
– volume: 317
  start-page: 28
  year: 2018
  ident: 10.1016/j.cma.2021.114333_b7
  article-title: A unified deep artificial neural network approach to partial differential equations in complex geometries
  publication-title: Neuralcomputing
  doi: 10.1016/j.neucom.2018.06.056
– volume: 12
  start-page: 1
  year: 2003
  ident: 10.1016/j.cma.2021.114333_b19
  article-title: Survey of meshless and generalized finite element methods: a unified approach
  publication-title: Acta Numer.
  doi: 10.1017/S0962492902000090
– volume: 47
  start-page: 957
  issue: 9
  year: 2011
  ident: 10.1016/j.cma.2021.114333_b31
  article-title: Finite element analysis in situ
  publication-title: Finite Elem. Anal. Des.
  doi: 10.1016/j.finel.2011.03.001
– volume: 380
  year: 2021
  ident: 10.1016/j.cma.2021.114333_b84
  article-title: Scaled boundary cubature scheme for numerical integration over planar regions with affine and curved boundaries
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2021.113796
– volume: 118
  start-page: 258
  issue: 5
  year: 2019
  ident: 10.1016/j.cma.2021.114333_b88
  article-title: Deep convolutional neural networks for eigenvalue problems in mechanics
  publication-title: Internat. J. Numer. Methods Engrg.
  doi: 10.1002/nme.6012
– year: 2021
  ident: 10.1016/j.cma.2021.114333_b102
– year: 2003
  ident: 10.1016/j.cma.2021.114333_b40
– volume: 374
  year: 2020
  ident: 10.1016/j.cma.2021.114333_b12
  article-title: hp-VPINNs: Variational physics-informed neural networks with domain decomposition
  publication-title: Comput. Methods Appl. Mech. Engrg.
– year: 1991
  ident: 10.1016/j.cma.2021.114333_b26
– volume: 16
  start-page: 31
  issue: 1
  year: 1997
  ident: 10.1016/j.cma.2021.114333_b73
  article-title: Bulge elimination in convolution surfaces
  publication-title: Comput. Graph. Forum
  doi: 10.1111/1467-8659.114
– volume: 194
  start-page: 4135
  issue: 39–41
  year: 2005
  ident: 10.1016/j.cma.2021.114333_b37
  article-title: Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement
  publication-title: Comput. Methods Appl. Mech. Engrg.
  doi: 10.1016/j.cma.2004.10.008
– year: 2021
  ident: 10.1016/j.cma.2021.114333_b69
– start-page: 265
  year: 2016
  ident: 10.1016/j.cma.2021.114333_b14
  article-title: Tensorflow: A system for large-scale machine learning
– volume: 20
  issue: 6
  year: 2020
  ident: 10.1016/j.cma.2021.114333_b63
  article-title: Solution of biharmonic equation in complicated geometries with physics informed extreme learning machine
  publication-title: J. Comput. Inf. Sci. Eng.
  doi: 10.1115/1.4046892
SSID ssj0000812
Score 2.7242603
Snippet In this paper, we introduce a new approach based on distance fields to exactly impose boundary conditions in physics-informed deep neural networks. The...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114333
SubjectTerms Artificial neural networks
Bending
Biharmonic equations
Boundary conditions
Boundary value problems
Collocation methods
Constructive solid geometry
Deep learning
Differential geometry
Dirichlet problem
Distance function
Domains
Eikonal equation
Exact geometry
Geometry
Hypercubes
Interpolation
Laplace equation
Machine learning
Meshfree method
Meshless methods
Neural networks
Partial differential equations
Physics
Potential fields
R-function
Ritz method
Thermodynamics
Training
Transfinite interpolation
Title Exact imposition of boundary conditions with distance functions in physics-informed deep neural networks
URI https://dx.doi.org/10.1016/j.cma.2021.114333
https://www.proquest.com/docview/2639708175
Volume 389
WOSCitedRecordID wos000783073400007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-2138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000812
  issn: 0045-7825
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwGLVgAwkO_CggBgP5gDiAjBLHzo_jhDoBmsoOHerNcmxHZGNZaUpV_ns-x3aTVVDBgUtUpUka9T1_frY_vw-hV4kqKS2rhKRScmLdTUhZGE5yWTEVqYqyVHXFJrLJJJ_NilOfOtR25QSypsnX62L-X6GGcwC23Tr7D3BvHgon4DOADkeAHY5_Bfx4bbc91pchHcvKwbIrnrT4aZPMtUvScjOw2spH27Zt_9anlXfgtcS5qoIk1cbM31rrSwC0cYnj7VDWhtoQviB19xDp9e2lsZuLgxm06f0P-_Woi5Dn3a8LLeqVhFdbuWnf5qJeDucnYGgbXcv16DfOfBnGYcYJaBM-jMOJqyXkI2n82_juphrO36nOM4rG1uo4cU4a1720J5_F8dnJiZiOZ9PX8-_Elhmzy_G-5spNtE8zXkAY3D_6OJ596jvvPHYG8_4Fw0J4lxK49at_kjJbnXqnVKYP0D0_xMBHjhoP0Q3TjNB9P9zAPpi3I3R34EU5QrdPHeiP0NeOQbhnEL6qcGAQ7hmELYNwYBDeMAjXDd5mELYMwo5BODDoMTo7Hk_ffyC-IAdRCeVLEpeS65zqMlIJtOhMmYRxmWuuIp3LPDLGRHBNanTGZFomWRFrGMHRksYJrUAuPUF7zVVjniKcGqYrEyuQpxq6kbxkGdwXVQWjscyUPkBR-G-F8m71tmjKNxHSEs8FwCEsHMLBcYDebG6ZO6uWXRezAJjwWtNpSAFU23XbYQBX-DbfCmoXx4E4GX-2--vn6E7fQg7R3nLxw7xAt9RqWbeLl56KvwCZDq3U
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exact+imposition+of+boundary+conditions+with+distance+functions+in+physics-informed+deep+neural+networks&rft.jtitle=Computer+methods+in+applied+mechanics+and+engineering&rft.au=Sukumar%2C+N&rft.au=Srivastava%2C+Ankit&rft.date=2022-02-01&rft.pub=Elsevier+BV&rft.issn=0045-7825&rft.volume=389&rft.spage=1&rft_id=info:doi/10.1016%2Fj.cma.2021.114333&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7825&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7825&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7825&client=summon